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On asymptotic properties of solutions to fractional1

differential equations2

N.D. Cong∗, H.T. Tuan† and H. Trinh‡
3
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Abstract5

We present some distinct asymptotic properties of solutions to Ca-6

puto fractional differential equations (FDEs). First, we show that the7

non-trivial solutions to a FDE cannot converge to the fixed points8

faster than t−α, where α is the order of the FDE. Then, we introduce9

the notion of Mittag-Leffler stability which is suitable for systems of10

fractional-order. Next, we use this notion to describe the asymptotic11

behavior of solutions to FDEs by two approaches: Lyapunov’s first12

method and Lyapunov’s second method. Finally, we give a discus-13

sion on the relation between Lipschitz condition, stability and speed14

of decay, separation of trajectories to scalar FDEs.15

Key words: Fractional calculus, Fractional differential equation, Singu-16

lar integral equations, Comparison principle, Lyapunov’s first method, Lya-17

punov’s second method, Asymptotic behavior, Asymptotic stability, Mittag-18

Leffler stability.19
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1 Introduction21

The theory of fractional calculus is an excellent instrument for describing22

memory and hereditary properties of various processes. This is the main23

advantage in comparison to classical integer-order models, in which such ef-24

fects are often neglected [1]. Therefore, this theory has been applied to many25
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fields of science, engineering, and mathematics as viscoelasticity and rheol-26

ogy, electrical engineering, electrochemistry, biology, biophysics and bioengi-27

neering, signal and image processing, mechanics, mechatronics, physics, and28

control theory. For more details, we refer the reader to the monographs29

[6, 1, 2, 3, 4, 5, 7] and the references therein. The mathematical modeling30

and simulation of systems and processes, based on the description of their31

properties in terms of fractional derivatives, naturally leads to differential32

equations of fractional order and it is necessary to solve such equations.33

However, most of the fractional differential equations used to describe prac-34

tical problems can not be solved explicitly.35

Many important problems of the qualitative theory of dynamical sys-36

tems deal with stability properties of their solutions. In particular, the37

following questions are usually asked in studying fractional order systems:38

how do the trajectories of solutions change under small perturbations? will39

the solutions starting near to a given equilibrium point converge to that40

equilibrium point, and, if yes, with what rate of convergence? In his semi-41

nal 1892 thesis [8], Lyapunov proposed two main methods for investigating42

asymptotic properties of solution of ODEs as follows.43

• Lyapunov’s first method (reduction method): the key feature of this44

method is that one reduces the original problem to a much simpler one45

- linearization of the nonlinear equation near an equilibrium point. Then46

the stability of the resulting linearized equation can be solved and used for47

deducting the asymptotic properties of the original equation.48

• Lyapunov’s second method (direct method): this method uses the action49

of the system on a specific function (called Lyapunov function) to deduct the50

asymptotic properties of the system without the need to solve the system’s51

fractional differential equations explicitly.52

The two Lyapunov’s methods have been powerful tools in the classical53

theory of ordinary differential equations. It is natural to expect that the54

Lyapunov’s methods may work for FDEs as well since the fractional-order55

systems are generalizations of integer-order systems. However, one should56

take care of many distinct features of “purely” fractional-order systems,57

especially the nonlocal property and the long memory of the system.58

The first work concerning with Lyapunov’s first method for fractional-59

order systems was the paper [9]. Using linearization, the authors proposed60

a criterion to test the stability of a fractional-order predator-prey model61

and a fractional-order rabies model. They also examined these results by62

a numerical example. However, no rigorous mathematical proof was given63

in that paper. After that in [11, 10, 12], the authors formulated theorems64
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on linearized stability. Unfortunately, as showed in [13, Remark 3.7], these65

papers contain some serious flaws in the proof of the linearization theorems.66

Using other tools, the authors of [13] improved the assertions presented in67

[11, 10, 12] and gave a powerful stability criterion. The global attractivity68

of solutions to some class of fractional-order systems in Riemann–Liouville69

sense was reported in [14]. However, so far, the convergence rate of solutions70

to an equilibrium point is still unavailable.71

There are many papers on the Lyapunov’s second method have been72

published. We only list here some typical contributions [15, 17, 16, 18, 20,73

21, 19, 22, 23]. However, the development of this theory is still in its infancy74

and requires further investigation. One of the reasons for this might be75

that computation and estimation of fractional derivatives of Lyapunov can-76

didate functions are very complicated due to the fact that the well-known77

Leibniz rule does not hold true for such derivatives. On the other hand, in78

contrast to classical derivatives, there is no acceptable geometrical nor phys-79

ical interpretation of fractional derivatives. To the best of our knowledge,80

the common strategy in study the stability of FDEs by Lyapunov’s second81

method is as follows. The authors combined effective fractional derivative82

inequalities [16, inequalities (6) and (16)], [19, inequality (24)], [17, inequal-83

ity (10)] and the main results in [20, 21] to obtain the estimation of solutions84

to FDEs. However, in those papers there are some shortcomings of that ap-85

proach and some flaws in the proofs, which were shown in [24]. Recently,86

using other tools, the authors of [24] were able to avoid the shortcomings87

and flaws mentioned above and proposed a rigorous method of fractional88

Lyapunov candidate functions to study the weakly asymptotical stability of89

FDEs.90

In this paper, we develop a rigorous framework to study the asymptotic91

behavior of solution to FDEs by two directions: Lyapunov’s first method92

and Lyapunov’s second method. We improve existing results and provide93

new insightful results on the study of asymptotic properties of solutions94

to fractional differential equations that have not yet been available in the95

literature.96

The rest of the paper is organized as follows. In Section 2, some im-97

portant notions and elementary results concerning with fractional calculus98

and FDEs are recalled. In Section 3, we first show that every nontrivial99

solution to a FDE having Lipschitz continuous ”vector field” does not con-100

verge to the equilibrium point of the FDE with a rate faster than t−α where101

α is the order of the equation. Then, based on the role of Mittag-Leffler102

function, we introduce the notion of Mittag-Leffler stability to characterize103

the decay rate of solution to FDEs around the fixed points of the “vector104
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field”. The suitability and usefulness of this definition will be specified in105

the next sections. In Section 4, we develop a Lyapunov’s first method for106

a FDE linearized around its equilibrium points. Our strategy is to com-107

bine a variation of constants formula, properties of Mittag-Leffler function,108

Lyapunov–Perron approach and a new weighted norm to obtain the Mittag-109

Leffler stability of fixed points. We also discuss on an application of this110

method in stabilizing some fractional-order chaotic systems. Using compar-111

ison principles, a characterization of functions having fractional derivative112

and an inequality concerning with fractional derivative of convex functions,113

in Section 5 we develop a Lyapunov’s second method for FDEs. Some ex-114

amples are also presented to illustrate the theoretical results. Finally, in115

Section 6, we discuss relations between Lipschitz condition, stability and116

speed of decay, separation of trajectories to FDEs. In particular, we give117

an example to show that Mittag-Leffler stability is strictly stronger than118

asymptotic stability, and another example showing that without Lipschitz119

condition we may encounter the non-uniqueness of solutions to FDE and120

that alone may lead to instability of the equilibrium point although almost121

all solutions tend to the equilibrium point with a power rate. At the end of122

this section, we prove a distinct property of solution to scalar FDEs in com-123

parison to solutions of general higher dimensional FDEs: two trajectories124

starting from two different initial conditions do not intersect.125

To conclude this part, we introduce notations which are used through126

the paper. Denote by R, R≥0 and C the set of real numbers, non-negative127

numbers and complex numbers, respectively. For some arbitrary positive128

constant integer d, let R
d and C

d be the d-dimensional Euclidean spaces129

with the scalar product 〈·, ·〉 and the norm ‖ · ‖. For a Banach space X with130

the norm ‖ · ‖, x ∈ X and r > 0, let BX(x, r) be the closed ball with the131

center at x and the radius r > 0. For some T > 0, denote by C([0, T ], X)132

the linear space of continuous functions ϕ : [0, T ] → X and by C∞([0, T ], X)133

the normed space of C([0, T ], X) equipped with the norm134

‖ϕ‖∞ := sup
t∈[0,T ]

‖ϕ(t)‖ < ∞

for any ϕ ∈ C∞([0, T ], X). It is obvious that (C∞([0, T ], X), ‖ · ‖∞) is a135

Banach space. Finally, for α ∈ (0, 1] we mean Hα([0, T ],Rd) the standard136

Hölder space consisting of functions v ∈ C([0, T ],Rd) such that137

‖v‖Hα := max
0≤t≤T

‖v(t)‖+ sup
0≤s<t≤T

‖v(t)− v(s)‖
(t− s)α

< ∞

and by Hα
0 ([0, T ],R

d) the closed subspace of Hα([0, T ],Rd) consisting of138
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functions v ∈ Hα([0, T ],Rd) such that139

sup
0≤s<t≤T,t−s≤ε

‖v(t)− v(s)‖
(t− s)α

→ 0 as ε → 0.

2 Preliminaries140

We recall briefly important notions of fractional calculus and some funda-141

mental results concerning with fractional differential equations.142

Let α ∈ (0, 1), [0, T ] ⊂ R and x : [0, T ] → R satisfy
∫ T
0 |x(τ)| dτ < ∞.143

Then, the Riemann–Liouville integral of order α is defined by144

Iα0+x(t) :=
1

Γ(α)

∫ t

0
(t− τ)α−1x(τ) dτ for t ∈ (0, T ],

where the Gamma function Γ : (0,∞) → R is defined as145

Γ(α) :=

∫ ∞

0
τα−1 exp(−τ) dτ,

see e.g., Diethelm [3]. The Riemann–Liouville derivative of fractional-order146

α is given by147

RDα
0+x(t) := (DI1−α

0+ x)(t) ∀t ∈ (0, T ],

where D = d
dt is the classical derivative. In the case the Riemann–Liouville148

derivative of x(·) exists, the Caputo fractional derivative CDα
0+x of this func-149

tion is defined by150

CDα
0+x(t) :=

RDα
0+(x(t)− x(0)), for t ∈ (0, T ],

see [3, Definition 3.2, pp. 50]. The Caputo fractional derivative of a d-
dimensional vector function x(t) = (x1(t), . . . , xd(t))

T is defined component-
wise as

CDα
0+x(t) = (CDα

0+x1(t), . . . ,
CDα

0+xd(t))
T .

Denote by Iα0+C([0, T ],Rd) the space of functions ϕ : [0, T ] → R
d such151

that there exists a function ψ ∈ C([0, T ],Rd) satisfying ϕ = Iα0+ψ. Due152

to [25, Theorem 5.2, pp. 475], we have the following characterization of153

functions having Caputo fractional derivative.154

Theorem 1. For α ∈ (0, 1) and a function v ∈ C([0, T ],Rd), the following155

conditions (i), (ii), (iii) are equivalent:156

(i) the fractional derivative CDα
0+v ∈ C([0, T ],Rd) exists;157
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(ii) a finite limit limt→0
v(t)−v(0)

tα := γ exists, and158

sup
0<t≤T

∥∥∥∥∫ t

θt

v(t)− v(τ)

(t− τ)α+1
dτ

∥∥∥∥ → 0 as θ → 1;

(iii) v has the structure v − v(0) = tαγ + v0, where γ is a constant vector,159

v0 ∈ Hα
0 ([0, T ],R

d), and
∫ t
0 (t−τ)−α−1(v(t)−v(τ))dτ =: w(t) converges160

for every t ∈ (0, T ] defining a function w ∈ C((0, T ],Rd) which has a161

finite limit limt→0w(t) =: w(0).162

For v ∈ C([0, T ],Rd) having fractional derivative CDα
0+v ∈ C([0, T ],Rd), it

holds CDα
0+v(0) = Γ(α+ 1)γ, and

CDα
0+v(t) =

v(t)− v(0)

Γ(1− α)tα

+
α

Γ(1− α)

∫ t

0

v(t)− v(τ)

(t− τ)α+1
dτ, 0 < t ≤ T.

Let x0 ∈ R
d, K > 0, G := {(t, x) : 0 ≤ t ≤ T, ‖y − x0‖ ≤ K} and

f : G → R
d is a continuous. Consider an initial value problem of order α in

the form

CDα
0+x(t) = f(t, x(t)), t > 0, (1)

x(0) = x0 (2)

Using Theorem 1 and the arguments as in [3, Lemma 6.2, p. 86] we obtain163

the following result.164

Lemma 2. A function y ∈ BC([0,T ],Rd)(x0,K) is a solution of the problem165

(1)-(2) if and only if it satisfies the Volterra integral equation166

y(t) = x0 +
1

Γ(α)

∫ t

0
(t− τ)α−1f(τ, y(τ)) dτ, t ∈ [0, T ].

Using this lemma one can derive the following results on existence and167

uniqueness of solution to the problem (1)-(2).168

Theorem 3 (Local existence). There exists Tb(x0) ∈ (0, T ) such that the169

problem (1)-(2) has a solution ϕ(·, x0) ∈ C([0, Tb(x0)],R
d). Moreover, for170

any 0 ≤ t ≤ Tb(x0) we have (t, ϕ(t, x0)) ∈ G.171

Proof. Using the same arguments as in the proof of [3, Theorem 6.1, p.172

86].173
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Theorem 4 (Existence of unique solution on maximal interval of existence).
Assume additionally that the function f(·, ·) is uniformly Lipschitz continu-
ous with respect to the second variable on G. Then there exists (a maximal
time) Tb(x0) ∈ (0, T ] such that the problem (1)-(2) has a unique solution
ϕ(·, x0) ∈ C([0, Tb(x0)],R

d). Moreover, for any 0 ≤ t ≤ Tb(x0) we have

(t, ϕ(t, x0)) ∈ G, and (Tb(x0), ϕ(Tb(x0), x0)) ∈ ∂G,

i.e. either Tb(x0) = T , or Tb(x0) < T and ‖ϕ(Tb(x0), x0)− x0‖ = K.174

Proof. The proof is followed directly from [26, Proposition 4.6, p. 2892].175

3 Asymptotic behavior of solutions to FDEs176

In this section, we study asymptotic properties of solutions to fractional177

differential equations and show some distinct features compared to that of178

solutions to ordinary differential equations. We first show that a solution of179

fractional differential equations does not converge to an equilibrium point180

with exponential rate. Then, we present various notions of stability of solu-181

tions to FDEs, some of them are completely analogous to that of the ODEs,182

but one, namely the Mittag-Leffler stability is a new notion of stability which183

is suitable for systems of fractional-order.184

3.1 Solution of FDEs cannot decay faster than power rate185

Consider a nonlinear fractional system of order α ∈ (0, 1) in the form186

CDα
0+x(t) = g(t, x(t)), t > 0, (3)

where g : R≥0 × R
d → R

d satisfies the three conditions:187

(g.1) g(·, ·) is continuous;188

(g.2) g(t, 0) = 0 for all t ≥ 0;189

(g.3) g(·, ·) is global Lipschitz continuous with respect to the second variable,190

i.e., there exists a constant L > 0 such that ‖g(t, x)−g(t, y)‖ ≤ L‖x−191

y‖ for all t ≥ 0 and x, y ∈ R
d.192

It is well known that the initial value problem for the fraction differential193

equation (3) has unique solution defined on the whole R≥0, for any given194

initial value in R
d (see [38, Theorem 2]). We will prove that there is no195

nontrivial solution of (3) converging to the origin with exponential rate.196
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Lemma 5. Every nontrivial solution of (3) does not converge to the origin197

with exponential rate.198

Proof. Due to the existence and uniqueness of solution to (3), for any x0 �= 0,199

the initial value problem (3) with the condition x(0) = x0 has the unique200

solution Φ(·, x0) on the interval [0,∞). Assume that this solution converges201

to the origin with the exponential rate, then there exist positive constants202

λ and T1 such that203

‖Φ(t, x0)‖ <
1

exp (λt)
, for all t ≥ T1. (4)

Take and fix a positive number K > 0 satisfying K‖x0‖ > 1. We recall here204

the notion of Mittag-Leffler functions; namely, the Mittag-Leffler matrix205

function Eα,β(A), for β > 0 and a matrix A ∈ R
d×d is defined as206

Eα,β(A) :=
∞∑
k=0

Ak

Γ(αk + β)
, Eα(A) := Eα,1(A),

see, e.g., Diethelm [3]. In case d = 1 the above formula gives definition of207

Mittag-Lefler function of a real variable. From the asymptotic behavior of208

the exponential functions and Mittag-Leffler functions, there is a constant209

T2 > 0 such that210

1

exp (λt)
<

Eα(−Ltα)

K
, for all t ≥ T2. (5)

Put T0 = max{T1, T2}. Using the equivalent integral form of (3), by virtue
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of (4) and (5), we have

Γ(α)‖x0‖
L

≤ lim sup
t→∞

∫ T0

0
(t− s)α−1‖Φ(s, x0)‖ ds

+ lim sup
t→∞

∫ t

T0

(t− s)α−1‖Φ(s, x0)‖ ds

≤ sup
s∈[0,T0]

‖Φ(s, x0‖ lim sup
t→∞

∫ T0

0
(t− s)α−1 ds

+ lim sup
t→∞

∫ t

T0

(t− s)α−1 1

exp (λs)
ds

≤ sup
s∈[0,T0]

‖Φ(s, x0‖ lim sup
t→∞

tα − (t− T0)
α

α

+ lim sup
t→∞

1

K

∫ t

0
(t− s)α−1Eα(−Lsα) ds

= lim sup
t→∞

1

K

∫ t

0
(t− s)α−1Eα(−Lsα) ds (6)

It is worth mentioning that Eα(−Ltα) is the solution of the initial value
problem

CDα
0+x(t) = −Lx(t), t > 0,

x(0) = 1,

see, e.g., [4, Example 4.9, pp. 231]. Hence,211

Eα(−Ltα) = 1− L

Γ(α)

∫ t

0
(t− s)α−1Eα(−Lsα) ds, ∀t ≥ 1,

and212

lim
t→∞

∫ t

0
(t− s)α−1Eα(−Lsα) ds =

Γ(α)

L
,

a contradiction with (6). Therefore, there do not exist any nontrivial solution213

of (3) converging to the origin with the exponential rate. The proof is214

complete.215

A closer look at the proof of Lemma 5 allows us to have an even stronger216

statement on the decaying rate of solutions to fractional differential equa-217

tions.218
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Theorem 6 (Power rate decay of solution of FDEs). Any nontrivial solution
of the FDE (3) cannot decay to 0 faster than t−α. More precisely, let Φ(·, x0)
be an arbitrary solution of the FDE (3) with initial value Φ(0, x0) = x0 �= 0
and β > 0 be an arbitrary positive number satisfying β > α, then

lim sup
t→+∞

tβ‖Φ(t, x0)‖ = +∞.

Proof. Assume, in contrary, that there exists an β > α such that

lim sup
t→+∞

tβ‖Φ(t, x0)‖ = M < ∞.

It suffices to use the arguments of the proof of Lemma 5, modifying the219

relations (4) and (5) by changing exp(λt) there to tβ/(M + 1), to derive a220

contradiction.221

Remark 7. Lemma 5 remains true if we replace the strong condition of global222

Lipschitz property (g.3) by a weaker condition of local Lipschitz property of223

g at the origin:224

(g.3’) There are positive constants a > 0, L > 0 such that ‖g(t, x)−g(t, y)‖ ≤225

L‖x− y‖ for all t ≥ 0 and x, y ∈ R
d, ‖x‖ ≤ a, ‖y‖ ≤ a.226

Similarly, nonuniform Lipschitz property (g.3’) of g suffices for Theorem 6.227

3.2 Notions of stability for FDE systems228

Consider the nonlinear fractional differential equation (3)

CDα
0+x(t) = g(t, x(t)), t > 0,

where g : R≥0×R
d → R

d is continuous and satisfies the condition (g.1)-(g.2)-229

(g.3’). Since g is local Lipschitz continuous, Theorem 3 and Theorem 4 imply230

unique existence of solution to the initial value problem (3), x(0) = x0 for231

x0 ∈ R
d, ‖x‖ ≤ a. Let Φ : I×R

d → R
d denote the solution of (8), x(0) = x0,232

on its maximal interval of existence I = [0, Tb(x0)) with 0 < Tb(x0) ≤ ∞.233

We recall notions of stability and asymptotic stability of the trivial solution234

of (3) which is a direct application of the stability notions from classical235

ordinary differential equations theory to the FDE case, cf. [3, Definition 7.2,236

p. 157].237

Definition 8. (i) The trivial solution of the nonlinear fractional differen-238

tial equation (3) is called stable if for any ε > 0 there exists δ = δ(ε) >239

0 such that for all ‖x0‖ < δ we have Tb(x0) = ∞ and ‖Φ(t, x0)‖ < ε240

for all t ≥ 0.241
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(ii) The trivial solution is called asymptotically stable if it is stable and242

there exists some δ̃ > 0 such that limt→∞ ‖Φ(t, x0)‖ = 0 whenever243

‖x0‖ < δ̃.244

It is well known that there is a notion of exponential stability of solution245

of ordinary differential equations which related to the exponential rate of246

convergence to solutions. However, the results of Section 3 show that the247

non-trivial solution to FDEs cannot decay with exponential rate but at most248

power rate. Therefore, it make sense to investigate the power rate of decay249

of solution to FDEs.250

In the equation (3) if g(t, x) = Ax for all t ≥ 0, x ∈ R
d and A ∈ R

d×d,251

then for any x0 ∈ R
d, this system with the initial condition x(0) = x0 has252

the unique solution Eα(t
αA)x0 on the interval [0,∞). This suggests us to253

use the Mittag-Leffler function in establishing a suitable stability definition254

for systems of fractional-order.255

Motivated by Lemma 5, we now propose a new definition to characterize256

the convergent rate to the equilibrium points of solutions to FDEs. This257

is similar to that introduced by several authors (see Li et al. [20, 21] and258

Stamova [27]).259

Definition 9. The equilibrium point x∗ = 0 of (3) is called Mittag-Leffler260

stable if there exist positive constants β, m and δ such that261

sup
t≥0

tβ‖Φ(t, x0)‖ ≤ m (7)

for all ‖x0‖ ≤ δ.262

Remark 10. (i) Our definition of Mittag-Leffler stability is formulated in the263

form similar to the notion of exponential stability in the classical theory of264

ordinary differential equations. It reveals the power rate of decay of solutions265

to Mittag-Leffler stable systems.266

(ii) Due to the asymptotic behavior of the Mittag-Leffler function our267

definition is equivalent to the definition of Mittag-Leffler stability by several268

other authors (see Li et al. [20, 21], and Stamova [27]).269

(iii) In light of Theorem 6 the parameter β in the Definition 9 must270

satisfy β ≤ α.271

4 Linearized Mittag-Leffler stability of fractional272

systems273

In this section, we propose a Lyapunov’s first method to study the asymp-274

totic behavior of solutions to FDEs. Based on a variation of constants275
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formula, properties of Mittag-Leffler functions, Lyapunov-Perron approach276

and a new weighted norm which first appears in the literature, we obtain the277

Mittag-Leffler stability of fixed points to a class of nonlinear FDEs linearized278

about its equilibrium points.279

4.1 Formulation of the result280

Consider a nonlinear fractional differential equation in the form281

CDα
0+x(t) = Ax(t) + f(x(t)), (8)

where A ∈ R
d×d and f : R

d → R
d is continuous on R

d and Lipschitz282

continuous in a neighborhood of the origin satisfying283

f(0) = 0 and lim
r→0


f (r) = 0, (9)

in which284


f (r) := sup
x,y∈B

Rd
(0,r)

‖f(x)− f(y)‖
‖x− y‖ .

Furthermore, let λ1, . . . , λn denote the eigenvalues of A. Suppose that285

λi ∈ Λs
α :=

{
λ ∈ C \ {0} : |arg(λ)| > απ

2

}
, i = 1, . . . , n. (10)

Our task is to study the asymptotic behavior of solutions to (8) around the286

origin. In [13], the authors give a linearized stability theorem for the trivial287

solution of (8) as follows.288

Theorem 11 (see [13, Theorem 3.1]). Assume that A satisfies the condition289

(10) and f(·) satisfies the condition (9). Then the trivial solution of the290

system (8) is asymptotically stable.291

After the work [13, Theorem 3.1], a natural question now arises: what292

is the rate of convergence to the origin for solutions of the nonlinear FDE293

(8)? As shown above (see Theorem 6) the trivial solution of fractional-order294

systems cannot be exponentially stable. Hence, the best rate of convergence295

one may expect is the polynomial rate, and one of our main contributions296

is the following result on Mittag-Leffler stability of FDEs.297

Theorem 12 (Lyapunov’s first method for Mittag-Leffler stability). As-298

sume that A satisfies (10) and f(·) satisfies the condition (9). Then the299

trivial solution of the system (8) is Mittag-Leffler stable.300

12



To prove Theorem 12 we need the lemmas below.301

Lemma 13. (i) For any λ ∈ Λs
α, there exists a constant C1 > 0 such that302

|Eα(λt
α)| ≤ C1Eα(−tα), ∀t ≥ 0.

(ii) There is a constant C2 > 0 such that303

tα
∫ t

0
(t− s)α−1Eα,α(−(t− s)α)s−α ds ≤ C2, ∀t ≥ 0.

Proof. (i) The proof of this statement is obvious.304

305

(ii) The proof is deduced by using [1, Formula (1.100)] and the asymptotic306

behavior of Mittag-Leffler function Eα(−tα).307

Lemma 14. Let λ ∈ Λs
α. Then, there exists a positive constant C3 satisfying308 ∫ ∞

0
τα−1|Eα,α(λτ

α)| dτ < C3.

Proof. See [28, Theorem 3(ii)].309

4.2 Proof of Theorem 12310

We follow the approach in our preceding paper [13] to complete the proof311

of Theorem 12. This proof contain two main steps:312

• Transformation of the linear part: we transform the matrix A in (8) to313

a Jordan normal form which is ”very close” to a diagonal matrix. This314

step helps us to reduce the difficulty in the estimation of the matrix315

valued Mittag-Leffler function in the next step.316

• Construction of an appropriate Lyapunov-Perron operator: in this317

step, we establish a family of operators with the property that any318

solution of the nonlinear system (8) can be interpreted as a fixed point319

of these operators. On the other hand, these operators are contractive320

in a suitable space and hence their fixed points can be estimated.321

Transformation of the linear part322
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By virtue [29, Theorem 6.37, pp. 146], we can find a nonsingular matrix323

T ∈ C
d×d such that324

T−1AT = diag(A1, . . . , An),

where for i = 1, . . . , n the block Ai has the form325

Ai = λi iddi×di + δiNdi×di ,

with λi is an eigenvalue, δi ∈ {0, 1} and the nilpotent matrix Ndi×di is given326

by327

Ndi×di :=

⎛⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠
di×di

.

Let η be an arbitrary but fixed positive number. Applying the transforma-
tion Pi := diag(1, η, . . . , ηdi−1) leads to

P−1
i AiPi = λi iddi×di + ηiNdi×di ,

ηi ∈ {0, η}. Hence, under the transformation y := (TP )−1x system (8)328

becomes329

CDα
0+y(t) = diag(J1, . . . , Jn)y(t) + h(y(t)), (11)

where Ji := λiiddi×di for i = 1, . . . , n and the function h is given by

h(y) := diag(η1Nd1×d1 , . . . , ηnNdn×dn)y + (TP )−1f(TPy).

Remark 15 (see [13, Remark 3.2]). The map

x 
→ diag(η1Nd1×d1 , . . . , ηnNdn×dn)x

is a Lipschitz continuous function with Lipschitz constant η. Thus, by (9)330

we have331

h(0) = 0, lim
r→0


h(r) =

{
η if there exists ηi = η,

0 otherwise.

Remark 16. The type of stability of the trivial solution to equations (8)332

and (11) is the same, i.e., they are both stable (asymptotic/Mittag-Leffler333

stable) or not stable (asymptotic/Mittag-Leffler stable).334
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Construction of an appropriate Lyapunov-Perron operator335

We now concentrate only on the equation (11) and introduce a Lyapunov-336

Perron operator associated with this equation.337

For any x = (x1, . . . , xn) ∈ C
d = C

d1 × · · · × C
dn , the operator

Tx : C([0,∞),Cd) → C([0,∞),Cd)

is defined by338

(Txξ)(t) = ((Txξ)1(t), . . . , (Txξ)n(t)) for t ∈ R≥0,

where for i = 1, . . . , n339

(Txξ)i(t) = Eα(t
αJi)x

i +∫ t

0
(t− τ)α−1Eα,α((t− τ)αJi)h

i(ξ(τ)) dτ,

is called the Lyapunov-Perron operator associated with (11). The relation-340

ship between a fixed point of the operator Tx(·) and a solution to the equation341

(11) is described in the lemma below.342

Lemma 17. Consider (11) and assume that the function h(·) is global Lips-343

chitz continuous. Let x ∈ C
d be arbitrary and ξ : R≥0 → C

d be a continuous344

function with ξ(0) = x. Then, the following two statements are equivalent:345

(i) ξ is a solution of (11) with the initial condition x(0) = x.346

(ii) ξ is a fixed point of the operator Tx.347

Proof. The proof is obtained by using the theorem on existence and unique-348

ness of solutions and the variation of constants formula for fractional differ-349

ential equations, see e.g., [30].350

Our novel contribution in the present work is to combine the approach351

in [13] and a new weighted norm as follows. In C([0,∞),Cd) we define a352

function ‖ · ‖w by353

‖x‖w = max{ sup
t∈[0,1]

‖x(t)‖, sup
t≥1

tα‖x(t)‖}.

Then Cw := {x ∈ C([0,∞),Cd) : ‖x‖w < ∞} is also a Banach space with354

the norm ‖ · ‖w.355

Next, we give some estimates concerning the operator Tx in the space356

Cw.357
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Proposition 18. Consider system (11) and suppose that358

λi ∈ Λs
α, i = 1, . . . , n,

where λ1, . . . , λn are eigenvalues of A. Then, we can find a constant C(α,A)
depending on α and λ := (λ1, . . . , λn) such that

‖Txξ − Tx̂ξ̂‖w
≤ max

1≤i≤n
{ sup
t∈[0,1]

|Eα(λit
α)|+ sup

t≥1
tα|Eα(λit

α)|}‖x− x̂‖

+ C(α,A) 
h(max{‖ξ‖∞, ‖ξ̂‖∞})‖ξ − ξ̂‖w (12)

for all x, x̂ ∈ C
d and ξ, ξ̂ ∈ Cw. Consequently, Tx considered as an operator

on the Banach space Cw endowed with the norm ‖ · ‖w is well-defined and

‖Txξ − Txξ̂‖w ≤ C(α,A) 
h(max{‖ξ‖∞, ‖ξ̂‖∞)}‖ξ − ξ̂‖w.

Proof. For i = 1, . . . , n, we get

‖(Txξ)i(t)− (Tx̂ξ̂)i(t)‖
≤ ‖x− x̂‖|Eα(λit

α)|+ 
h(max{‖ξ‖∞, ‖ξ̂‖∞})×∫ t

0
(t− τ)α−1|Eα,α(λi(t− τ)α)|‖(ξ − ξ̂)(τ)‖ dτ.

In the case t ∈ [0, 1], we have

sup
t∈[0,1]

‖(Txξ − Txξ̂)i(t)‖ ≤ sup
t∈[0,1]

|Eα(λit
α)|‖x− x̂‖

+ 
h(max{‖ξ‖∞, ‖ξ̂‖∞})
∫ ∞

0
uα−1|Eα,α(−λiu

α)| du ‖ξ − ξ̂‖w. (13)

Furthermore,

sup
t≥1

tα‖(Txξ − Txξ̂)i(t)‖

≤ sup
t≥1

tα|Eα(λit
α)| ‖x− x̂‖+ Cλi


h(max{‖ξ‖∞, ‖ξ̂‖∞})×

sup
t≥1

tα
∫ t

0
(t− τ)α−1Eα,α(−(t− τ)α)τ−α dτ‖ξ − ξ̂‖w, (14)
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where Cλi
is a constant chosen as in Lemma 13 (i). Now by combining

Lemma 13, (13) and (14), we have

‖Txξ)− Tx̂ξ̂‖w
≤ max

1≤i≤n
{ sup
t∈[0,1]

|Eα(λit
α)|+ sup

t≥1
tα|Eα(λit

α)|}‖x− x̂‖

+ C(α,A) 
h(max{‖ξ‖∞, ‖ξ̂‖∞})‖ξ − ξ̂‖w,

where

C(α,A) := max
1≤i≤n

∫ ∞

0
uα−1|Eα,α(λiu

α)| du

+ Cλ sup
t≥1

tα
∫ t

0
(t− τ)α−1Eα,α(−(t− τ)α)τ−α dτ

with Cλ := max{Cλ1 , . . . , Cλn}. The proof is complete.359

We have showed that Tx(·) is well-defined and that it is Lipschitz con-360

tinuous with the constant C(α,A). Moreover, C(α,A) is independent of the361

constant η. From now, we choose η = 1
2C(α,A) .362

Lemma 19. Let363

λi ∈ Λs
α, i = 1, . . . , n,

where λ1, . . . , λn are eigenvalues of A and C(α,A) be the constant defined364

in Proposition 18. We have the following assertions.365

(i) There is a r > 0 such that366

q := C(α,A) 
h(r) < 1. (15)

(ii) Choose r > 0 satisfying (15) and let

γ := max
1≤i≤n

{ sup
t∈[0,1]

|Eα(λit
α)|+ sup

t≥1
tα|Eα(λit

α)|}

and367

r∗ :=
r(1− q)

γ
. (16)

Define BCw(0, r) := {ξ ∈ C∞([0,∞),Cd) : ||ξ||w ≤ r}. Then, for any
x ∈ BCd(0, r∗), we have Tx(BCw(0, r)) ⊂ BCw(0, r) and

‖Txξ − Txξ̂‖w ≤ q‖ξ − ξ̂‖w for all ξ, ξ̂ ∈ BCw(0, r).
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Proof. (i) Due to Remark 15, limr→0 
h(r) ≤ η. Hence ηC(α,A) = 1
2 and368

the proof of (i) is complete.369

(ii) Let x ∈ BCd(0, r∗) and ξ ∈ BCw(0, r). According to (12) in Proposi-
tion 18, we obtain that

‖Txξ‖w
≤ max

1≤i≤n
{ sup
t∈[0,1]

|Eα(λit
α)|+ sup

t≥1
tα|Eα(λit

α)|}‖x‖

+ C(α,A) 
h(r)‖ξ‖w
≤ (1− q)r + qr,

which proves that Tx(BCw(0, r)) ⊂ BCw(0, r). Moreover, from Proposition370

18 and part (i), we have371

‖Txξ − Txξ̂‖w ≤ C(α,A)
h(r) ‖ξ − ξ̂‖w

≤ q‖ξ − ξ̂‖w

for all x ∈ BCd(0, r∗) and ξ, ξ̂ ∈ BCw(0, r). This ends the proof.372

Proof of Theorem 12. Due to Remark 16, it is sufficient to prove the Mittag-373

Leffler stability for the trivial solution of (11). To do this, taking r∗ is a374

constant defined as in (16). For any x ∈ BCd(0, r∗), by Lemma 19 and the375

Contraction Mapping Principle, there is a unique fixed point ξ ∈ BCw(0, r)376

of Tx. This fixed point is also the unique solution of (11) satisfying ξ(0) = x377

(see Lemma 17). Together existence and uniqueness of solutions for initial378

value problems for the equation (11) in a neighborhood of the origin, this379

shows that the trivial solution is stable in the Lyapunov’s sense. Further-380

more,381

sup
t≥0

tα‖ξ(t)‖ ≤ r,

which shows that the solution 0 of (11) is Mittag-Leffler stable. The proof382

is complete.383

Remark 20. In [13, Theorem 3.1], we proved that the trivial solution to384

(8) is asymptotically stable. However, we did not know the decay rate of385

non-trivial solutions to this equation. Now by Theorem 12, this question is386

answered fully. Namely, in the proof of Theorem 12 we showed the conver-387

gence rate of solutions around the equilibrium as t−α.388
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Remark 21. In the case the linear part A of the equation (8) is hyperbolic,389

that is the spectrum σ(A) satisfies390

σ(A) ∩ {λ ∈ C \ {0} : | arg (λ) = απ

2
} = ∅, σ(A) ∩ Λu

α �= ∅,

where Λu
α := {λ ∈ C \ {0} : | arg (λ) < απ

2 }, Cong et al. [31] showed the391

existence of a stable manifold around the origin. Now using the weighted392

norm ‖ · ‖w and the approach as in the proof of Theorem 12, we may prove393

that solutions of (8) starting from its stable manifold converge to the origin394

with the rate t−α.395

Remark 22. In the case A = 0, we can not use the linearization method396

around an equilibrium point to analyze the Mittag-Leffler stability of (8).397

To overcome this obstacle, in Section 5 we will develop the Lyapunov’s398

second method for fractional differential equations.399

4.3 Application of Theorem 12 in the stabilization of fractional-400

order chaotic systems401

In this subsection, we discuss on an application in the stabilization of some402

fractional-order chaotic systems.403

Example 23 (Fractional Lorenz system). Consider the fractional-order Lorenz
system of the order α ∈ (0, 1) at the origin as follows.

CDα
0+x1(t) = −σx1(t) + σx2(t),

CDα
0+x2(t) = ρx1(t)− x2(t)− x1(t)x3(t), (17)

CDα
0+x3(t) = −βx3(t) + x1(t)x2(t),

where σ is called the Prandtl number and ρ is called the Rayleigh number.404

For α = 0.995 and (σ, ρ, β) = (10, 28, 8/3), this system is chaotic [32, pp.405

134–137]. It is obvious that 0 is a solution of (17). On the other hand, its406

linear part has three eigenvalues as λ1 = −8
3 , λ2 = 1

2(
√
1201 − 11), λ3 =407

1
2(−

√
1201− 11). Hence, from [33, Theorem 5], this solution is unstable.408

Now consider a controlled system of (17) with a linear feedback control
input:

CDα
0+x(t) = A1x(t) + f1(x(t)) +B1u(t), (18)

u(t) = K1x(t), (19)

where409

A1 =

⎛⎝ −10 10 0
28 −1 0
0 0 −8

3

⎞⎠ ,
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410

f1(x(t)) =

⎛⎝ 0
−x1(t)x3(t)
x1(t)x2(t)

⎞⎠ ,

the state-space matrix B1 ∈ R
3×1 and a feedback gain K1 ∈ R

1×3 needs to411

be determined. For simplicity, let B1 = (1, 1, 1)T . By virtue Theorem 12,412

for K1 = (0,−10, 0), then the trivial solution of (18)–(19) is Mittag-Leffler413

stable for any α ∈ (0, 1).414

Example 24 (Fractional-order Liu system). Consider the fractional Liu sys-415

tem of the order α ∈ (0, 1):416

CDα
0+x(t) = A2x(t) + f2(x(t)), (20)

where417

A2 =

⎛⎝ −a 0 0
0 b 0
0 0 −c

⎞⎠ ,

418

f2(x(t)) =

⎛⎝ −ex22(t)
−kx1(t)x3(t)
mx1(t)x2(t)

⎞⎠ ,

with a, b, c, e, k,m are positive constants. In this example we let (a, b, c, e, k,m) =
(1, 2.5, 5, 1, 4, 4). As known in [32, pp. 142–145], the system (20) is chaotic
for α = 0.95. Note that in this case, its trivial solution is unstable. Using
the same approach as above, we can stabilize (20) as below.
Consider a controlled system of (20) with a linear feedback control input is
described by

CDα
0+x(t) = A2x(t) + f2(x(t)) +B2u(t), (21)

u(t) = K2x(t). (22)

Let B2 = (1, 1, 1)T and choose K2 = (0,−3.5, 0), then the trivial solution of419

the controlled system (21)–(22) is Mittag-Leffler stable.420

5 Lyapunov’s second method and Mittag-Leffler421

stability422

This section is devoted to develop a Lyapunov’s second method for systems423

of fractional-order equations. Our approach is based on a comparison prin-424

ciple for FDE and an inequality concerning with fractional derivatives of a425
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convex function. For this purpose, we introduce the following preparation426

results.427

Lemma 25. Let m : [0, T ] → R be continuous and Caputo derivative428

CDα
0+m exists on the interval (0, T ]. If there is a t0 ∈ (0, T ] such that429

m(t) ≤ 0 ∀t ∈ [0, t0) and m(t0) = 0,

then CDα
0+m(t0) ≥ 0.430

Proof. The proof of this lemma is obtained by using arguments as in the431

proof of [34, Lemma 2.1].432

Based on arguments as in [34, Theorem 2.3], the following comparison433

proposition holds.434

Proposition 26. Let L : R → R be continuous and non-increasing (it means
that for x1 ≤ x2 then L(x1) ≥ L(x2), m1 : [0, T ] → R, m2 : [0, T ] → R be
continuous. Assume that CDα

0+m1,
CDα

0+m1 exist on (0, T ]. If

CDα
0+m1(t) ≥ L(m1(t)), t ∈ (0, T ], m1(0) ≥ m0, (23)

CDα
0+m2(t) ≤ L(m2(t)), t ∈ (0, T ], m2(0) ≤ m0, (24)

then m1(t) ≥ m2(t) for all t ∈ (0, T ].435

Proof. We first assume that one of the inequalities in (23) and (24) is strict,
say CDα

0+m2(t) < L(m2(t)) and m2(0) < m0 ≤ m1(0). Then, for all t ∈
[0, T ] the following inequality holds

m2(t) < m1(t).

Indeed, suppose that there is a t0 ∈ (0, T ] such that m2(t0) = m1(t0) and
m2(t) < m1(t) on the interval [0, t0). Set m(t) = m2(t) − m1(t) it follows
that m(t0) = 0 and m(t) < 0 for t ∈ [0, t0). By virtue of Lemma 25, it
implies that CDα

0+m(t0) ≥ 0. However, since m2(t0) = m1(t0), we get

L(m2(t0)) >
CDα

0+m2(t0)

≥ CDα
0+m1(t0)

≥ L(m1(t0))

= L(m2(t0)),

a contradiction. Hence, m2(t) < m1(t) on [0, T ]. Now assume that the
inequalities in (23) are non-strict. We will show that m2(t) ≤ m1(t) for all
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t ∈ [0, T ]. Set mε
1(t) = m1(t)+ελ(t) where ε > 0 and λ(t) = Eα(t

α). Noting
that λ(·) is positive and L(·) is non-increasing, we have

CDα
0+m

ε
1(t) =

CDα
0+m1(t) + ελ(t)

≥ L(m1(t)) + ελ(t)

= L(mε
1(t)) + L(m1(t))− L(mε

1(t)) + ελ(t)

≥ L(mε
1(t)) + ελ(t)

> L(mε
1(t)), ∀t ∈ (0, T ]. (25)

Due to (25) and the result above for strict inequalities, we get that m2(t) <436

mε
1(t) for all t ∈ [0, T ]. Consequently, letting ε → 0 leads to m2(t) ≤437

m1(t), ∀t ∈ [0, T ]. The proof is complete.438

Remark 27. Proposition 26 improved [34, Theorem 2.3] in the way that439

we do not need to require continuous differentiability of m1(·),m2(·), and440

Lipschitz property of L(·). This improvement is very useful for our purpose441

in the next steps.442

5.1 Lyapunov’s second method for fractional differential equa-443

tions444

Let D be an open set in R
d and 0 ∈ D. Consider a fractional order equation445

with the order α ∈ (0, 1) in the form446

CDα
0+x(t) = f(x(t)), for all t ∈ (0,∞), (26)

where f : D → R
d satisfies the two conditions:447

(f.1) f(0) = 0;448

(f.2) f(·) is Lipchitz continuous in a neighborhood of the origin.449

The main result in this section is the following theorem.450

Theorem 28 (Mittag-Leffler stability by Lyapunov’s second method). Con-451

sider the equation (26). Let V : Rd → R+ be a function satisfying three452

conditions:453

(V.1) V (·) is convex and differentiable on R
d;454

(V.2) there are constants a, b, C1, C2, r > 0 such that

C1‖x‖a ≤ V (x) ≤ C2‖x‖b

for all x ∈ BRd(0, r);455
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(V.3) there exists constants C3, c ≥ 0 such that

〈∇V (x), f(x)〉 ≤ −C3‖x‖c

for all x ∈ BRd(0, r).456

Then, the following statements hold457

(a) if C3 = 0, then the trivial solution of (26) is stable;458

(b) if C3 > 0, then the trivial solution of (26) is Mittag-Leffler stable .459

Proof. (a) See the proof of [24, Theorem 3(a)].460

(b) Due to the fact that the trivial solution to (26) is stable, for any ε > 0,
there is a δ > 0 such that the solution ϕ(t, x0) to (26) with ‖x0‖ < δ
satisfies ‖ϕ(t, x0)‖ < ε for all t ≥ 0. Moreover, from [24, Theorem 2] and
the hypotheses (V.2) and (V.3), we have

CDα
0+V (ϕ(t, x0)) ≤ 〈∇V (ϕ(t, x0)),

C Dα
0+ϕ(t, x0)〉

≤ −C3‖ϕ(t, x0)‖c

≤ − C3

C
c/b
2

(V (ϕ(t, x0)))
c/b, ∀t ≥ 0.

Put A := − C3

C
c/b
2

, p := c
b and consider the following initial value problem461 {
CDα

0+y(t) = Ayp(t), t > 0,

y(0) = V (x0) > 0.
(27)

Then V (ϕ(·, x0)) is a sub-solution of (27) (for the definition of sub-solution462

see [35]). Furthermore, from the construction of a super-solution to (27)463

(see [35, p. 333]), we can find a super-solution w of (27) on [0,∞) defined464

by465

w(t) =

{
V (x0), t ∈ [0, t1],

Ct
−α

p , t ≥ t1,

where C = V (x0)t
α
p

1 and466

tα1 =
V (x0)

1−p

−A

(
2α

Γ(1− α)
+

α

p

2
α+α

p

Γ(2− α)

)
.

Now using the comparison proposition 26, we obtain467

V (ϕ(t, x0)) ≤ w(t), ∀t ≥ 0.
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This implies that for any x0 ∈ BRd(0, δ) \ {0}, there exists a constant d > 0468

such that469

‖ϕ(t, x0)‖ ≤
(

1

C1
V (ϕ(t, x0))

)1/a

≤
(

d

C1(1 + tα/p)

)1/a

for all t ≥ 0. Note that from the existence and uniqueness of the solution470

to (26), if x0 = 0 then ϕ(·, 0) = 0. So, the trivial solution to the original471

system (26) is Mittag-Leffler stable. The proof is complete.472

Remark 29. (i) Theorem 28 is still true if we replace the condition of global473

convex and differentiable property (V.1) by a condition of local convex and474

differentiable property in a neighborhood of the origin.475

(ii) Theorem 28 is a new contribution in the theory of Lyapunov’s second476

method for fractional differential equations. It improves and strengthens a477

recent result by Tuan and Trinh [24, Theorem 3]. In particular, we removed478

the condition c > b in the statement of [24, Theorem 3(c)]. Moreover,479

we proved the Mittag-Leffler stability of the trivial solution instead of the480

weakly asymptotic stability.481

5.2 Illustrative examples482

Example 30 (Simple nonlinear one-dimensional FDE). Consider the nonlin-483

ear one-dimensional FDE of order 0 < α < 1 which is nonlinear of order484

β ≥ 1:485

CDα
0+x(t) = f(x(t)), x(0) = x0, (28)

where486

f(x) :=

{
−xβ , if x ≥ 0,

|x|β , if x < 0.
(29)

It is easy to see that f(·) is local Lipschitz continuous at the origin. Choosing487

V (x) = x2, x ∈ R. This function satisfies the conditions (V.1), (V.2) (with488

C1 = C2 = 1 and a = b = 2), and (V.3) (with C3 = 2 and c = 1 + β) in489

Theorem 28. Thus the trivial solution to (28) is Mittag-Leffler stable. More490

precisely, from the proof of Theorem 28, the non-trivial solutions of (28)491

converge to the origin with the rate at least t−α/(1+β) as t → ∞. A special492

case of (28) when β = 3 was studied by Li et al. [20, Example 14], Shen et493

al. [36, Remark 11], Zhou et al. [23], where they tried to prove asymptotic494

stability of (28). However, their proof is not correct, see Tuan and Trinh495

[24, Remark 3] for details. Our method now solves this problem completely:496

we showed that the trivial solution of (28) is Mittag-Leffler stable, hence497

asymptotically stable.498
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Example 31 (A more complicated nonlinear one-dimensional FDE). Con-499

sider an equation in form500

CDα
0+x(t) = −x3 + g(x(t)), t > 0, (30)

where g : R → R is differentiable at the origin and satisfies501

g(0) = 0, lim
x→0

g(x)

x3
= 0.

Choosing the Lyapunov candidate function V (x) = x2 for x ∈ R and502

r > 0 such that503

2x(−x3 + g(x)) ≤ −x4, ∀x ∈ BR(0, r).

Then the conditions of Theorem 28 are satisfied for C1 = C2 = 1, a = b = 2,504

C3 = 1 and c = 4. Thus, the trivial solution of (30) is Mittag-Leffler stable.505

Example 32 (Higher dimensional nonlinear FDE). Consider a two dimen-506

sional fractional-order nonlinear system507

CDα
0+x(t) = f(x(t)), t > 0, (31)

where f(x) = (−x31 + x42,−x32 − x2x
2
1)

T for any x = (x1, x2) ∈ R
2. In this508

case, we choose the Lyapunov candidate function V (x) = ‖x‖2 = x21 + x22509

for x = (x1, x2) ∈ R
2 and r > 0 such that510

〈(2x1, 2x2), (−x31 + x42,−x32 − x21x2)〉 ≤ −x41 − x42

for all x = (x1, x2) ∈ BR2(0, r). The function V (·) now satisfies the condi-511

tions (V.1), (V.2) and (V.3) in Theorem 28 for a = b = 2, c = 4, C1 = C2 = 1512

and C3 = 1. Hence, the trivial solution of (31) is Mittag-Leffler stable.513

6 Relation between Lipschitz condition, stability514

and speed of decay, separation of trajectories to515

Caputo FDEs516

We first present here several examples of Caputo FDEs of various kinds of517

stability to illustrate the stability notions given in Section 3. It is obvious518

that Mittag-Leffler stability is stronger than asymptotic stability.519
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Example 33 (Linear autonomous FDE). Let us consider a linear autonomous520

FDE of order α ∈ (0, 1):521

CDα
0+x(t) = Ax(t), (32)

where
A = diag(a1, . . . , ad), ai < 0, i = 1, . . . , d.

This FDE is solve explicitly and its solutions are of the form

diag(Eα(a1t
α), . . . , Eα(adt

α))x0, x0 ∈ R
d,

see Diethelm [3, Theorem 7.2]. It is easy to see that the trivial solution of522

(32) is Mittag-Leffler stable and all non-trivial solutions have a decay rate523

t−α.524

Unlike the linear autonomous case, solution to nonlinear FDEs may have525

decay rate smaller or bigger than the order of the equations. The FDE (28)526

treated in Example 30 is a nonlinear FDE with solutions decaying to 0 with527

rate slower than t−α. Actually we show in Example 30, using Theorem528

28 that the decay rate of nontrivial solutions to the FDE (28) is at least529

t−α/(1+β) as t → ∞. An application of the result of Vergara and Zacher [35,530

Theorem 7.1, p. 334] shows that decay rate of nontrivial solutions to the531

FDE (28) is α/β < α for β > 1.532

Example 34 (One-dimensional FDE with non Lipschitz right-hand side).533

Consider the nonlinear one-dimensional FDE of order 0 < α < 1 which is534

nonlinear of order β ∈ (0, 1):535

CDα
0+x(t) = f(x(t)), x(0) = x0, (33)

where536

f(x) :=

{
−xβ , if x ≥ 0,

|x|β , if x < 0.
(34)

It is worth mentioning that the function f(·) in right-hand side of the above537

FDE is continuous but non Lipschitzian in a neighborhood of the origin.538

Let x0 > 0, consider the FDE (33) in the area x ∈ (0,∞). From Theorem539

4, the equation (33) has a unique solution, denoted by ϕ(·, x0), on the maxi-540

mal interval of existence [0, Tb). If Tb(x0) < ∞, then lim inft→Tb(x0)− ϕ(t, x0) =541

0 or lim supt→Tb(x0)− ϕ(t, x0) = ∞ (see [37, Proposition 1]). However, using542

Proposition 26 and construction of a super-solution and a sub-solution to543

(33) (see [35, pp. 232–234]), we have544

lim sup
t→Tb−

ϕ(t, x0) ≤
c1

1 + T
α/β
b
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and545

lim inf
t→Tb−

ϕ(t, x0) ≥
c2

1 + T
α/β
b

for some c1, c2 > 0, a contradiction. Hence, Tb = ∞ and546

c2

1 + tα/β
≤ ϕ(t, x0) ≤

c1

1 + tα/β
, ∀t ≥ 0.

On the other hand, due to the specific form of f in (34), if we multiply the547

solutions of (33) with negative initial values by −1 then we get solutions of548

(33) with the positive initial values, and vice versa. Therefore, the solution549

of (33) starting from x0 �= 0 has decay rate as t−γ with γ = α/β > α. This550

is different from the Lipschitz case (see Theorem 6).551

On the other hand, by a direct computation, we obtain a global solution552

of the initial value problem553 {
CDα

0+x(t) = (x(t))β, t > 0.

x(0) = 0,

as ϕ(t, 0) =

(
Γ(1−α)

α
1−β

B(1−α, α
1−β

)

)1/(1−β)

tα/(1−β), where Γ(·) is Gamma function554

and B(·, ·) is Beta function. This implies that the trivial solution to (33) is555

unstable.556

A consequence of the non-Lipschitz property at the origin of f(·) in this557

example is non-uniqueness of the solution: we have at least two solutions558

starting from the origin. This circumstance alone makes the system unstable559

although any solution starting from a point close to the origin but distinct560

from the origin tends to the origin with decay rate of t−γ .561

Now we show that the Mittag-Leffler stability is strictly stronger than562

asymptotic stability. For this, we give below an example of an asymptotically563

stable FDE which is not Mittag-Leffler stable.564

Example 35 (Asymptotically stable nonlinear one-dimensional FDE which565

is not Mittag-Leffler stable). Consider a nonlinear one-dimensional FDE of566

order 0 < α < 1:567

CDα
0+x(t) = f(x(t)), x(0) = x0, (35)

where568

f(x) :=

⎧⎪⎨⎪⎩
−e−1/xx, if x > 0,

0, if x = 0,

−e1/xx, if x < 0.

(36)

27



Clearly f(·) ∈ C2(−∞,∞). Therefore, by [38, Theorem 2] the equation (35)569

has a unique solution x(·) which exists globally on R≥0.570

Fix some x0 > 0. By [30, Theorem 3.5], the solution of the FDE (35)571

cannot intersect the trivial solution, hence x(t) > 0 for all t ∈ R≥0.572

Now let n ≥ 2 be an arbitrary integer. Put g(x) := −(n − 1)!xn on a573

neighborhood of 0 and extend it suitably to get g(x) ≤ f(x) on (0,∞). By574

Proposition 26, the solution x(·) of (35) is bounded by the solution of the575

FDE576

CDα
0+y(t) = g(y(t)), y(0) = x0. (37)

Using construction of a sub-solution by Vergara and Zacher [35, pp. 332–577

334], we see that the solution y(·) of the FDE (37) has decay rate of t−α/n,578

hence the function x(·), which is bigger or equal to y(·), cannot converge579

faster than t−α/n. Since n is arbitrary, x(·) cannot decay with power-rate.580

Thus, the trivial solution of (35) is not Mittag-Leffler stable.581

On the other hand, due to the fact that f|(0,∞) ∈ C2(0,∞), using [37,582

Theorem 3.3], we see that the solution x(·) of (35) is strictly decreasing on583

the interval [0,∞). Now we assume that there exist δ ∈ (0, 1) such that584

x(t) ≥ δ for all t ≥ 0. Then,585

CDα
0+x(t) ≤ −e−1/δx(t), t > 0.

Using Proposition 26, we obtain586

x(t) ≤ x0Eα(−e−1/δt) → 0 as t → ∞,

and we arrive at a contradiction. Consequently, x(·) converges to 0 as t587

tends to ∞. It is easily seen that this assertion is also true for the solution588

of (35) starting from any x0 < 0.589

Finally, since f(·) ∈ C2(−∞,∞) the equation (35) with the initial con-590

dition x0 = 0 has the unique solution x(t) ≡ 0. Hence, the trivial solution591

of (35) is asymptotically stable.592

To complete this section, we study the separation of trajectories of solu-593

tions to an one-dimensional FDE with local Lipschitz right-hand side defin-594

ing on an interval x ∈ (a, b) ⊂ R. We extend our previous result [30,595

Theorem 3.5] on separation of solution of one-dimensional FDE to this case.596

Let −∞ ≤ a < b ≤ ∞ and f : [0,∞)× (a, b) → R be a continuous function597

and locally Lipschitz continuous with respect the second variable, that is,598

for any T > 0 and any compact interval K ⊂ (a, b) there exists a positive599

constant LK,T such that600

|f(t, x)− f(t, y)| ≤ LK,T |x− y|, ∀x, y ∈ K, t ∈ [0, T ]. (38)
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Consider the equation601

CDα
0+x(t) = f(t, x(t)), t > 0. (39)

Then, using the approach of [30] we obtain the following result.602

Theorem 36. Assume that the function f(·, ·) satisfies the condition (38).603

Then for any pair of distinct points x1, x2 ∈ (a, b), the solutions of the FDE604

(39) starting from x1 and x2, respectively, do not meet.605

Proof. By virtue Theorem 4, for xi ∈ (a, b) the initial value problem (39),606

x(0) = xi (i = 1, 2), has the unique solution denoted by ϕ(·, xi) on the607

maximal interval of existence [0, Tb(xi)). Without loss of generality we let608

x1 < x2. Assume that ϕ(·, x1) and ϕ(·, x2) meet at some t ∈ (0, Tb(x1)) ∩609

(0, Tb(x2)). Let t1 := inf{t ∈ (0, Tb(x1)) ∩ (0, Tb(x2)) : ϕ(t, x1) = ϕ(t, x2)}.610

It is obvious that 0 < t1 < min{Tb(x1), Tb(x1)} and611

ϕ(t1, x1) = ϕ(t1, x2), ϕ(t, x1) < ϕ(t, x2), ∀t ∈ [0, t1).

Take r1, r2 > 0 such that [x1 − r1, x2 + r2] ⊂ (a, b) and ϕ(t, x1), ϕ(t, x2) ∈612

[x1 − r1, x2 + r2] for all t ∈ [0, t1]. Then following the assumption on the613

locally Lipschitz continuity of f(·, ·) (see the condition (38)), the function614

f1 := f|[0,t1]×[x1−r1,x2+r2]

is continuous and Lipschitz continuous with respect to the second variable615

on the set [0, t1]× [x1 − r1, x2 + r2].616

Now we construct a extension of f1(·, ·) as follows:617

f2(t, x) :=

⎧⎪⎨⎪⎩
f1(t, x), if (t, x) ∈ [0, t1]× [x1 − r1, x2 + r2],

f1(t, x2 + r2), if t ∈ [0, t1], x > x2 + r2,

f1(t, x1 − r1), if t ∈ [0, t1], x < x1 − r1.

This function is continuous and global Lipschitz continuous with respect to618

the second variable on the domain [0, t1] × R. Therefore, by [38, Theorem619

2] the FDE620

CDα
0+x(t) = f2(t, x(t)), t > 0, x(0) = xi, i = 1, 2, (40)

has unique solutions ϕ̃(·, xi), i = 1, 2, on R≥0. On the other hand, using [30,621

Theorem 3.5], we have622

ϕ̃(t, x1) < ϕ̃(t, x2), ∀t ∈ R≥0.
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However, due to the fact ϕ(t, x1), ϕ(t, x2) ∈ [x1−r1, x2+r2] for all t ∈ [0, t1],
we also have

CDα
0+ϕ(t, xi) = f(t, ϕ(t, xi))

= f2(t, ϕ(t, xi)), t ∈ (0, t1], i = 1, 2.

This implies that623

ϕ(t, x1) = ϕ̃(t, x1) < ϕ̃(t, x2) = ϕ(t, x2)

for all t ∈ [0, t1], a contradiction. Thus two solutions ϕ(·, x1) and ϕ(·, x2) do624

not meet and the proof is complete.625

Remark 37. (i) Theorem 36 improves our preceding result [30, Theorem626

3.5]. Here, we only used the assumption on the locally Lipschitz continuity of627

“vector field” f(·, ·) instead of the global Lipschitz continuity of this function.628

(ii) This theorem also improved a recent result by Y. Feng et al. [37,629

proposition 2]. More precisely, we removed the condition on monotonity of630

the function f(·) in [37, Proposition 2] (see also [37, Remark 6]).631
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