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In this paper, we study the following Schrödinger-Poisson system

{
−Δu + V (x)u + λφu = |u|4u + μf(u), x ∈ R3,

−Δφ = u2, x ∈ R3,

where V (x) is a smooth function and μ, λ > 0. Under suitable conditions on f , by 
using constraint variational method and the quantitative deformation lemma, if μ
is large enough, we obtain a least-energy sign-changing (or nodal) solution uλ to 
this problem for each λ > 0, and its energy is strictly larger than twice that of the 
ground state solutions. Moreover, we study the asymptotic behavior of uλ as the 
parameter λ ↘ 0.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction and main results

In the past decades, a great attention has been given to the following Schrödinger-Poisson system

{
−Δu + V (x)u + λφu = f(x, u), x ∈ RN ,

−Δφ = u2, x ∈ RN ,
(1.1)

where V (x) is a smooth function and λ > 0. System (1.1) derives from time-dependent Schrödinger-Poisson 
equation, which describes quantum (nonrelativistic) particles interacting with the electromagnetic field 
generated by the motion. For more details on the mathematical and physical background of the system 
(1.1), we refer the readers to the paper [10,30,31] and the references therein.
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Since so-called nonlocal term λφu(x)u is involving, system (1.1) is called the nonlocal problems. The 
appearance of nonlocal term in the equations embodies its importance in many physical applications, but 
it brings some difficulties and challenges from a mathematical point of view. This fact makes the study of 
system (1.1) particularly interesting. Therefore, a lot of researches have been carried out in the past decades, 
such as those in [3,4,9,13–16,18,19,21,23,24,28,29,33,36,41,42] and the references therein.

Recently, some authors began to focus on sign-changing solutions of system (1.1) [1,2,9,12,20,22,25,26,
32,34,35,37]. Especially, when R3 is replaced by a bounded domain with smooth boundary, Alves and Souto 
[1] studied the existence of least-energy sign-changing solution for system (1.1). Later, Alves, Souto and 
Soares [2] improved and generalized results obtained in [1] to whole space R3. In case of f(x, u) = |u|p−1u, 
p ∈ (3, 5), combining constraint variational method with the Brouwer degree theory, Wang and Zhou [37]
got the existence of sign-changing solution for system (1.1) for all λ > 0 and proved that if V (x) ≡ 1, 
the energy of least-energy sign-changing radial solution of (1.1) is strictly larger than the least energy for 
λ > 0 small. Shuai and Wang [32] noticed that the method used in [37] strongly depends on the fact that 
the nonlinearity is homogeneous, which cannot be applied to a more general nonlinearity f(u) directly, 
they studied the system (1.1) in which f(x, u) was replaced by f(u). Via the constraint variational method 
and quantitative deformation lemma, they obtained the existence and asymptotic behavior of least-energy 
sign-changing solution for system (1.1). Later, under some more weaker assumptions on f (especially, Nehari 
type monotonicity condition been removed), Cheng and Tang [12] improved and generalized results obtained 
in [32]. However, to the best of our knowledge, few people have studied the existence and asymptotic behavior 
of sign-changing solutions for Schrödinger-Poisson system in case of critical growth except for the study in 
[43]. In [43], Zhong and Tang considered the following Schrödinger-Poisson system with critical growth

{
−Δu + u + k(x)φu = |u|4u + λf(x)u, x ∈ R3,

−Δφ = k(x)u2, x ∈ R3,
(1.2)

where k and f are nonnegative functions, 0 < λ < λ1 and λ1 is the first eigenvalue of the problem 
−Δu + u = λf(x)u in H1(R3). Via the constraint variational method, they obtained the existence of 
least-energy sign-changing solution for system (1.2) and showed that its energy is strictly larger than two 
times of the least energy. However, if k(x) ≡ 1, their method seems invalid because their results depend 
on k ∈ Lp(R3) ∩ L∞(R3) for some p ∈ [2, ∞). Furthermore, they did not study the asymptotic behavior of 
sign-changing solution.

Motivated by the above references, in this article, we are interested in the existence of the least-energy 
sign-changing solution for the following Schrödinger-Poisson system with critical growth{

−Δu + V (x)u + λφu = |u|4u + μf(u), x ∈ R3,

−Δφ = u2, x ∈ R3,
(1.3)

where μ, λ > 0. As in [32,37], to make it easier to check the compactness, we always assume that V ∈
C(R3, R+) and satisfies:

(V ) H ⊂ H1(R3) such that, for 2 < p < 6, the embedding H ↪→ Lp(R3) is compact, where H is given by

H =

⎧⎪⎪⎨⎪⎪⎩
H1

r (R3) = {u ∈ H1(R3) : u(x) = u(|x|)}, if V (x) is a constant,

{u ∈ D1,2(R3) :
∫
R3

V (x)u2dx < ∞}, if V (x) is not a constant,

with the norm
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‖u‖2 =
∫
R3

(|∇u|2 + V (x)u2)dx.

As for the function f , we assume f ∈ C1(R, R) and satisfies the following hypotheses:

(f1) limt→0
f(t)
t3 = 0;

(f2) There exists q ∈ (4, 6) such that limt→∞
f(t)
tq−1 = 0;

(f3) f(t)
|t|3 is an increasing function of t ∈ R\{0}.

Before presenting our main results, we denote Lp(R3) a Lebesgue space with the norm |u|p :=
(
∫
R3 |u|pdx)

1
p , 1 ≤ p < ∞.

It is well known that, by the Lax-Milgram Theorem, for given u ∈ H, there exists a unique φu ∈ D1,2(R3)
such that −Δφu = u2. Furthermore,

φu(x) = 1
4π

∫
R3

u2(y)
|x− y|dy. (1.4)

Substituting (1.4) into system (1.3), we can rewrite system (1.3) as the following equivalent form

−Δu + V (x)u + λφuu = |u|4u + μf(u), x ∈ R3. (1.5)

Therefore, the energy functional associated with system (1.3) is defined by

Iμλ (u) = 1
2

∫
R3

(|∇u|2 + V (x)u2)dx + λ

4

∫
R3

φuu
2dx− μ

∫
R3

F (u)dx− 1
6

∫
R3

|u|6dx,∀u ∈ H.

Moreover, Iμλ (u) belongs to C1(H, R) and

〈(Iμλ )′(u), v〉 =
∫
R3

(∇u · ∇v + V (x)uv)dx + λ

∫
R3

φuuvdx− μ

∫
R3

f(u)vdx−
∫
R3

|u|4uvdx

for any u, v ∈ H.
The solution of system (1.3) is the critical point of the functional Iμλ (u). If u ∈ H is a solution of 

system (1.3) and u± �= 0, then u is a sign-changing solution of system (1.3), where u+ = max{u(x), 0}, 
u− = min{u(x), 0}.

In fact, there are some essential differences between λ > 0 and λ = 0 when we study the sign-changing 
solutions of system (1.3). Since these differences are obviously caused by the nonlocal term λφu(x)u, some 
good methods of seeking sign-changing solutions for local problems, for example [5–8,11,39,44], seems not 
be applicable to nonlocal problems. Therefore, as in [1,12,17,32,37,38], to overcome the difficulties and 
challenges stem from the nonlocal term, we borrow some ideas from [5]. Specifically, we first try to seek 
a minimizer of the energy functional Iμλ over the constraint Mμ

λ = {u ∈ H, u± �= 0 and 〈(Iμλ )′(u), u+〉 =
〈(Iμλ )′(u), u−〉 = 0}, and then prove that the minimizer is a sign-changing solution of system (1.3).

Since system (1.3) involves critical exponent in the nonlinearity, it is rather difficult to show that 
infu∈Mμ

λ
Iμλ (u) is achieved in Mμ

λ because of the lack of the compactness caused by the critical term. 
As we will see later, this problem prevents us from using the way as in [1,12,32,37]. So we need some new 
ideas to deal with this essential problem (see Lemma 2.2 and Lemma 2.3).
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The main results can be stated as follows.

Theorem 1.1. Suppose that (f1) − (f3) are satisfied. Then, there exists μ� > 0 such that for all μ ≥ μ� and 
each λ > 0, the system (1.3) has a least-energy sign-changing solution uλ, which has precisely two nodal 
domains.

Theorem 1.2. Suppose that (f1) − (f3) are satisfied. Then, there exists μ�� > 0 such that for all μ ≥ μ��

and each λ > 0, the c∗ > 0 is achieved and Iμλ (uλ) > 2c∗, where c∗ = infu∈Nμ
λ
Iμλ (u), N μ

λ = {u ∈
H\ {0}|〈(Iμλ )′(u), u〉 = 0}, and uλ is the least-energy sign-changing solution obtained in Theorem 1.1. In 
particular, c∗ > 0 is achieved either by a positive or a negative function.

Remark 1.1. Theorem 1.2 shows that the energy of any sign-changing solution for system (1.3) is strictly 
larger than two times of the least energy. If λ = 0, this property is called energy doubling by Weth in [39].

Theorem 1.3. Suppose that (f1) − (f3) are satisfied. Then, there exists μ��� > 0 such that for all μ ≥ μ���, 
for any sequence {λn} with λn → 0 as n → ∞, there exists a subsequence, still denoted by {λn}, such that 
uλn

converges to u0 weakly in H as n → ∞, where uλn
is a least-energy sign-changing solution of system 

(1.3) with λ = λn and u0 is a least-energy sign-changing solution to the following problem

−Δu + V (x)u = |u|4u + μf(u), x ∈ R3. (1.6)

Remark 1.2. It is noticed that, although our paper and [43] both study the critical problem, the method 
used in our paper to overcome difficulties COMING from the critical term is different from the one used in 
[43].

2. Technical lemmas

Proposition 2.1 ([13,28,41]). For any u ∈ H, we have

(i) there exists C > 0 such that 
∫
R3 φuu

2dx ≤ C‖u‖4 ∀u ∈ H;
(ii) φu ≥ 0, ∀u ∈ H;
(iii) φtu = t2φu, ∀t > 0 and u ∈ H;
(iv) if un ⇀ u in H, then φun

⇀ φu in D1,2(R3).

Now, fixed u ∈ H with u± �= 0, we define function ψu : [0, ∞) × [0, ∞) → R and mapping Wu :
[0, ∞) × [0, ∞) → R2 by

ψu(s, t) = Iμλ (su+ + tu−),

Wu(s, t) = (〈(Iμλ )′(su+ + tu−), su+〉, 〈(Iμλ )′(su+ + tu−), tu−〉).

Lemma 2.1. Assume that (f1)-(f3) hold, if u ∈ H with u± �= 0, then ψu has the following properties:

(i) The pair (s, t) is a critical point of ψu with s, t > 0 if and only if su+ + tu− ∈ Mμ
λ;

(ii) The function ψu has a unique critical point (su, tu) on (0, ∞) ×(0, ∞), which is also the unique maximum 
point of ψu on [0, ∞) × [0, ∞); Furthermore, if 〈(Iμλ )′(u), u±〉 ≤ 0, then 0 < su, tu ≤ 1.

Proof. (i) By definition of ψu, we have that

∇ψu(s, t) = (〈(Iμ)′(su+ + tu−), u+〉, 〈(Iμ)′(su+ + tu−), u−〉)
λ λ
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= (1
s
〈(Iμλ )′(su+ + tu−), su+〉, 1

t
〈(Iμλ )′(su+ + tu−), tu−〉).

Thus, item (i) holds.
(ii) Firstly, we prove the existence of su and tu.
From (f1) and (f2), for any ε > 0, there exists Cε > 0 such that

|f(t)| ≤ ε|t| + Cε|t|q−1, for all t ∈ R. (2.1)

Then, by Sobolev embedding theorem, we have that

〈(Iμλ )′(su+ + tu−), su+〉 ≥ s2‖u+‖2 − s6
∫
R3

|u+|6dx− μεs2
∫
R3

|u+|2dx− μCεs
q

∫
R3

|u+|qdx

≥ s2‖u+‖2 − C1s
6‖u+‖6 − μεC2s

2‖u+‖2 − μCεC3s
q‖u+‖q

≥ (1 − μεC4)s2‖u+‖2 − C4s
6‖u+‖6 − μC4s

q‖u+‖q.

Choosing ε > 0 such that (1 − μεC4) > 0. Since q > 4, we have that 〈(Iμλ )′(su+ + tu−), su+〉 > 0, for s
small enough and all t ≥ 0.

Similarly, we obtain that 〈(Iμλ )′(su+ + tu−), tu−〉 > 0, for t small enough and all s ≥ 0.
Therefore, there is δ1 > 0 such that

〈(Iμλ )′(δ1u+ + tu−), δ1u+〉 > 0, 〈(Iμλ )′(su+ + δ1u
−), δ1u−〉 > 0, for all s, t ≥ 0. (2.2)

On the other hand, by (f1) and (f3), we have that

f(t)t > 0, t �= 0; F (t) ≥ 0, t ∈ R. (2.3)

Therefore, choose s = δ′2 > δ1, if t ∈ [δ1, δ′2] and δ′2 is large enough, it follows that

〈(Iμλ )′(δ′2u+ + tu−), δ′2u+〉 ≤ (δ′2)2‖u+‖2 + (δ′2)4λ
∫
R3

φu+ |u+|2 + (δ′2)4λ
∫
R3

φu− |u+|2

− (δ′2)6
∫
R3

|u+|6dx ≤ 0.

Similarly, we have that

〈(Iμλ )′(su+ + tu−), tu−〉 ≤ t2‖u−‖2 + t4λ

∫
R3

φu− |u−|2dx + s2t2λ

∫
R3

φu+ |u−|2dx

− t6
∫
R3

|u−|6dx.

Let δ2 > δ′2 be large enough, we can obtain that

〈(Iμλ )′(δ2u+ + tu−), δ2u+〉 < 0, 〈(Iμλ )′(su+ + δ2u
−), δ2u−〉 < 0, for all s, t ∈ [δ1, δ2]. (2.4)

Combining (2.2), (2.4) with Miranda’s Theorem [27], there exists (su, tu) ∈ (0, ∞) × (0, ∞) such that 
Wu(s, t) = (0, 0), i.e., suu+ + tuu

− ∈ Mμ.
λ
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Secondly, we prove the uniqueness of the pair (su, tu).
Case 1. u ∈ Mμ

λ.
If u ∈ Mμ

λ, we have that

‖u±‖2 + λ

∫
R3

φu± |u±|2dx + λ

∫
R3

φu∓ |u±|2dx =
∫
R3

|u±|6dx + μ

∫
R3

f(u±)u±dx. (2.5)

Now, we show that (su, tu) = (1, 1) is the unique pair of numbers such that suu+ + tuu
− ∈ Mμ

λ.
Let (s0, t0) be a pair of numbers such that s0u

+ + t0u
− ∈ Mμ

λ with 0 < s0 ≤ t0. So, one has that

s2
0‖u+‖2 + s4

0λ

∫
R3

φu+ |u+|2dx + s2
0t

2
0λ

∫
R3

φu− |u+|2dx = s6
0

∫
R3

|u+|6dx + μ

∫
R3

f(s0u
+)s0u

+dx, (2.6)

t20‖u−‖2 + t40λ

∫
R3

φu− |u−|2dx + s2
0t

2
0λ

∫
R3

φu+ |u−|2dx = t60

∫
R3

|u−|6dx + μ

∫
R3

f(t0u−)t0u−dx. (2.7)

Thanks to 0 < s0 ≤ t0 and (2.7), we have that

‖u−‖2

t20
+ λ

∫
R3

φu− |u−|2dx + λ

∫
R3

φu+ |u−|2dx ≥ t20

∫
R3

|u−|6dx + μ

∫
R3

[f(t0u−)
(t0u−)3 ](u−)4dx. (2.8)

Combining (2.5) with (2.8), we obtain that

( 1
t20

− 1)‖u−‖2 ≥ (t20 − 1)
∫
R3

|u−|6dx + μ

∫
R3

[f(t0u−)
(t0u−)3 − f(u−)

(u−)3 ](u−)4dx.

If t0 > 1, the left side of above inequality is negative, which is absurd because the right side is positive by 
condition (f3). Therefore, we obtain that 0 < s0 ≤ t0 ≤ 1.

Similarly, by (2.6) and 0 < s0 ≤ t0, we get

( 1
s2
0
− 1)‖u+‖2 ≤ (s2

0 − 1)
∫
R3

|u+|6dx + μ

∫
R3

[f(s0u
+)

(s0u+)3 − f(u+)
(u+)3 ](u+)4dx.

In view of (f3), we have that s0 ≥ 1. Consequently, s0 = t0 = 1.
Case 2. u /∈ Mμ

λ.
Suppose that there exist (s1, t1), (s2, t2) such that u1 = s1u

+ + t1u
− ∈ Mμ

λ, u2 = s2u
+ + t2u

− ∈ Mμ
λ. 

So,

u2 = (s2

s1
)s1u

+ + ( t2
t1

)t1u− = (s2

s1
)u+

1 + ( t2
t1

)u−
1 ∈ Mμ

λ.

Thanks to u1 ∈ Mμ
λ, we get that s2s1 = t2

t1
= 1. Hence, s1 = s2, t1 = t2.

Next, we prove that (su, tu) is the unique maximum point of ψu on [0, ∞) × [0, ∞).
In fact, by (2.3), we have that

ψu(s, t) = Iμλ (su+ + tu−)

= s2

2 ‖u+‖2 + t2

2 ‖u−‖2 + s4

4 λ

∫
φu+ |u+|2dx + t4

4 λ

∫
φu− |u−|2dx
R3 R3
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+ s2t2

4 λ

∫
R3

φu− |u+|2dx + s2t2

4 λ

∫
R3

φu+ |u−|2dx− μ

∫
R3

F (su+)dx

− μ

∫
R3

F (tu−)dx− s6

6

∫
R3

|u+|6dx− t6

6

∫
R3

|u−|6dx

≤ s2

2 ‖u+‖2 + t2

2 ‖u−‖2 + s4

4 λ

∫
R3

φu+ |u+|2dx + t4

4 λ

∫
R3

φu− |u−|2dx

+ s2t2

4 λ

∫
R3

φu− |u+|2dx + s2t2

4 λ

∫
R3

φu+ |u−|2dx− s6

6

∫
R3

|u+|6dx− t6

6

∫
R3

|u−|6dx,

which implies that lim|(s,t)|→∞ ψu(s, t) = −∞.
Hence, (su, tu) is the unique critical point of ψu in [0, ∞) × [0, ∞). So it is sufficient to check that a 

maximum point cannot be achieved on the boundary of [0, ∞) × [0, ∞). By contradiction, we suppose that 
(0, t0) is a maximum point of ψu with t0 ≥ 0. Then, we have that

ψu(s, t0) = s2

2 ||u+||2 + s4

4 λ

∫
R3

φu+ |u+|2dx− s6

6

∫
R3

|u+|6dx−
∫
R3

F (su+)dx

+ t20
2 ||u−|| + t40

4 λ

∫
R3

φu− |u−|2dx− t60
6

∫
R3

|u+|6dx−
∫
R3

F (t0u−)dx

+ s2t20
4 λ

∫
R3

φu− |u+|2dx + s2t20
4 λ

∫
R3

φu+ |u−|2dx.

Therefore, it is obvious that

(ψu)′s(s, t0) = s||u+||2 + s3λ

∫
R3

φu+ |u+|2dx + st20
2 λ

∫
R3

φu− |u+|2dx + st20
2 λ

∫
R3

φu+ |u−|2dx

− s5
∫
R3

|u+|6dx−
∫
R3

f(su+)u+dx > 0, if s is small enough.

That is, ψu is an increasing function with respect to s if s is small enough. This yields the contradiction. 
Similarly, ψu can not achieve its global maximum on (s, 0) with s ≥ 0.

Lastly, we prove that 0 < su, tu ≤ 1 if 〈(Iμλ )′(u), u±〉 ≤ 0.
Suppose su ≥ tu > 0. By suu+ + tuu

− ∈ Mμ
λ, we have

s2
u‖u+‖2 + s4

uλ

∫
R3

φu+ |u+|2dx + s4
uλ

∫
R3

φu− |u+|2dx

≥ s2
u‖u+‖2 + s4

uλ

∫
R3

φu+ |u+|2dx + s2
ut

2
uλ

∫
R3

φu− |u+|2dx

= s6
u

∫
R3

|u+|6dx + μ

∫
R3

f(suu+)suu+dx. (2.9)
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On the other hand, by 〈(Iμλ )′(u), u+〉 ≤ 0, we have

‖u+‖2 + λ

∫
R3

φu+ |u+|2dx + λ

∫
R3

φu− |u+|2dx ≤
∫
R3

|u+|6dx + μ

∫
R3

f(u+)u+dx. (2.10)

So, according to (2.9) and (2.10), we have that

( 1
s2
u

− 1)‖u+‖2 ≥ (s2
u − 1)

∫
R3

|u+|6dx + μ

∫
R3

[f(suu+)
(suu+)3 − f(u+)

(u+)3 ](u+)4dx.

Thanks to condition (f3), we conclude that su ≤ 1. Thus, we have that 0 < su, tu ≤ 1. �
Lemma 2.2. Let cμλ = infu∈Mμ

λ
Iμλ (u), then we have that limμ→∞ cμλ = 0.

Proof. For any u ∈ Mμ
λ, we have

‖u±‖2 + λ

∫
R3

φu± |u±|2dx + λ

∫
R3

φu∓ |u±|2dx = μ

∫
R3

f(u±)u±dx +
∫
R3

|u±|6dx.

Then, by (2.1) and Sobolev inequalities, we have that

‖u±‖2 ≤ μ

∫
R3

f(u±)u±dx +
∫
R3

|u±|6dx ≤ μεC1‖u±‖2 + μC2‖u±‖q + C3‖u±‖6.

Thus, we get (1 − μεC1)‖u±‖2 ≤ μC2‖u±‖q + C3‖u±‖6.
Choosing ε small enough such that (1 − μεC1) > 0, since q > 4, there exists ρ > 0 such that ‖u±‖ ≥ ρ

for all u ∈ Mμ
λ.

On the other hand, for any u ∈ Mμ
λ, it is obvious that 〈(Iμλ )′(u), u〉 = 0. Thanks to (f3), we obtain that

H(t) := f(t)t− 4F (t) ≥ 0, (2.11)

and H(t) is increasing when t > 0 and decreasing when t < 0.
Then, we get

Iμλ (u) = Iμλ (u) − 1
4 〈(I

μ
λ )′(u), u〉

= 1
4‖u‖

2 + 1
12

∫
R3

|u|6dx + μ

4

∫
R3

[f(u)u− 4F (u)]dx ≥ 1
4‖u‖

2, for any u ∈ Mμ
λ.

From above discussions, we have that Iμλ (u) > 0, for all u ∈ Mμ
λ. So, Iμλ is bounded below on Mμ

λ, that 
is, cμλ = infu∈Mμ

λ
Iμλ (u) is well-defined.

Let u ∈ H with u± �= 0 be fixed. According to Lemma 2.1, for each μ > 0, there exist sμ, uμ > 0 such 
that sμu+ + tμu

− ∈ Mμ
λ.

Therefore, by (2.3) and Proposition 2.1, we get

0 ≤ cμ = inf
u∈Mμ

λ

Iμλ (u) ≤ Iμλ (sμu+ + tμu
−)

≤ 1
2‖su

+ + tu−‖2 + λ

4

∫
φsu++tu− |su+ + tu−|2dx
R3
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≤ s2
μ‖u+‖2 + t2μ‖u−‖2 +

λCs4
μ

2 ‖u+‖4 +
λCt4μ

2 ‖u−‖4.

To our end, we just prove that sμ → 0 and tμ → 0, as μ → ∞.
Let Φu = {(sμ, tμ) ∈ [0, ∞) × [0, ∞) : Wu(sμ, tμ) = (0, 0), μ > 0}, where Wu is defined as in Lemma 2.1. 

Then, we have that

s6
μ

∫
R3

|u+|6dx + t6μ

∫
R3

|u−|6dx ≤ s6
μ

∫
R3

|u+|6dx + t6μ

∫
R3

|u−|6dx

+ μ

∫
R3

f(sμu+)sμu+dx + μ

∫
R3

f(tμu−)tμu−dx

= ‖su+ + tu−‖2 + λ

∫
R3

φsu++tu− |su+ + tu−|2dx

≤ 2s2
μ‖u+‖2 + 2t2μ‖u−‖2 + 2λCs4

μ‖u+‖4 + 2λCt4μ‖u−‖4.

Therefore, Φu is bounded.
Let {μn} ⊂ (0, ∞) be such that μn → ∞ as n → ∞. Then, there exist s0 and t0 such that, up to a 

subsequence, (sμn
, tμn

) → (s0, t0) as n → ∞.
We claim s0 = t0 = 0. Suppose, by contradiction, that s0 > 0 or t0 > 0. Thanks to sμn

u++tμn
u− ∈ Mμn

λ , 
for any n ∈ N, we have

‖sμn
u+ + tμn

u−‖2 + λ

∫
R3

φsμnu++tμnu− |sμn
u+ + tμn

u−|2dx

=
∫
R3

|sμn
u+ + tμn

u−|6dx + μn

∫
R3

f(sμn
u+ + tμn

u−)(sμn
u+ + tμn

u−)dx. (2.12)

According to sμn
u+ → s0u

+ and tμn
u− → t0u

− in H, (2.1) and (2.3), we have that∫
R3

f(sμn
u+ + tμn

u−)(sμn
u+ + tμn

u−)dx →
∫
R3

f(s0u
+ + t0u

−)(s0u
+ + t0u

−)dx > 0, as n → ∞.

So, it follows from μn → ∞ as n → ∞ and {sμn
u++tμn

u−} is bounded in H that we have a contradiction 
with the equality (2.12).

Hence, s0 = t0 = 0. That is, limμ→∞ cμλ = 0. �
Lemma 2.3. There exists μ� > 0 such that for all μ ≥ μ�, the infimum cμλ is achieved.

Proof. According to definition of cμλ, there is a sequence {un} ⊂ Mμ
λ such that limn→∞ Iμλ (un) = cμλ.

Obviously, {un} is bounded in H. Then, up to a subsequence, still denoted by {un}, there exists u ∈ H

such that un ⇀ u.
Since the embedding H ↪→ Lp(R3) is compact, for all p ∈ (2, 6), we have

un → u in Lp(R3), un(x) → u(x) a.e. x ∈ R3.

So,

u±
n ⇀ u± in H,u±

n → u± in Lp(R3), u±
n (x) → u±(x) a.e. x ∈ R3.
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Denote β := 1
3S

3
2 , where

S := inf
u∈H\{0}

‖u‖2

(
∫
R3 |u|6dx) 1

3
.

According to Lemma 2.2, there is μ� > 0 such that cμλ < β for all μ ≥ μ�.
Fix μ ≥ μ�, it follows from Lemma 2.1 that Iμλ (su+

n + tu−
n ) ≤ Iμλ (un) for all s, t ≥ 0.

Therefore, by using Brezis-Lieb Lemma, Fatou’s Lemma and Hardy-Littlewood-Sobolev inequality, we 
have that

lim inf
n→∞

Iμλ (su+
n + tu−

n ) ≥ s2

2 lim
n→∞

(‖u+
n − u+‖2 + ‖u+‖2) + t2

2 lim
n→∞

(‖u−
n − u−‖2 + ‖u−‖2)

+ λs4

4 lim inf
n→∞

∫
R3

φu+
n
|u+

n |2dx + λt4

4 lim inf
n→∞

∫
R3

φu−
n
|u−

n |2dx

− s6

6 lim
n→∞

(|u+
n − u+|66 + |u+|66) −

t6

6 lim
n→∞

(|u−
n − u−|66 + |u−|66)

− μ

∫
R3

F (su+)dx− μ

∫
R3

F (tu−)dx

+ λs2t2

4 lim inf
n→∞

∫
R3

φu+
n
|u−

n |2dx + λs2t2

4 lim inf
n→∞

∫
R3

φu−
n
|u+

n |2dx

≥ Iμλ (su+ + tu−) + s2

2 lim
n→∞

‖u+
n − u+‖2 + t2

2 lim
n→∞

‖u−
n − u−‖2

− s6

6 lim
n→∞

|u+
n − u+|66 −

t6

6 lim
n→∞

|u−
n − u−|66

= Iμλ (su+ + tu−) + s2

2 A1 −
s6

6 B1 + t2

2 A2 −
t6

6 B2,

where

A1 = lim
n→∞

‖u+
n − u+‖2, A2 = lim

n→∞
‖u−

n − u−‖2, B1 = lim
n→∞

|u+
n − u+|66, B2 = lim

n→∞
|u−

n − u−|66.

So, we have that

Iμλ (su+ + tu−) + s2

2 A1 −
s6

6 B1 + t2

2 A2 −
t6

6 B2 ≤ cμλ, for all s ≥ 0 and t ≥ 0. (2.13)

Firstly, we prove that u± �= 0.
Since the situation u− �= 0 is analogous, we just prove u+ �= 0. By contradiction, we suppose u+ = 0.
Case 1: B1 = 0.
If A1 = 0, that is, u+

n → u+ in H. In view of discussions in Lemma 2.1, we obtain ‖u+‖ > 0, which 
contradicts our supposition. If A1 > 0, it follows from (2.13) that s

2

2 A1 ≤ cμλ for all s ≥ 0, which is absurd. 
Anyway, we have a contradiction.

Case 2: B1 > 0.
According to definition of S, we have that β = 1

3S
3
2 ≤ 1

3 ( A1

(B1)
1
3
) 3

2 .

It is easy to see that 1
3 ( A1

(B1)
1
3
) 3

2 = maxs≥0{ s2

2 A1 − s6

6 B1}. So, thanks to cμλ < β and (2.13), we have that

β ≤ max{s
2
A1 −

s6
B1} < β,
s≥0 2 6
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which is a contradiction.
From above discussions, we have that u± �= 0.
Secondly, we prove that B1 = B2 = 0.
Since the situation B2 = 0 is analogous, we only prove B1 = 0. By contradiction, we suppose that B1 > 0.
Case 1: B2 > 0.
Let s̃ and t̃ satisfy

s̃2

2 A1 −
s̃6

6 B1 = max
s≥0

{s
2

2 A1 −
s6

6 B1},
at̃2

2 A2 −
t̃6

6 B2 = max
t≥0

{ t
2

2 A2 −
t6

6 B2}.

According to [0, ̃s] × [0, ̃t] is compact and ψu is continuous, there exists (su, tu) ∈ [0, ̃s] × [0, ̃t] such that 
ψu(su, tu) = max(s,t)∈[0,s̃]×[0,t̃] ψu(s, t).

In the following, we prove that (su, tu) ∈ (0, ̃s) × (0, ̃t).
If t is small enough, we have that

ψu(s, 0) = Iμλ (su+) < Iμλ (su+) + Iμλ (tu−) ≤ Iμλ (su+ + tu−) = ψu(s, t), for all s ∈ [0, s̃].

So, there exists t0 ∈ [0, ̃t] such that ψu(s, 0) ≤ ψu(s, t0), for all s ∈ [0, ̃s].
That is, any point of (s, 0) with 0 ≤ s ≤ s̃ is not the maximizer of ψu. Hence (su, tu) /∈ [0, ̃s] × {0}. 

Similarly, we have that (su, tu) /∈ {0} × [0, ̃t].
On the other hand, it is easy to see that

s2

2 A1 −
s6

6 B1 > 0 for all s ∈ (0, s̃], t
2

2 A2 −
t6

6 B2 > 0 for all t ∈ (0, t̃]. (2.14)

Then,

β ≤ s̃2

2 A1 −
s̃6

6 B1 + t2

2 A2 −
t6

6 B2 for t ∈ [0, t̃], β ≤ at̃2

2 A2 −
t̃6

6 B2 + s2

2 A1 −
s6

6 B1 for s ∈ [0, s̃].

Therefore, according to (2.13), we have that ψu(s, ̃t) ≤ 0, ψu(s̃, t) ≤ 0 for all s ∈ [0, ̃s] and all t ∈ [0, ̃t]. 
So, (su, tu) /∈ {s̃} × [0, ̃t] and (su, tu) /∈ ×[0, ̃s] × {t̃}.

At last, we get that (su, tu) ∈ (0, ̃s) × (0, ̃t). By Lemma 2.1, (su, tu) is a critical point of ψu. Hence, 
suu

+ + tuu
− ∈ Mμ

λ.
So, combining (2.13) with (2.14), we have that

cμλ ≥ Iμλ (suu+ + tuu
−) + s2

u

2 A1 −
s6
u

6 B1 + at2u
2 A2 −

t6u
6 B2 > Iμλ (suu+ + tuu

−) ≥ cμλ.

That is, we have a contradiction.
Case 2: B2 = 0.
In this case, we can maximize in [0, ̃s] × [0, ∞). Indeed, it is possible to show that there exists t0 ∈ [0, ∞)

such that Iμλ (su+ + tu−) ≤ 0, for all (s, t) ∈ [0, ̃s] × [t0, ∞). Hence, there is (su, tu) ∈ [0, ̃s] × [0, ∞) such 
that ψu(su, tu) = max(s,t)∈[0,s̃]×[0,∞) ψu(s, t).

In the following, we prove that (su, tu) ∈ (0, ̃s) × (0, ∞).
It is noticed that ψu(s, 0) < ψu(s, t) for s ∈ [0, ̃s] and t is small enough, so we conclude that (su, tu) /∈

[0, ̃s] × {0}.
Meantime, ψu(0, t) < ψu(s, t) for t ∈ [0, ∞) and s is small enough, then we have (su, tu) /∈ {0} × [0, ∞).
On the other hand, it is obvious that β ≤ as̃2

2 A1 − s̃6

6 B1 + t2

2 A2, for all t ∈ [0, ∞).
Hence, we have that ψu(s̃, t) ≤ 0 for all t ∈ [0, ∞). Thus, (su, tu) /∈ {s̃} × [0, ∞). And so (su, tu) ∈

(0, ̃s) × (0, ∞). That is, (su, tu) is an inner maximizer of ψu in [0, ̃s) × [0, ∞). So, suu+ + tuu
− ∈ Mμ.
λ
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Therefore, according to (2.14), we have that

cμλ ≥ Iμλ (suu+ + tuu
−) + s2

u

2 A1 −
s6
u

6 B1 + t2u
2 A2 > Iμλ (suu+ + tuu

−) ≥ cμλ.

That is, we have a contradiction. Therefore, we deduce that B1 = B2 = 0.
Lastly, we prove that cμλ is achieved.
For u± �= 0, according to Lemma 2.1, there exist su, tu > 0 such that ũ := suu

+ + tuu
− ∈ Mμ

λ. 
Furthermore, it is easy to see that 〈(Iμλ )′(u), u±〉 ≤ 0. So, we have that 0 < su, tu ≤ 1.

Since un ∈ Mμ
λ, thanks to (2.11), B1 = B2 = 0 and the norm in H is lower semicontinuous, we have that

cμλ ≤ Iμλ (ũ)) − 1
4 〈(I

μ
λ )′(ũ), ũ〉

= 1
4‖ũ‖

2 + 1
12 |ũ|

6
6 + μ

4

∫
R3

[f(ũ)ũ− 4F (ũ)]dx

= 1
4(‖suu+‖2 + ‖tuu−‖2) + 1

12(|suu+|66 + |tuu−|66)

+ μ

4

∫
R3

[f(suu+)(suu+) − 4F (suu+)]dx + μ

4

∫
R3

[f(tuu−)(tuu−) − 4F (tuu−)]dx

≤ 1
4‖u‖

2 + 1
12 |u|

6
6 + μ

4

∫
R3

[f(u)u− 4F (u)]dx

≤ lim inf
n→∞

[Iμλ (un) − 1
4 〈(I

μ
λ )′(un), un〉]

= lim inf
n→∞

Iμλ (un) = cμλ.

Therefore, we conclude that su = tu = 1, and cμλ is achieved by uλ := u+ + u− ∈ Mμ
λ. �

3. The proof of main results

Proof of Theorem 1.1. In fact, thanks to Lemma 2.3, we just prove that the minimizer uλ for cμλ is indeed 
a sign-changing solution of system (1.3).

Since uλ ∈ Mμ
λ, according to Lemma 2.1, we have that

Iμλ (su+
λ + tu−

λ ) < Iμλ (u+
λ + u−

λ ) = cμλ, for (s, t) ∈ (R+ ×R+)\(1, 1). (3.1)

If (Iμλ )′(uλ) �= 0, then there exist δ > 0 and θ > 0 such that ‖(Iμλ )′(v)‖ ≥ θ, for all ‖v − uλ‖ ≤ 3δ.
Choose σ ∈ (0, min{1/2, δ√

2‖uλ‖
}). Let D := (1 − σ, 1 + σ) × (1 − σ, 1 + σ) and g(s, t) = su+

λ + tu−
λ , 

(s, t) ∈ D. In view of (3.1), it is easy to see that

cμλ := max
∂D

I ◦ g < cμλ. (3.2)

Let ε := min{(cμλ − cμλ)/2, θδ/8} and Sδ := B(uλ, δ), according to Lemma 2.3 in [40], there exists a 
deformation η ∈ C([0, 1] ×H, H) such that

(a) η(1, v) = v if v /∈ (Iμλ )−1([cμλ − 2ε, cμλ + 2ε] ∩ S2δ);
(b) η(1, (Iμλ )c

μ
λ+ε ∩ Sδ) ⊂ (Iμλ )c

μ
λ−ε;

(c) Iμ(η(1, v)) ≤ Iμ(v) for all v ∈ H.
λ λ
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Firstly, we need to prove that

max
(s,t)∈D̄

Iμλ (η(1, g(s, t))) < cμλ. (3.3)

In fact, it follows from Lemma 2.1 that Iμλ (g(s, t)) ≤ cμλ < cμλ + ε. That is, g(s, t) ∈ (Iμλ )c
μ
λ+ε. On the other 

hand, we have

‖g(s, t) − uλ‖2 = ‖(s− 1)u+
λ + (t− 1)u−

λ ‖

≤ 2((s− 1)2‖u+
λ ‖2 + (t− 1)2‖u−

λ ‖2) ≤ 2σ‖uλ‖2 < δ2,

which shows that g(s, t) ∈ Sδ for all (s, t) ∈ D̄.
Therefore, according to (b), we obtain Iμλ (η(1, g(s, t))) < cμλ − ε. Hence, (3.3) holds.
In the following, we prove that η(1, g(D)) ∩Mμ

λ �= ∅, which contradicts the definition of cμλ. Let h(s, t) :=
η(1, g(s, t)) and

Ψ0(s, t) := (〈(Iμλ )′(g(s, t)), u+
λ 〉, 〈(I

μ
λ )′(g(s, t)), u−

λ 〉)

:= (ϕ1
u(s, t), ϕ2

u(s, t)),

Ψ1(s, t) := (1
s
〈(Iμλ )′(h(s, t)), (h(s, t))

+〉, 1
t
〈(Iμλ )′(h(s, t)), (h(s, t))

−〉).

By direct calculation, we have that

∂ϕ1
u(s, t)
∂s

|(1,1) = ‖u+
λ ‖2 + 3λ

∫
R3

φu+
λ
|u+

λ |2dx + λ

∫
R3

φu−
λ
|u+

λ |2dx

− 5|u+
λ |66 − μ

∫
R3

f ′(u+
λ )(u+

λ )2dx,

∂ϕ1
u(s, t)
∂t

|(1,1) = 2λ
∫
R3

φu−
λ
|u+

λ |2dx,
∂ϕ2

u(s, t)
∂s

|(1,1) = 2λ
∫
R3

φu+
λ
|u−

λ |2dx,

∂ϕ2
u(s, t)
∂t

|(1,1) = ‖u−
λ ‖2 + 3λ

∫
R3

φu−
λ
|u−

λ |2dx + λ

∫
R3

φu+
λ
|u−

λ |2dx

− 5|u−
λ |66 − μ

∫
R3

f ′(u−
λ )(u−

λ )2dx.

Let

M =

⎡⎣ ∂ϕ1
u(s,t)
∂s |(1,1) ∂ϕ2

u(s,t)
∂s |(1,1)

∂ϕ1
u(s,t)
∂t |(1,1) ∂ϕ2

u(s,t)
∂t |(1,1)

⎤⎦ .

By (f3), we conclude that f ′(s)s2 − 3f(s)s > 0 for s �= 0.
Then, since uλ ∈ Mμ

λ, we have that

detM = [2‖u+
λ ‖2 + 2|u+

λ |66 + 2λ
∫

φu−
λ
|u+

λ |2dx + μ

∫
[f ′(u+

λ )(u+
λ )2 − 3f(u+

λ )u+
λ ]dx]
R3 R3
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× [2‖u−
λ ‖2 + 2|u−

λ |66 + 2λ
∫
R3

φu+
λ
|u−

λ |2dx + μ

∫
R3

[f ′(u−
λ )(u−

λ )2 − 3f(u−
λ )u−

λ ]dx]

− 4λ2
∫
R3

φu+
λ
|u−

λ |2dx
∫
R3

φu−
λ
|u+

λ |2dx > 0.

Since Ψ0(s, t) is a C1 function and (1, 1) is the unique isolated zero point of Ψ0, by using the degree 
theory, we deduce that deg(Ψ0, D, 0) = 1.

So, combining (3.2) with (a), we obtain g(s, t) = h(s, t) on ∂D. Consequently, we obtain deg(Ψ1, D, 0) = 1. 
That is, Ψ1(s0, t0) = 0 for some (s0, t0) ∈ D, so that η(1, g(s0, t0)) = h(s0, t0) ∈ Mμ

λ. By (3.3), we have a 
contradiction. Therefore, we conclude that uλ is a sign-changing solution for system (1.3).

Finally, we prove that uλ has exactly two nodal domains. To this end, we assume by contradiction that 
uλ = u1 + u2 + u3 with

ui �= 0, u1 ≥ 0, u2 ≤ 0 and suppt(ui) ∩ suppt(uj) = ∅, for i �= j, i, j = 1, 2, 3

and 〈(Iμλ )′(uλ), ui〉 = 0, for i = 1, 2, 3.
Setting v := u1 + u2, we have that v+ = u1 and v− = u2, i.e., v± �= 0. Then, there exists a unique pair 

(sv, tv) of positive numbers such that svu1 + tvu2 ∈ Mμ
λ. So, Iμλ (svu1 + tvu2) ≥ cμλ.

Moreover, since 〈(Iμλ )′(uλ), ui〉 = 0, we obtain 〈(Iμλ )′(v), v±〉 < 0.
So, according to Lemma 2.1, we have that (sv, tv) ∈ (0, 1] × (0, 1].
On the other hand, we have

0 = 1
4 〈(I

μ
λ )′(uλ), u3〉 = 1

4‖u3‖2 + λ

4

∫
R3

φu1 |u3|2dx + λ

4

∫
R3

φu2 |u3|2dx + λ

4

∫
R3

φu3 |u3|2dx

− λ

4

∫
R3

|u3|6dx− μ

4

∫
R3

f(u3)u3dx < Iμλ (u3) + λ

4

∫
R3

φu1 |u3|2dx + λ

4

∫
R3

φu2 |u3|2dx.

So, by (2.11), we have that

cμλ ≤ Iμλ (svu1 + tvu2) = Iμλ (svu1 + tvu2) −
1
4 〈(I

μ
λ )′(svu1 + tvu2), (svu1 + tvu2)〉

= 1
4(‖svu1‖2 + ‖tvu2‖2) + μ

4

∫
R3

[f(svu1)(svu1) − 4F (svu1)]dx

+ μ

4

∫
R3

[f(tvu2)(tvu2) − 4F (tvu2)]dx + s6
v

12

∫
R3

|u1|6dx + t6v
12

∫
R3

|u2|6dx

≤ 1
4(‖u1‖2 + ‖u2‖2) + μ

4

∫
R3

[f(u1)u1 − 4F (u1)]dx

+ μ

4

∫
R3

[f(u2)u2 − 4F (u2)]dx + 1
12

∫
R3

|u1|6dx + 1
12

∫
R3

|u2|6dx

= Iμλ (u1 + u2) −
1
4 〈(I

μ
λ )′(u1 + u2), (u1 + u2)〉

< Iμλ (u1) + Iμλ (u2) + Iμλ (u3) + λ

4

∫
R3

φu2+u3 |u1|2dx + λ

4

∫
R3

φu1+u3 |u2|2dx + λ

4

∫
R3

φu1+u2 |u3|2dx

= Iμλ (uλ) = cμλ,
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which is a contradiction, this is, u3 = 0 and uλ has exactly two nodal domains. �
By Theorem 1.1, we obtain a least-energy sign-changing solution uλ of system (1.3). Next, we prove that 

the energy of uλ is strictly larger than two times the least energy.

Proof of Theorem 1.2. Similar to the proof of Lemma 2.3, there exists μ�
1 > 0 such that for all μ ≥ μ�

1 and 
for each λ > 0, there is vλ ∈ N μ

λ such that Iμλ (vλ) = c∗ > 0. By standard arguments, the critical points of 
the functional Iμλ on N μ

λ are critical points of Iμλ in H. So, we obtain that (Iμλ )′(vλ) = 0. That is, vλ is a 
ground state solution of system (1.3).

For all μ ≥ μ�, according to Theorem 1.1, for each λ > 0, we know that the system (1.3) has a least-energy 
sign-changing solution uλ which changes sign only once.

Let μ�� = max{μ�, μ�
1}. Suppose that uλ = u+ + u−. As the proof of Lemma 2.1, there exist su+ , tu− ∈

(0, 1) such that su+u+ ∈ Nμ, tu−u− ∈ N μ
λ .

Therefore, in view of Lemma 2.1, we have that

2c∗ ≤ Iμλ (su+u+) + Iμλ (tu−u−) ≤ Iμλ (su+u+ + tu−u−) < Iμλ (u+ + u−) = cμλ,

which shows that Iμλ (uλ) > 2c∗ and c∗ > 0 cannot be achieved by a sign-changing function in H. �
Lastly, we shall analyze the asymptotic behavior of uλ as λ → 0. In the following, we regard λ > 0 as a 

parameter in system (1.3).

Proof of Theorem 1.3. For any λ > 0, let uλ ∈ H be the least-energy sign-changing solution of system (1.3)
obtained in Theorem 1.1. We shall proceed through several claims to complete the proof.

Claim 1. If λn → 0 as n → ∞, then {uλn
} is bounded in H.

Choose a nonzero function η ∈ C∞
c (R3) with η± �= 0. Similar to discussion as in Lemma 2.1, for any λ ∈

[0, 1], there exists a pair positive numbers (μ1, μ2) independent of λ, such that 〈(Iμλ )′(μ1η
++μ2η

−), μ1η
+〉 <

0, 〈(Iμλ )′(μ1η
+ + μ2η

−), μ2η
−〉 < 0.

Hence, according to Lemma 2.1, for any λ ∈ [0, 1], there is a unique pair (sη(λ), tη(λ)) ∈ (0, 1] × (0, 1]
such that η := sη(λ)μ1η

+ + tη(λ)μ2η
− ∈ Mμ

λ.
Thus, for any λ ∈ [0, 1], in view of (2.1), we have

Iμλ (uλ) ≤ Iμλ (η) = Iμλ (η) − 1
4 〈(I

μ
λ )′(η), η〉

= 1
4‖η‖

2 + μ

4

∫
R3

[f(η)η − 4F (η)]dx + 1
12

∫
R3

|η|6dx

≤ 1
4‖η‖

2 + μ

4

∫
R3

(C1η
2 + C2η

q)dx + 1
12

∫
R3

|η|6dx

≤ 1
4‖η‖

2 + μ

4

∫
R3

(C1μ1
2|η+|2 + C1μ2

2|η−|2)dx + μ

4

∫
R3

(C2μ1
q|η+|q + C2μ2

q|η−|q)dx

+ μ1
6

12

∫
R3

|η+|6dx + μ2
6

12

∫
R3

|η−|6dx := C∗,

where C∗ > 0 is a constant independent of λ. So, let n → ∞, it follows that

C∗ + 1 ≥ Iμλn
(uλn

) = Iμλn
(uλn

) − 1
4 〈(I

μ
λn

)′(uλn
), uλn

〉 ≥ 1
4‖uλn

‖2,
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which implies that {uλn
} is bounded in H.

Claim 2. System (1.6) possesses one sign-changing solution u0.
Since {uλn

} is bounded in H, according to Claim 1, going if necessary to a subsequence, there exists 
u0 ∈ H such that

uλn
⇀ u0 in H, uλn

→ u0 in Lp(R3) for p ∈ (2, 6), uλn
→ u0 a.e. in R3. (3.4)

On the other hand, thanks to {uλn
} is a weak solution of system (1.3) with λ = λn, we have that∫

R3

(∇uλn
· ∇v + V (x)uλn

v)dx + λn

∫
R3

φuλn
uλn

vdx− μ

∫
R3

f(uλn
)vdx−

∫
R3

|uλn
|4uλn

vdx = 0, (3.5)

for any v ∈ C∞
c (R3).

Combining (3.4), (3.5) with Claim 1, we have that

a

∫
R3

(∇u0 · ∇v + V (x)u0v)dx− μ

∫
R3

f(u0)vdx−
∫
R3

|u0|4u0vdx = 0,

for any v ∈ C∞
c (R3). That is, u0 is a solution of system (1.6).

We claim that u±
0 �= 0. In fact, since uλn

∈ Mμ
λn

, we have that

‖u±
λn

‖2 + λn

∫
R3

φu±
λn

|u±
λn

|2dx + λn

∫
R3

φu∓
λn

|u±
λn

|2dx =
∫
R3

|u±
λn

|6dx + μ

∫
R3

f(u±
λn

)u±
λn

dx.

So, by Claim 1, there exists μ�
2 > 0 such that, for all μ ≥ μ�

2, we have that

ρ ≤ ‖u±
λn

‖2 ≤
∫
R3

|u±
λn

|6dx + μ

∫
R3

f(u±
λn

)u±
λn

dx ≤ 2μ
∫
R3

f(u±
λn

)u±
λn

dx.

Then, we have that 0 <
∫
R3 f(u±

0 )u±
0 dx.

Since u0 is a solution of system (1.6), we have that

‖u±
0 ‖2 = μ

∫
R3

f(x, u±
0 )u±

0 dx +
∫
R3

|u±
0 |6dx ≥ μ

∫
R3

f(u±
0 )u±

0 dx > 0.

Therefore, u±
0 �= 0.

Claim 3. System (1.6) possesses a least-energy sign-changing solution v0. Furthermore, there exists a 
unique pair (sλn

, tλn
) ∈ [0, ∞) × [0, ∞) such that sλn

v+
0 + tλn

v−0 ∈ Mμ
λn

and (sλn
, tλn

) → (1, 1) as n → ∞.
By a similar argument to the proof of Theorem 1.1, there exists μ�

3 > 0 such that, for all μ ≥ μ�
3, we obtain 

that system (1.6) possesses a least-energy sign-changing solution v0, where Iμ0 (v0) = cμ0 and (Iμ0 )′(v0) = 0.
Let μ��� = max{μ�, μ�

2, μ
�
3}. Hence, by Lemma 2.1, it is easy to see that there exists a unique pair 

(sλn
, tλn

) ∈ (0, ∞) × (0, ∞) such that sλn
v+
0 + tλn

v−0 ∈ Mμ
λn

. Then, we have

s2
λn

‖v+
0 ‖2 + λns

4
λn

∫
R3

φv+
0
|v+

0 |2dx + λns
2
λn

t2λn

∫
R3

φv−
0
|v+

0 |2

= s6
λn

∫
R3

|v+
0 |6dx + μ

∫
R3

f(sλn
v+
0 )sλn

v+
0 dx, (3.6)
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t2λn
‖v−0 ‖2 + λnt

4
λn

∫
R3

φv−
0
|v−0 |2 + λns

2
λn

t2λn

∫
R3

φv+
0
|v−0 |2

= t6λn

∫
R3

|v−0 |6dx + μ

∫
R3

f(tλn
v−0 )tλn

v−0 dx. (3.7)

According to (f3) and λn → 0 as n → ∞, {sλn
} and {tλn

} are bounded. Up to a subsequence, suppose 
that sλn

→ s0 and tλn
→ t0, then it follows from (3.6) and (3.7) that

s2
0‖v+

0 ‖2 = s6
0

∫
R3

|v+
0 |6dx + μ

∫
R3

f(s0v
+
0 )s0v

+
0 dx, (3.8)

t20‖v−0 ‖2 = t60

∫
R3

|v−0 |6dx + μ

∫
R3

f(t0v−0 )t0v−0 dx. (3.9)

Thanks to v0 is a sign-changing solution of system (1.6), we get

‖v±0 ‖2 =
∫
R3

|v±0 |6dx + μ

∫
R3

f(v±0 )v±0 dx. (3.10)

Hence, in view of (3.8)-(3.10), we can easily obtain that (s0, t0) = (1, 1).
Now, we can prove u0 is a least-energy sign-changing solution of system (1.6). According to Lemma 2.1, 

we have

Iμ0 (v0) ≤ Iμ0 (u0) = lim
n→∞

Iμλn
(uλn

) ≤ lim
n→∞

Iμλn
(sλn

v+
0 + tλn

v−0 ) = Iμ0 (v+
0 + v−0 ) = Iμ0 (v0).

Hence, the proof of Theorem 1.3 is completed. �
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