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1. Introduction

It is well known that Mills’ ratio R(x) is defined to be the normal probability beyond a certain point 
divided by the normal density at that point, that is,

R(x) = ex
2/2

∞∫
x

e−t2/2dt.

For the purpose of computation, it has been studied for a long history. Many lower and upper estimates 
were obtained by varied mathematicians, see Birnbaum [5], Steck [13] and Lu and Li [9] for reference.

The inverse Gaussian distribution, also known as Wald distribution, is a two-parameter family of contin-
uous probability distributions with support on (0, ∞). And its density is

f(x;α, β) = α√
2πβ

x− 3
2 e−

(α−βx)2
2βx , x > 0.

In Lu [8], a method of evaluating the Mills’ ratio of the inverse Gaussian distribution had been studied.
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The skew-normal (SN) distribution, introduced by Azzalini [4], has been studied and generalized exten-
sively. Its density is defined in the following form with parameter λ,

f(z;λ) = 2φ(z)Φ(λz), z ∈ R, λ ∈ R,

where φ(x) and Φ(x) are the standard normal density and distribution, respectively. We denote a random 
variable Z with the density by Z ∼ SN(λ). The parameter λ controls skewness. This distribution has been 
studied and generalized by many researchers, such as Sharafi and Behboodian [12], Fathi-Vajargha and 
Hasanalipour [6].

There has been a growing interest in the construction of flexible parametric distributions that exhibit 
skewness and kurtosis which is different from the normal distribution. For example, the Beta SN distribu-
tion introduced by Mameli and Musio [10], the skew-generalized normal (SGN) distribution considered by 
Arellano-Valle et al. [1], as well as the Beta SGN distribution in Oskouei [11].

Arellano-Valle et al. [1] considered a generalization of SN(λ) by the name of SGN distribution defined as

f(x;λ1, λ2) = 2φ(x)Φ
(

λ1x√
1 + λ2x2

)
, x ∈ R,

where λ1 ∈ R, λ2 ≥ 0. This distribution is denoted by X ∼ SGN(λ1, λ2). In Oskouei [11], some properties of 
the SGN distribution were introduced. The SGN model has singularity problems for the Fisher’s information 
matrix (see Arellano-Valle et al. [2] for more detail). Some particular cases are studied, such as the particular 
case λ2 = λ2

1 considered by Gomez et al. [7], which is called skew-curved normal (SCN), and the case λ2 = 1
by Arrue et al. [3].

The Mills’ ratio of the SGN distribution is defined as

I(x) =

∫∞
x

2φ(t)Φ( λ1t√
1+λ2t2

)dt
2φ(x)Φ( λ1x√

1+λ2x2 )
, (1.1)

with parameters λ1 ∈ R, λ2 ≥ 0. However, we find that there are very few papers on estimating the Mills’ 
ratio of the SGN distribution in the literature. This is the motivation of our work in this paper.

We aim to establish some lower and upper bounds with explicit expressions for I(x). We concern the 
asymptotic of I(x) as x → +∞. And pairs of lower and upper estimates for I(x) are obtained, which are 
asymptotic and sharp approximation. We also provide some conjectures about a series asymptotic expansion 
of I(x).

The rest of this paper is arranged as follows. In Section 2, we provide some definitions and propositions 
that will help the functions associated with the SGN distribution. Based on these propositions, some lower 
and upper bounds for I(x) are obtained. In Section 3, some numerical computations are listed to show 
the efficiency of our bounds. Some proofs are given in Section 4. In the last section, some conjectures are 
brought out.

2. The lower and upper bounds for Mills’ ratio of the SGN distribution

Throughout the paper, we denote f (i)(x) as the ith order derivative of f(x) and f (0)(x) = f(x).
The following definitions and corresponding propositions play important roles in the article.

Definition 2.1. Let a > 0 be a constant. A non-negative function P (x) is said to be the nth order completely 
monotonic function on (a, ∞), denoted by (n)-cmf, if there exists an integer n ≥ 1, such that

(−1)kP (k)(x) ≥ 0
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holds for any integer 0 ≤ k ≤ n when x ∈ (a, ∞).

Definition 2.2. Let a > 0 be a constant. A non-positive function Q(x) is said to be the nth order Bernstein 
function on (a, ∞), denoted by (n)-bnf, if there exists an integer n ≥ 1, such that

(−1)kQ(k)(x) ≤ 0

holds for any integer 0 ≤ k ≤ n when x ∈ (a, ∞).

Definition 2.3. Let a > 0 be a constant. A function G(x) is said to be the nth order logarithmically completely 
monotonic function on (a, ∞), if lnG(x) is (n)-cmf on (a, ∞).

Remark 2.1. A nth order logarithmically completely monotonic function G(x) is also (n)-cmf.

In fact, we can get more detailed results related to those definitions without proofs.

Proposition 2.1. If P (x) is (n)-cmf and Q(x) is (n)-bnf on (a, ∞), for any integer 0 ≤ k ≤ n/2, it is easy 
to get that

P (2k−1)(x) ≤ 0, Q(2k)(x) ≤ 0,

P (2k)(x) ≥ 0, Q(2k−1)(x) ≥ 0.

In addition, P (2k−1)(x) is (n + 1-2k)-bnf, and Q(2k)(x) is (n-2k)-bnf, while Q(2k−1)(x) is (n + 1-2k)-cmf, 
and P (2k)(x) is (n-2k)-cmf.

Proposition 2.2. If P (x) and Q(x) are both (n)-cmf on (a, ∞), then F (x) = P (x)Q(x) is (n)-cmf on (a, ∞).

Proposition 2.3. If P (x) is (n)-cmf and Q(x) is (n)-bnf on (a, ∞), then F (x) = P (x)Q(x) is (n)-bnf on 
(a, ∞).

Proposition 2.4. If P (x) and Q(x) are both (n)-bnf on (a, ∞), then F (x) = P (x)Q(x) is (n)-cmf on (a, ∞).

Because Φ(−λ1x) = 1 −Φ(λ1x), we only consider the case in which λ1 > 0. And when λ2 = 0, the special 
SGN distribution is also the SN distribution, and λ1t√

1+λ2t2
= λ1t. We focus on the case extra.

Denote

θx = λ1x√
1 + λ2x2 , Pu(x) = e−ux, Qu(x) = Φ(θx+u)

Φ(θx)
.

And concern the case that x > 0.
It’s easy to obtain that

θ(1)
x = λ1

(1 + λ2x2)3/2
> 0, θ(2)

x = −3λ1λ2x

(1 + λ2x2)5/2
< 0

for x > 0.
On the one hand, we give an asymptotic estimate for I(x), via L-hospital law, that is,

lim
x→∞

∫∞
x

2φ(t)Φ( λ1t√
1+λ2t2

)dt
2φ(x)Φ( λ1x√ )

= lim
x→∞

∫∞
x

φ(t)Φ(θt)dt
φ(x)Φ(θx)

= lim
x→∞

1
x

= 0.

1+λ2x2
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On the other hand, using variable substitution for (1.1), we can obtain

I(x) =

∫∞
x

2φ(t)Φ( λ1t√
1+λ2t2

)dt
2φ(x)Φ( λ1x√

1+λ2x2 )
= ex

2/2

Φ(θx)

∞∫
x

Φ(θt)e−t2/2dt

=
∞∫
0

e−u2/2e−uxΦ(θx+u)
Φ(θx)

du =
∞∫
0

e−u2/2Pu(x)Qu(x)du.

(2.1)

The following propositions are useful in the proof of our main results.

Proposition 2.5. With λ2 > 0, for any fixed integer n ≥ 1, there exists a positive constant xn such that

g(x) = λ2
1x

(1 + λ2x2)2 + 3λ2x

1 + λ2x2 (2.2)

is (n)-cmf on (xn, ∞), where xn depends on n (see more details for xn in Section 4).

Proposition 2.6. With λ2 > 0, for any fixed integer n ≥ 1, Qu(x) = Φ(θx+u)
Φ(θx) is (n)-cmf on (xn, ∞).

Proposition 2.7. When λ2 = 0, for any fixed integer n ≥ 1,

Qu(x) = Φ(θx+u)
Φ(θx)

= Φ(λ1(x + u))
Φ(λ1x)

is (n)-cmf on (xn, ∞).

Using Proposition 2.6 and Proposition 2.7, we provide some lower and upper bounds for I(x) as follows.

Theorem 2.1. For any fixed integer n ≥ 1, there exists a positive constant xn such that when x ∈ (xn, ∞), 
I(x) is (n)-cmf, namely

(−1)kI(k)(x) ≥ 0

holds for any integer 0 ≤ k ≤ n.
Besides, the lower and upper bounds for I(x) are as follows,

M2k(x)
m2k(x) < I(x) < M2k−1(x)

m2k−1(x) (2.3)

for any integer 1 ≤ k ≤ n/2, where{
m1(x) = x− φ(θx)

Φ(θx)θ
(1)
x ,

M1(x) = 1,

{
mk(x) = m

(1)
k−1(x) + mk−1(x)m1(x),

Mk(x) = M
(1)
k−1(x) + mk−1(x)M1(x).

(2.4)

The following corollary are brought out to simplify the calculation of (2.4).

Corollary 2.1. When λ2 > 0, for any fixed integer n ≥ 1, there exists a positive constant xn such that when 
x ∈ (xn, ∞),

M̃2k(x)
< I(x) < M̄2k−1(x) (2.5)
m̃2k(x) m̄2k−1(x)
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holds for any integer 1 ≤ k ≤ n/2, where

{
m̃1(x) = x,

M̃1(x) = 1,

{
m̃k(x) = m̃

(1)
k−1(x) + m̃k−1(x)m̃1(x),

M̃k(x) = M̃
(1)
k−1(x) + m̃k−1(x)M̃1(x),

(2.6)

{
m̄1(x) = x− 2λ1

(λ2)3/2x3 ,

M̄1(x) = 1,

{
m̄k(x) = m̄

(1)
k−1(x) + m̄k−1(x)m̄1(x),

M̄k(x) = M̄
(1)
k−1(x) + m̄k−1(x)M̄1(x).

(2.7)

When λ2 = 0, (2.6) and (2.7) still hold, but m̄1(x) and M̄1(x) are replaced by

m̄1(x) =x− 2λ1,

M̄1(x) =1.

Remark 2.2. High-order derivatives of φ(θx)
Φ(θx)θ

(1)
x causes the computation for (2.4) too complex. To deal with 

this problem, Corollary 2.1 enlarges the range of φ(θx)
Φ(θx)θ

(1)
x , and makes m̃k(x), M̃k(x), m̄k(x) and M̄k(x) in 

the form of polynomials. Although the estimate for I(x) in Corollary 2.1 may be not as sharp as Theorem 2.1, 
the estimate in Corollary 2.1 is also good enough. More details are provided in Section 3.

3. Application and numerical studies

The general representations of Mk(x)
mk(x) , 

M̃2k(x)
m̃2k(x) and M̄2k−1(x)

m̄2k−1(x) are not provided in Theorem 2.1 and Corol-

lary 2.1. However, through the computations in this section, we find that M2(x)
m2(x) , 

M3(x)
m3(x) , 

M̃2(x)
m̃2(x) and M̄3(x)

m̄3(x)
are sharp enough as the lower and upper estimates for I(x) respectively when x > 10.

Denote Mk(x)
mk(x) by Ik(x), k = 1, 2, · · · , 6, and we list Ik(x) in the form of polynomials as follows,

I1(x) =1
x

+ d1

x5 + O

(
1
x7

)
,

I2(x) =1
x
− 1

x3 + 1 + d1

x5 + O

(
1
x7

)
,

I3(x) =1
x
− 1

x3 + 3 + d1

x5 + d2 + 6
x7 + O

(
1
x9

)
,

I4(x) =1
x
− 1

x3 + 3 + d1

x5 + d2

x7 + d3

x9 + O

(
1
x11

)
,

I5(x) =1
x
− 1

x3 + 3 + d1

x5 + d2

x7 + d3 + z1

x9 + d4 + z2

x11 + O

(
1
x13

)
,

I6(x) =1
x
− 1

x3 + 3 + d1

x5 + d2

x7 + d3 + z1

x9 + d4

x11 + O

(
1
x13

)
,

(3.1)

where d1, d2, d3, d4, and z1, z2 are all positive constants. When λ2 > 0, those constants are comprised of 
Φ( λ1√

λ2
) and π. And when λ2 = 0, Φ( λ1√

λ2
) is replaced by 1.

Denote rk(x) = Ik(x) − Ik+1(x), 1 ≤ k ≤ 5, which is the error of the upper and lower bounds, that is,

r1(x) = 1
x3 + O

(
1
x5

)
, r2(x) = − 2

x5 + O

(
1
x7

)
, r3(x) = 6

x7 + O

(
1
x9

)
,

r4(x) = − z1
9 + O

(
1
11

)
, r5(x) = z2

11 + O

(
1
13

)
.

(3.2)
x x x x
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On the one hand, we can see from (3.2) that as x → ∞, rk(x) converges to 0 faster than rk−1(x), meaning 
that I2k(x) and I2k−1(x), as a pair of lower and upper bounds for I(x), has better estimate than the former 
ones, namely

I1(x) − I2(x) > I3(x) − I4(x) > I5(x) − I6(x)

for x large enough.
On the other hand, from (3.1), we can see that

I2(x) < I4(x) < I6(x) < I5(x) < I3(x) < I1(x) (3.3)

for x large enough.
We also give the computations of Corollary 2.1, and compare the results with Theorem 2.1.
Denote I∗k(x), k = 1, 2, · · · , 6, as the upper and lower bounds for I(x) from Corollary 2.1, that is,

I∗1 (x) = M̄1(x)
m̄1(x) =1

x
+ c1

x5 + O

(
1
x9

)
,

I∗2 (x) = M̃2(x)
m̃2(x) =1

x
− 1

x3 + 1
x5 − 1

x7 + 1
x9 + O

(
1
x11

)
,

I∗3 (x) = M̄3(x)
m̄3(x) =1

x
− 1

x3 + c1 + 3
x5 − 6c1 + 9

x7 + O

(
1
x9

)
,

I∗4 (x) = M̃4(x)
m̃4(x) =1

x
− 1

x3 + 3
x5 − 15

x7 + 81
x9 + O

(
1
x9

)
,

I∗5 (x) = M̄5(x)
m̄5(x) =1

x
− 1

x3 + 3 + c1
x5 − 15 + 6c1

x7 + O

(
1
x9

)
,

I∗6 (x) = M̃6(x)
m̃6(x) =1

x
− 1

x3 + 3
x5 − 15

x7 + 105
x9 + O

(
1
x11

)
,

(3.4)

when λ2 > 0, where c1 = 2λ1

λ
3/2
2

.
And we calculate their errors r∗k(x) as follows,

r∗1(x) = M̄1(x)
m̄1(x) − M̃2(x)

m̃2(x) = 1
x3 + c1 − 1

x5 + 1
x7 + O

(
1
x9

)
,

r∗2(x) = M̃2(x)
m̃2(x) − M̄3(x)

m̄3(x) = −c1 + 2
x5 + 6λ1 + 8

x7 + O

(
1
x9

)
,

r∗3(x) = M̄3(x)
m̄3(x) − M̃4(x)

m̃4(x) = c1
x5 + 6 − 6c1

x7 + O

(
1
x9

)
, (3.5)

r∗4(x) = M̃4(x)
m̃4(x) − M̄5(x)

m̄5(x) = − c1
x5 + 6c1

x7 + O

(
1
x9

)
,

r∗5(x) = M̄5(x) − M̃6(x) = c1
5 − 6c1

7 + O

(
1
9

)
.

m̄5(x) m̃6(x) x x x
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Table 1
Simulations for rk(x), 1 ≤ k ≤ 4, when λ1 = 20, λ2 = 0.

x r1(x) r2(x) r3(x) r4(x)

50 7.99680 × 10−6 −6.38977 × 10−9 7.65243 × 10−12 −1.22097 × 10−14

200 1.249969 × 10−7 −6.24938 × 10−12 4.68645 × 10−16 −4.68563 × 10−20

1000 1.00000 × 10−9 −2.00000 × 10−15 5.9999 × 10−21 −2.39996 × 10−26

Table 2
Simulations for rk(x), 1 ≤ k ≤ 4, when λ1 = 2, λ2 = 1.

x r1(x) r2(x) r3(x) r4(x)

50 7.99680 × 10−6 −6.38978 × 10−9 7.65243 × 10−12 −1.22097 × 10−14

200 1.24997 × 10−7 −6.24937 × 10−12 4.68645 × 10−16 −4.68563 × 10−20

1000 9.99999 × 10−9 −2.00000 × 10−15 5.99995 × 10−21 −2.39996 × 10−26

When λ2 = 0, we have

I∗1 (x) = M̄1(x)
m̄1(x) =1

x
+ 2λ1

x2 + 4λ2
1

x3 + O

(
1
x4

)
,

I∗2 (x) = M̃2(x)
m̃2(x) =1

x
− 1

x3 + 1
x5 + O

(
1
x7

)
,

I∗3 (x) = M̄3(x)
m̄3(x) =1

x
+ 2λ1

x2 + 4λ2
1 − 1
x3 + 8λ3

1 − 6λ1

x4 + O

(
1
x5

)
,

I∗4 (x) = M̃4(x)
m̃4(x) =1

x
− 1

x3 + 3
x5 − 15

x7 + 81
x9 + O

(
1
x9

)
,

I∗5 (x) = M̄5(x)
m̄5(x) =1

x
+ 2λ1

x2 + 4λ2
1 − 1
x3 + 8λ3

1 − 6λ1

x4 + 16λ4
1 − 24λ2 + 3

x5 + O

(
1
x6

)
,

I∗6 (x) = M̃6(x)
m̃6(x) =1

x
− 1

x3 + 3
x5 − 15

x7 + 105
x9 + O

(
1
x11

)
,

(3.6)

r∗1(x) = M̄1(x)
m̄1(x) − M̃2(x)

m̃2(x) = 2λ1

x2 + 4λ2
1 + 1
x3 + O

(
1
x4

)
,

r∗2(x) = M̃2(x)
m̃2(x) − M̄3(x)

m̄3(x) = −2λ1

x2 − 4λ2
1

x3 − 8λ3
1 − 6λ1

x4 + O

(
1
x5

)
,

r∗3(x) = M̄3(x)
m̄3(x) − M̃4(x)

m̃4(x) = 2λ1

x2 + 4λ1

x3 + 8λ3
1 − 6λ1

x4 + O

(
1
x5

)
, (3.7)

r∗4(x) = M̃4(x)
m̃4(x) − M̄5(x)

m̄5(x) = −2λ1

x2 − 4λ2
1

x3 − 8λ3
1 − 6λ1

x4 − 16λ3
4 − 24λ1

x5 + O

(
1
x6

)
,

r∗5(x) = M̄5(x)
m̄5(x) − M̃6(x)

m̃6(x) = 2λ1

x2 + 4λ1

x3 + 8λ3
1 − 6λ1

x4 + 16λ3
4 − 24λ1

x5 + O

(
1
x6

)
.

From (3.4), (3.6), (3.5) and (3.7), we have

I∗2 (x) < I∗4 (x) < I∗6 (x) < I∗5 (x) < I∗3 (x) < I∗1 (x) (3.8)

for x large enough.
Using (3.2) and (3.5), Table 1, Table 2, Table 3, Table 4 and Table 5 are obtained.
On the one hand, according to Table 1, Table 2, Table 3 and Table 4, we can see that |rk(x)| is always 

much smaller than |rk−1(x)| for k > 1. According to Table 5, |r∗2(x)| is smaller than |r∗1(x)|, as well as |r∗3(x)|
is smaller than |r∗2(x)|, but |r∗k(x)| is gradually stable as k increases from 3.
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Table 3
Simulations for rk(x), 1 ≤ k ≤ 4, when λ1 = 2, λ2 = 4.

x r1(x) r2(x) r3(x) r4(x)

50 7.99680 × 10−6 −6.38977 × 10−9 7.65242 × 10−12 −1.22097 × 10−14

200 1.24997 × 10−7 −6.24937 × 10−12 4.68645 × 10−16 −4.68563 × 10−20

1000 1.00000 × 10−9 −2.00000 × 10−15 5.99995 × 10−21 −2.39997 × 10−26

Table 4
Simulations for rk(x), 1 ≤ k ≤ 4, when λ1 = 5, λ2 = 3.

x r1(x) r2(x) r3(x) r4(x)

50 7.99680 × 10−6 −6.38977 × 10−9 7.65243 × 10−12 −1.22097 × 10−14

200 1.24997 × 10−7 −6.24937 × 10−12 4.68644 × 10−16 −4.68563 × 10−20

1000 1.00000 × 10−9 −1.99999 × 10−15 5.99995 × 10−21 −2.39996 × 10−26

Table 5
Simulations for r∗k(x), 1 ≤ k ≤ 4, when λ1 = 5, λ2 = 3.

x r∗1 (x) r∗2 (x) r∗3 (x) r∗4 (x) r∗5 (x)

50 8.003 × 10−6 −1.253 × 10−8 6.1513 × 10−9 −6.1437 × 10−9 6.1437 × 10−9

200 1.250 × 10−7 −1.226 × 10−11 6.0136 × 10−12 −6.0132 × 10−12 6.0132 × 10−9

1000 1.000 × 10−9 −3.924 × 10−15 1.9245 × 10−15 −1.9245 × 10−15 1.9245 × 10−9

On the other hand, comparing Table 4 and Table 5, we can see that I2k(x) and I2k+1(x), as lower and 
upper bounds, have better estimate than I∗2k(x) and I∗2k+1(x) when k ≥ 2. However, r2(x) and r∗2(x) are 
small enough, that is, I2(x) and I3(x) as well as I∗2 (x) and I∗3 (x), as lower and upper bounds for I(x), are 
sharp enough.

4. Proofs

In this section, we give the proofs of Proposition 2.5, Proposition 2.6, as well as Theorem 2.1 in Section 2.

4.1. Proof of Proposition 2.5

Let F (t) = 1
1+t2 , a1 = λ2

1
2
√
λ2

, a2 = 3
√
λ2 and t =

√
λ2x. Using variable substitution from (2.2), we have

g(x) ≡ −a1F
(1)(t) + a2tF (t) Δ= g̃(t).

Thus,

g̃(n)(t) = −a1F
(n+1)(t) + a2tF

(n)(t) + a2nF
(n−1)(t). (4.1)

We know that

F (1)(t) = −2t
(1 + t2)2 , F

(2)(t) = 6t2 − 2
(1 + t2)3 ,

F (3)(t) = −24t3 + 24t
(1 + t2)4 , F (4)(t) = 120t4 − 240t2 + 24

(1 + t2)5 .

Denote F (n)(t) as fn(t)
(1+t2)n+1 , and An,i as the coefficient of ti in fn(t), then

f1(t) = −2t, f2(t) = 6t2 − 2, f3(t) = −24t3 + 24t, f4(t) = 120t4 − 240t2 + 24,
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and

{
A1,1 = −2,
A1,0 = 0,

{
A2,2 = 6,
A2,1 = 0,
A2,0 = −2,

⎧⎪⎨⎪⎩
A3,3 = −24,
A3,2 = 0,
A3,1 = 24,
A3,0 = 0.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A4,4 = 120,
A4,3 = 0,
A4,2 = −240,
A4,1 = 0.
A4,0 = 24.

Assume that f2k(t) =
∑i=k

i=0 A2k,2it
2i, k ≥ 1, then

F (2k)(t) =
∑i=k

i=0 A2k,2it
2i

(1 + t2)2k+1 ,

and

F (2k+1)(t) =
∑i=k

i=1 2iA2k,2it
2i−1

(1 + t2)2k+1 −
∑i=k

i=0 2(2k + 1)A2k,2it
2i+1

(1 + t2)2k+2

=
(−2k − 2)A2k,2kt

2k+1 +
∑i=k

i=1 [(−4k − 4 + 2i)A2k,2i−2 + 2iA2k,2i]t2i−1

(1 + t2)2k+2 .

(4.2)

(4.2) can also be induced to

F (2k+1)(t) =
∑i=k

i=0 A2k+1,2i+1t
2i+1

(1 + t2)2k+2 ,

where {
A2k+1,2k+1 = −(2k + 2)A2k,2k,

A2k+1,2i−1 = 2iA2k,2i − (4k + 4 − 2i)A2k,2i−2, i = 1, . . . , k.
(4.3)

Furthermore, we also get

F (2k+2)(t) =
∑i=k+1

i=0 A2k+2,2it
2i

(1 + t2)2k+3 ,

where ⎧⎪⎨⎪⎩
A2k+2,2k+2 = −(2k + 3)A2k+1,2k+1,

A2k+2,2i = (2i + 1)A2k+1,2i+1 − (4k + 5 − 2i)A2k+1,2i−1, i = 1, . . . , k,
A2k+2,0 = A2k+1,1.

(4.4)

Through mathematical induction, we can verify that

F (2k)(t) =
∑i=k

i=0 A2k,2it
2i

(1 + t2)2k+1 , F (2k+1)(t) =
∑i=k

i=0 A2k+1,2i+1t
2i+1

(1 + t2)2k+2 (4.5)

hold for any integer k > 0. Meanwhile, combining (4.3) and (4.4), it’s easy to have

A2k,2k = (2k + 1)! > 0, A2k+1.2k+1 = −(2k + 2)! < 0.

Plugging (4.1) into (4.5) yields that
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g̃(2k)(t) = − a1F
(2k+1)(t) + a2tF

(2k)(t) + a22kF (2k−1)(t)

= 1
(1 + t2)2k+2 [a1(2k + 2)!t2k+1 − a1

k−1∑
i=0

A2k+1,2i+1t
2i+1

+ a2t(1 + t2)(2k + 1)!t2k + a2t(1 + t2)
k−1∑
i=0

A2k,2it
2i

− a22k(1 + t2)2(2k)!t2k−1 + a22k(1 + t2)2
k−2∑
i=0

A2k−1,2i+1t
2i+1]

= 1
(1 + t2)2k+2 [a2(2k)!t2k+3 + f̃2k+1(t)],

where f̃2k+1(t) is a polynomial of t with 2k + 1 degree. Therefore, there exists a positive constant t2k such 
that

g̃(2k)(t) > 0 for t > t2k. (4.6)

Analogously,

g̃(2k+1)(t) = − a1F
(2k+2)(t) + a2tF

(2k+1)(t) + a2(2k + 1)F (2k)(t)

= 1
(1 + t2)2k+3 [−a1(2k + 3)!t2k+2 − a1

k∑
i=0

A2k+2,2it
2i

− a2t(1 + t2)(2k + 2)!t2k+1 + a2t(1 + t2)
k−1∑
i=0

A2k+1,2i+1t
2i+1

+ a2(2k + 1)(2k + 1)!(1 + t2)2t2k + a2(2k + 1)(1 + t2)2
k−1∑
i=0

A2k,2it
2i]

= 1
(1 + t2)2k+3 [−a2(2k + 1)!t2k+4 + f̃2k+2(t)],

where f̃2k+2(t) is a polynomial of t with 2k+2 degree. Therefore, there exists a positive constant t2k+1 such 
that

g̃(2k+1)(t) < 0 for t > t2k+1. (4.7)

For any fixed integer n > 1, combining (4.6) and (4.7), there exists a positive constant t∗n, such that when 
t > t∗n and 1 ≤ k ≤ n/2,

g̃(2k−1)(t) < 0 and g̃(2k)(t) > 0

both hold.
Let xn = t∗n/

√
λ2, then g(x) is (n)-cmf on (xn, ∞).

4.2. Proof of Proposition 2.6

Let

H(x) = lnQu(x) = s(x) − l(x),
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where

s(x) = ln Φ(θu+x), l(x) = ln Φ(θx),

and u > 0 be a constant. We respectively denote sk, lk as the kth order derivative of s(x), l(x). It’s easy to 
know s1 < l1.

For the fixed integer n > 1, we want to find the expressions of sn and ln with support on (xn, ∞).

s1 =s(1)(x) = φ(θu+x)
Φ(θu+x)θ

(1)
u+x > 0,

s2 = − s2
1 − s1h(x)

= − s2
1 − s1

(
θx+uθ

(1)
x+u − θ

(2)
x+u

θ
(1)
x+u

)
< 0,

where

h(x) = g(x + u) = λ2
1(x + u)

[1 + λ2(x + u)2]2 + 3λ2(x + u)
1 + λ2(x + u)2 .

And from Proposition 2.5, we know that h(x) is (n)-cmf when x + u > xn, that is, for 0 ≤ k ≤ n,

(−1)kh(k)(x) > 0 (4.8)

holds. From (4.8), we have

s3 = − 2s1s2 − s2h(x) − s1h
(1)(x)

=2s3
1 + 3h(x)s2

1 + [h2(x) − h(1)(x)]s1 > 0.

Without loss of generality, let sj = Ajs
j
1 +

∑j−1
i=1 Aj,i(x)si1, j = 1, 2, · · · , and Aj,0(x) = 0. Then we have

A1 = 1,
A2 = −1, A2,1(x) = −h(x) < 0,
A3 = 2, A3,2(x) = 3h(x) > 0, A3,1(x) = h2(x) − h(1)(x) > 0.

From Proposition 2.1 and Proposition 2.2, it is easy to judge that A2,1(x) is (n)-bnf, A3,1(x) is (n-1)-cmf, 
and A3,2(x) = 3h(x) is (n)-cmf respectively. For any 1 < k < n, we have

sk+1 =kAks
k−1
1 s2 +

k−1∑
i=1

(
iAk,i(x)si−1

1 s2 + A
(1)
k,i(x)si1

)
Δ=Ak+1s

k+1
1 +

k∑
i=1

Ak,i(x)si1,

where ⎧⎪⎨⎪⎩
Ak+1 = −kAk,

Ak+1,k(x) = −kAkh(x) − (k − 1)Ak,k−1(x),
Ak+1,i(x) = A

(1)
k,i(x) − iAk,i(x)h(x) − (i− 1)Ak,i−1(x), 1 ≤ i ≤ k − 1.

(4.9)
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From (4.9) we have Ak = (−1)k−1(k − 1)!. Assume that

Ak,i(x) =
{

(n-k)-cmf, if k is an odd number,
(n-k)-bnf, if k is an even number.

Combining formula (4.9) and Proposition 2.1-Proposition 2.4, it is obtained that

Ak+1,i(x) =
{

(n-k-1)-bnf, if k is an odd number,
(n-k-1)-cmf, if k is an even number.

Based on mathematical induction, it yields that

(−1)ksk < 0

holds for 1 ≤ k ≤ n on (xn, ∞). In addition, (4.9) are also the recursion formulas for Ak and Ak,i(x) in the 
expression of sk.

Analogously, we can obtain that

lk = Bkl
k
1 +

k−1∑
i=1

Bk,i(x)li1,

and the recursion formulas for Bk and Bk,i(x), i = 1, ..., k − 1, are as follows,

⎧⎪⎨⎪⎩
Bk+1 = −kBk,

Bk+1,k(x) = −kBkg(x) − (k − 1)Bk,k−1(x),
Bk+1,i(x) = B

(1)
k,i (x) − iBk,i(x)g(x) − (i− 1)Bk,i−1(x), 1 ≤ i ≤ k − 1.

(4.10)

We also have Bk = (−1)k−1(k − 1)!, and Bk,i(x) is (n-k)-cmf when k is an odd number, or negative and 
(n-k)-bnf when k is an even number on (xk, ∞). In addition, it yields that

(−1)klk < 0.

On the one hand, it’s easy to see that for 1 ≤ k ≤ n and x ∈ (xn, ∞), the signs of sk and lk alternate 
when k increases, namely

sksk−1 < 0, lklk−1 < 0.

Besides, sk and lk always have the same sign, that is,

sklk > 0.

On the other hand, with h(x) and g(x) being (n)-cmf on (xn, ∞), we have

|h(k)(x)| < |g(k)(x)| (4.11)

for 0 ≤ k ≤ n. Plugging (4.11) into (4.9) and (4.10), it yields that

|Ak,i(x)| < |Bk,i(x)|.



D. Lu et al. / J. Math. Anal. Appl. 480 (2019) 123378 13
Returning to H(k)(x), we have

H(k)(x) =sk − lk = Aks
k
1 +

k−1∑
i=1

Ak,i(x)si1 −Bkl
k
1 −

k−1∑
i=1

Bk,i(x)li1

=(−1)k−1(k − 1)!(sk1 − lk1) +
k−1∑
i=1

[Ak,i(x)si1 −Bk,i(x)li1].

Let

T1(x) = (−1)k−1(k − 1)!(sk1 − lk1), T2(x) =
k−1∑
i=1

[Ak,i(x)si1 −Bk,i(x)li1].

Now that |Ak,i(x)| < |Bk,i(x)| and 0 < s1 < l1,

(−1)k
(
Ak,i(x)si1 −Bk,i(x)li1

)
> 0

holds for 1 ≤ i ≤ k − 1. Hence, we have

(−1)kT1(x) > 0, (−1)kT2(x) > 0,

thus

(−1)kH(k)(x) = (−1)k(T1 + T2) > 0

holds, that is, Qu(x) is (n)-logarithmically completely monotonic function, also (n)-cmf.

4.3. Proof of Proposition 2.7

The Proof is similar to Proposition 2.6, but here g(x) = λ2
1x, which is different from Proposition 2.6.

Let

H(x) = lnQu(x) = s(x) − l(x),

where

s(x) = ln Φ(θu+x), l(x) = ln Φ(θx),

and

θu+x = λ1(u + x), θx = λ1x,

and let u > 0 be a constant.
We respectively denote sk, lk as the kth order derivative of s(x), l(x). It’s easy to know s1 < l1.
For the fixed integer n > 1, we want to find the expressions of sn and ln with support on (xn, ∞).
We have

s1 =s(1)(x) = λ1
φ(θu+x)
Φ(θu+x) > 0,

s2 = − s2
1 − s1h(x) < 0,
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where

h(x) = g(x + u) = λ2
1(x + u).

Then

s3 = 2s3
1 + 3h(x)s2

1 + [h2(x) − h(1)(x)]s1 > 0,

when x > 1/λ1.

s4 = −6s4
1 − 12h(x)s3

1 + [8h2(x) − 4λ2
1]s2

1 − [h3(x) − 3λ2
1h(x)]s1 < 0,

when x >
√

3/λ1.
Through the proof of Proposition 2.6, sk+1 = Ak+1s

k+1
1 +

∑k
i=1 Ak+1,i(x)si1, k = 1, 2, · · · , and Ak+1,0(x) =

0, where ⎧⎪⎨⎪⎩
Ak+1 = −kAk,

Ak+1,k(x) = −kAkh(x) − (k − 1)Ak,k−1(x),
Ak+1,i(x) = A

(1)
k,i(x) − iAk,i(x)h(x) − (i− 1)Ak,i−1(x), 1 ≤ i ≤ k − 1.

(4.12)

Without loss of generality, let

Ak,i(x) =
j=[ k−i

2 ]∑
j=0

Ck,i,jh
k−i−2j(x), (4.13)

which is a polynomial of h(x) with k − i degree, where Ck,i,j is a constant, and Ck,i,0 is the coefficient of 
hk−i in Ak,i(x).

We have

A2,1(x) = −h(x) < 0,
A3,1(x) = 3h(x) > 0, A3,2(x) = h2(x) − h(1)(x) > 0,

when x > 1/λ1.

A4,1(x) = −12h(x) < 0, A4,2(x) = −8h2(x) − 4λ2
1 < 0, A4,3(x) = h3(x) − 3λ3

1 < 0,

when x >
√

3/λ1.
Assume that there exists a constant xk, such that when x > xk, Ak · Ak,k−1(x) > 0, and Ak,i(x) ·

Ak,i−1(x) > 0 both hold.
According to (4.12), it yields that ⎧⎪⎨⎪⎩

Ak+1 ·Ak+1,k(x) > 0,
Ak+1,k(x) ·Ak,k−1(x) < 0,
Ck+1,i,0(x) = −iCk,i,0(x).

(4.14)

Combining (4.14) and (4.13), there exists a constant xk+1, such that Ak+1,i(x) ·Ak+1 > 0 and Ak+1,i(x) ·
Ak < 0 when x > xk+1.

Based on mathematical induction, it yields that, for any fixed integer k, there exists a constant xn such 
that
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(−1)ksk < 0

holds when x > xn.
Analogously, we can obtain that

lk = Bkl
k
1 +

k−1∑
i=1

Bk,i(x)li1,

and the recursion formulas for Bk and Bk,i(x), i = 1, ..., k − 1, are as follows,⎧⎪⎨⎪⎩
Bk+1 = −kBk,

Bk+1,k(x) = −kBkg(x) − (k − 1)Bk,k−1(x),
Bk+1,i(x) = B

(1)
k,i (x) − iBk,i(x)g(x) − (i− 1)Bk,i−1(x), 1 ≤ i ≤ k − 1.

(4.15)

We also have Bk = (−1)k−1(k − 1)!, and Bk,i(x) is (n-k)-cmf when k is an odd number, or negative and 
(n-k)-bnf when k is an even number on (xk, ∞). In addition, it yields that

(−1)klk < 0.

On the one hand, it’s easy to see that for 1 ≤ k ≤ n and x ∈ (xn, ∞), the signs of sk and lk alternate 
when k increases, namely

sksk−1 < 0, lklk−1 < 0.

Besides, sk and lk always have the same sign, that is,

sklk > 0.

The rest of the proof is the similar with Proposition 2.6, and we delete the rest proof.

4.4. Proof of Theorem 2.1

Through Proposition 2.6 and Proposition 2.7, it yields that for any integer n ≥ 1, Qu(x) is (n)-cmf on 
(xn, ∞). It is easy to see that Pu(x) = e−ux is also (n)-cmf on (xn, ∞). Combining Proposition 2.2 and 
formula (2.1), we obtain that I(x) is (n)-cmf on (xn, ∞), that is,

(−1)kI(k)(x) ≥ 0 (4.16)

holds for any integer 0 ≤ k ≤ n on (xn, ∞).
Meanwhile, from (1.1),

I(x) = ex
2/2

Φ(θx)

∞∫
x

Φ(θt)e−t2/2dt

is obtained, which yields

I(1)(x) =xΦ(θx) − φ(θx)θ(1)
x

Φ(θx) I(x) − 1

Δ=m (x)I(x) −M (x),
1 1
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where {
m1(x) = x− φ(θx)

Φ(θx)θ
(1)
x ,

M1(x) = 1.

Let

I(k)(x) = mk(x)I(x) −Mk(x), (4.17)

then

I(k+1)(x) =m
(1)
k (x)I(x) + mk(x)I(1)(x) −M

(1)
k (x)

=mk+1(x)I(x) −Mk+1(x),

where {
mk+1(x) = m

(1)
k (x) + mk(x)m1(x),

Mk+1(x) = M
(1)
k (x) + mk(x)M1(x).

Combining (4.16) and (4.17), (2.3) holds. The proof is complete.

5. Conjecture

In view of (3.2), (3.3), Table 1, Table 2, Table 3, Table 4 and Table 5, we conjecture that

M2(x)
m2(x) <

M4(x)
m4(x) < · · · < M2n(x)

m2n(x) < · · · < I(x)

< · · · < M2n−1(x)
m2n−1(x) < · · · < M3(x)

m3(x) <
M1(x)
m1(x) ,

and

lim
n→∞

Mn(x)
mn(x) = I(x)

for x large enough.
In addition, by power series expansion, I(x) can be written as

I(x) = 1
x

+ −1
x3 + d∗1

x5 + −d∗2
x7 + d∗3

x9 + −d∗4
x11 + · · · ,

for x large enough, where d∗1, d∗2, d∗3, d∗4, . . ., are positive constants relying on the parameters λ1 and λ2.
I(x) can also be written in the form of continued fraction as

I(x) = 1
x + 1

x+ e1
x+ e2

x+ e3

. . .

,

where e1, e2, e3, · · · are constants relying on λ1 and λ2.
These are interesting and challenging problems. Of course, this is also a direction of our future work.
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