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This paper studies the law of large numbers (LLN) and central limit theorem (TCL) 
for a class of scaled pure jump Markov processes where the processes state variables 
are in Rd and where jump amplitudes depend on the state variables. Non-explosion 
property and semi-martingale decomposition are studied first for a class of stochastic 
processes, allowing to study in a second step these same properties for the scaled 
pure jump Markov processes we consider characterized by infinitely small jumps and 
rapid jumps rates. Then, asymptotic behavior is derived and convergence results are 
obtained.
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1. Introduction

Many studies are interested in scaled pure jump Markov processes (Xn
t )t≥0, in particular research works 

linked to applications with interacting particle systems like stochastic biochemical systems or population 
evolution. Specifically at a microscopic level, jump sizes νn are often considered to decrease proportionally 
to some scaling parameter n, and jump rates λn are considered to increase again proportionally to the same 
parameter. Different types of asymptotic behaviors are then studied and convergence results like the law of 
large numbers (LLN) and the central limit theorem (TCL) are derived for these scaled processes.

In this context, and to derive (LLN) or (TCL) results, the most of the considered models for scaled 
processes (Xn

t )t≥0 dealing with real scenarios have fixed jump amplitudes - being independent of the process 
state itself - and such that the state variables are constrained to have values in a predefined grid [16–18,8,
15,1,2,13].

In this paper our aim is to prove these results for scaled jump Markov processes having values in Rd
+, 

where the state variables are not constrained to be on a predefined grid since jump amplitudes νn(x) depend 
on the state variable x of the system and in a non-uniform way.
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More precisely, we allow to consider pure jump processes models where both frequency rates λn(x) and 
jump amplitudes νn(x) depend on the state.

To situate our work, we remind first that when dealing with populations evolution, the state variable is 
usually taken to be the particles or the population density. Moreover, actually, in the usual mathematical 
models dealing with biochemical reactions, stoichiometric coefficients are considered to be constant and 
generally, for models dealing with population dynamics (logistic growth, epidemics), the jump amplitudes 
are assumed to be constant, independent of the state. However, the jump amplitudes may depend on the 
state for many natural systems. For example, in [7], the decline in twinning rate has been related to an 
increase in population density. In [23, Chapter3], it is also mentioned that effects of an increase in population 
density on reproduction are manifested through reductions in pregnancy, fecundity, twinning rate, number 
of offspring per female, depending on the species. So if propensity measures the probability of breeding 
event, the offspring may vary with the population density and then jump amplitude of the population size 
depends on the state.

Mathematically, the effects of state dependence in both frequency and amplitude have been examined 
together in terms of transition probability density functions (PDFs) as it was studied in [3]. They consider 
a model with stochastic Langevin equation resulting form the sum of a deterministic variation term and a 
pure jump process. Assuming state dependence of both the jump amplitude and frequency, they prove that 
the resulting jump process converges to a diffusion process under the limiting scenario of infinitely small 
jumps occurring infinitely often: the proof is achieved by considering the master equation which converges 
to Fokker-Planck equation.

As for our model, we study differently the asymptotic behavior of jump processes with state dependence 
for both propensity and amplitude, focusing on the convergence in law of the process itself and on the 
convergence speed. Such a model can allow researchers to think at infinitesimal scale first. In fact, to 
link microscopic behavior to macroscopic one, theorists often consider first the macroscopic deterministic 
equation (ODE), particularly the flow term F (x), and then break it down into a product to deduce the 
propensity term and the jump amplitude, taking the later to be constant. Instead, when following our model, 
we can consider for example the case of alternative single/twining birth jumps as state/density-dependent 
jumps amplitudes νn(x) for a same reproduction event and then for a same propensity function λn(x).

Another example which we can cite (and which is more detailed at the end of section 4 below) is the 
one studied in [27]. This example is dealing with biotechnologies Anaerobic model and the infinitesimal 
parameters are state dependent and verify:

νnj (x) def= [x + 1
n
ν̃j ]+ − x, λn

j (x) def= n λ̃j(x) (1)

for j being the index of the j-th reaction and [x]+ denoting the orthogonal projection of x on Rd
+.

In this paper, we derive (LLN) and (TCL) theorems using theoretical results as martingale functional 
limit theorems [8,28] and weak convergence theorems for stochastic integrals [19,20]. We mention that before 
dealing with asymptotic behavior, non-explosion and integrability results are given for a class of processes 
(Xt)t≥0 we are considering in Rd

+ and which will allow to study/define later the limit behavior of the 
considered scaled processes (Xn

t )t≥0.
For this, in the first section, we consider a class of pure jump Markov processes (Xt)t≥0 subject to 

J reactions (or events) and we establish non explosion property under adequate assumptions. For non-
explosion property, being the feature to have finite number of jumps in any finite time interval, our setting 
is multi-dimensional in Rd

+ when compared to the work of [14] where they consider jump-processes in the 
one-dimensional space R+.

For the second section, we study integrability and semi-martingale representation of the considered 
process (Xt)t≥0 for any function with polynomial-growth Φ, when applied to the process. As for integrability 
property allowing the validity of what is known as Dynkin’s formula, we remind that the result is essentially 
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established in [8, p. 376] for bounded functions and in [10] for some general functions other than bounded 
ones, when the processes are taking values in N (Rd

+ in our settings).
In the third section, we present our class of scaled process (Xn

t )t≥0 with adequate assumptions on the 
asymptotic behavior of the sequence of the infinitesimal parameters of the jump sizes νnj and jump rates 
λn
j for j ∈ 1, ..., J . Using results of section 2 and section 3, we deal then with LLN theorem where the 

convergence of the scaled process to some deterministic ODE is derived in L2 and then in probability (the 
weak form LLN convergence). Finally, and in the last section, we deal with TCL theorem proof.

2. A general model

Consider a pure jump Markov process (Xt)t≥0, taking values in Rd
+, where Xt represents the size of 

a population of d species, or their concentrations, subject to J reactions: each reaction is represented by 
an intensity function λj(x) ≥ 0 and a jump νj(x) ∈ Rd (j = 1, . . . , J). Suppose that the reactions are 
stochastically independent and that x + νj(x) ∈ Rd

+ for all x ∈ Rd
+ and for all j such that λj(x) > 0.

The infinitesimal description of the process is as follows: conditionally to Xt = x:

Xt+h =
{
x + νj(x) , with probability λj(x)h + o(h) for j = 1, . . . , J ,

x , with probability 1 − λ(x)h + o(h) ,

where

λ(x) def=
J∑

j=1
λj(x)

or equivalently, (Xt)t≥0 is a pure jump Markov process with the following infinitesimal generator:

Lφ(x) def=
J∑

j=1
λj(x) [φ(x + νj(x)) − φ(x)] (2)

for any bounded test function φ : Rd
+ �→ R. The infinitesimal generator can be rewritten:

Lφ(x) = λ(x)
∫
Rd

+

[φ(y) − φ(x)] ρ(x,dy) (3)

where the transition kernel ρ(x, dy) is:

ρ(x,dy) def=
J∑

j=1
pj(x) δx+νj(x)(dy)

with

pj(x) def= λj(x)/λ(x) .

2.1. Simulation and representation of the process

The simulation of trajectories (Xt)t≥0 leads to a representation of the process. To simulate one trajectory 
of the process, let T0 = 0 and X0 = Y0 ∼ μ (the given initial distribution of X0), and independently from 
the past and for all k ≥ 1, simulate recursively:
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(i) Sk according to an exponential distribution of parameter λ(Yk−1) and let Tk = Sk + Tk−1,
(ii) Yk according to ρ(Yk−1, dy),

then let:

Xt =
{
Yk−1 , for Tk−1 < t < Tk ,

Yk , for t = Tk .

(Yk)k∈N is the sequence of the states taken by the process (Xt)t≥0, it is a Markov chain in itself with 
transition probability ρ(x, dy) and initial distribution μ, called the embedded Markov chain corresponding 
to the pure jump Markov process (Xt)t≥0; (Tk)k>0 is the sequence of the consecutive jump instants. Note 
that Yk = XTk

.
In (i) if λ(Yk−1) = 0, then Sk = +∞ and Xt = Yk−1 for all t ≥ Tk−1 and Yk−1 is an absorbing state. This 

trajectory is thus simulated until the random time T∞
def= lim

k→∞
Tk, called explosion time. In the following 

paragraph, we will verify that T∞ = ∞ a.s., namely that the process is regular.
Let us now make the following assumptions, for the infinitesimal parameters of the processes we are 

considering

Hypotheses 2.1.

(i) For all x ∈ Rd
+, for all j such that λj(x) > 0, x + νj(x) ∈ Rd

+.
(ii) λ(x) ≥ cλ > 0 , ∀x ∈ Rd

+.
(iii) λ(x) ≤ Cλ (1 + |x|) , ∀x ∈ Rd

+.
(iv) |νj(x)| ≤ Cν , ∀x ∈ Rd

+ , j = 1, . . . , J .
(v) x → λj(x)νj(x) is Lipschitz continuous.
(vi) x → λj(x)νj(x)νj(x)∗ is continuous.

2.2. Non-explosion

Note that:

Xt = X0 +
∑

0<s≤t

ΔXs where ΔXs
def= Xs −Xs− . (4)

The sum here is a discrete sum over all the jump times until t and we will verify below that we have finite 
number of jumps in every finite time interval (non explosion property).

We introduce the total variation process [6, Remark 1.19, p. 319]:

ξt
def= |X0| +

∑
0<s≤t

|ΔXs| (5)

it is a scalar, real and positive process with the same jump times Tk as Xt, it increases of |ΔXTk
| at each 

jump time Tk. We have |Xt| ≤ ξt but as ξt is non-decreasing, we also have:

sup
s≤t

|Xs| ≤ ξt , ∀t ≥ 0 (6)

Lemma 2.2. Under Hypotheses 2.1-(iii) and (iv), if X0 < ∞ a.s. then the process Xt is non-explosive, i.e. 
Tk → ∞ a.s.
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Proof. The classical necessary and sufficient condition for non-explosion is (see [22, Proposition 15.43, 
section 7, chapter 15])

∞∑
k=1

1
λ(XTk

) = ∞ a.s. (7)

According to Hypothesis 2.1-(iii):

λ(XTk
) ≤ Cλ (1 + |XTk

|)

and according to (5), (6), and Hypothesis 2.1-(iv):

|XTk
| ≤ ξTk

≤ |X0| + Cν k

that implies (7). �
We introduce the counting process Nt, the number of jumps of the process during the interval [0, t]: it 

starts from 0 and increase by one at the same jumping times Tk:

Nt =
∑
k≥1

1{Tk≤t} .

In particular for any k, NTk
= k.

Corollary 2.3. If E [|X0|p] < ∞ then:

E [sup
s≤t

|Xs|p] < ∞ , ∀t ≥ 0 , p ≥ 1 .

Proof. According to the proof of Lemma 2.2, for any p ≥ 1:

ξpt =
(
|X0| +

∑
0<s≤t

|ΔXs|
)p

≤ 2p−1
(
|X0|p +

( ∑
0<s≤t

|ΔXs|
)p)

≤ 2p−1
(
|X0|p + Cp

ν N
p
t

)
.

The counting process Nt starts from 0 and conditionally to Nt = k, it will increase by one at a rate upper-
bounded by Cλ (1 + Cν k). Next let ζt be a pure jump Markov process taking values in N, starting from 
0 and which, conditionally to ζt = k will increase by one at rate Cλ (1 + Cν k). Clearly ζt is a simple 
immigration-birth process with immigration rate Cλ and birth rate CλCν ; it is well known that ζt admits 
a negative binomial distribution with finite mean and variance [24, p. 86]. Finally ζt is stochastically larger
than Nt [25, Ch. 9], i.e. P (ζt > z) ≥ P (Nt > z), so E [Np

t ] ≤ E [ζpt ], which proves the Corollary. �
3. Semi-martingale representation of the process

Another formulation of the previous simulation leads to the following representation of the process:

Xt = X0 +
J∑

j=1

t∫
0

∞∫
0

1[0,λj(Xs− )](u) νj(Xs−)Nj(ds,du) (8)
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where Nj(ds, du) are independent Poisson random measures of intensity measure ds × du, the Lebesgue 
measure on R2

+.
Let us introduce the compensated Poisson measure:

Ñj(ds,du) def= Nj(ds,du) − dsdu

where ds × du is the Lebesgue measure on B(R+ ×R+). A possible decomposition of X can be:

Xt = X0 +
t∫

0

F (Xs) ds + Mt (9)

where

F (x) def=
J∑

j=1
λj(x) νj(x) (10)

Mt
def=

J∑
j=1

t∫
0

∞∫
0

Gj(Xs− , u) Ñj(ds,du) (11)

with

Gj(x, u) def= 1[0,λj(x)](u) νj(x) (12)

Let (Ft)t≥0 be the natural filtration of (Xt)t≥0. We will justify later that this decomposition is in fact a 
semi-martingale one. The SDE (8) has a unique d-dimensional adapted cadlag process (see [12, theorem 
9.1]) since the following two conditions are easily verified:

i) F (x)∗F (x) +
∫∞
0 Gj(x, u)∗Gj(x, u) du ≤ C(1 + |x|2) ;

ii) (F (x) − F (y))∗(F (x) − F (y)) +
∫∞
0 (Gj(x, u) −Gj(y, u))∗ (Gj(x, u) −Gj(y, u)) du ≤ C |x− y|2 .

Remark 3.1. Note that (8) is the natural generalization of a well-known expression obtained in the case 
where the jumps are constant (see [8, theorem 4.1, chapter 6, p. 327]), namely:

Xt = X0 +
J∑

j=1
Pj

( t∫
0

λj(Xs−) ds
)
νj (13)

where t → Pj(t) are independent Poisson processes with unit intensity.
In our setting, we used

J∑
j=1

t∫
0

Pj(ds× λj(Xs−))νj(Xs−) L=
J∑

j=1

t∫
0

∞∫
0

1[0,λj(Xs− )](u) νj(Xs−)Nj(ds,du)

and for justification of the last equality in law, see [9,5].
An intuitive explanation allows us to consider the process X(t) as resulting from the sum of indepen-

dent successive jumps occurring in each infinitesimal time interval ds, with respective rate jumps equal 
to ‘“ds × λj(Xs−)”’. Since Nj(ds, du) is a Poisson random measure, Pj(ds × λj(Xs−)) can be seen as 
equivalent in law to 

∫ λj(Xs− ) Nj(ds, du) due to the property of Poisson random measure on Borel sets 
0
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B(R+ × Rd
+) which allows to define random Poisson variables. Then, Pj(ds × λj(Xs−)) is equivalent to ∫∞

0 1[0,λj(Xs− )](u) Nj(ds, du).

Hence, (8) is an equivalent version of the initially defined pure Markov process in (3): they have the same 
finite-dimensional distributions and then the same finite moments, so we can use Corollary 2.3 for what 
follows.

Henceforth, the counting process will be considered as

Nt
def=

J∑
j=1

t∫
0

∞∫
0

1[0,λj(Xs− )](u)Nj(ds,du)

and it is equivalent in distribution to the one defined previously.

3.1. Semi-martingale decomposition φ(x) = x

Proposition 3.2. If E [|X0|] < ∞, then Mt defined by (11) is a square integrable vector martingale with 
predictable quadratic variation matrix:

〈M〉t =
t∫

0

Γ(Xs) ds (14)

with

Γ(x) def=
J∑

j=1
λj(x) νj(x) νj(x)∗ (15)

where ∗ denotes the transpose of any vector.

Proof. In (11), the integrand

Gj(Xs− , u) = 1[0,λj(Xs− )](u) νj(Xs−) (16)

is adapted to (Ft)t≥0 and left-continuous so it is predictable. From Hypotheses 2.1-(iii) and (iv):

∑J
j=1

∫ t

0
∫
R+

|Gj(Xs− , u)| dsdu =
∑J

j=1
∫ t

0 λj(Xs) |νj(Xs)|ds

≤ Cν

t∫
0

λ(Xs) ds

≤ Cν Cλ

t∫
0

(1 + |Xs|) ds ≤ Cν Cλt(1 + sup
s≤t

|Xs|)

and then, it follows from Corollary 2.3 that

E [
J∑

j=1

t∫
0

∫
R+

|Gj(Xs− , u)| dsdu] < ∞ for all t > 0

likewise we show that
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E [
J∑

j=1

t∫
0

∫
R+

|Gj(Xs− , u)|2 dsdu] < ∞ for all t > 0

As a consequence, according to Ikeda and Watanabe [12, Theorem II-3.1 and Lemma II-3.1, p. 60-62] - each 
component Mt,� of Mt

Mt,�
def=

∑J
j=1

∫ t

0
∫∞
0 1[0,λj(Xs− )](u) νj,�(Xs−) Ñj(ds,du)

is a square integrable Ft-martingale for 1 ≤ 	 ≤ d with predictable quadratic covariations

〈M.,�,M.,�′〉t =
∑J

j=1
∫ t

0 λj(Xs) νj,�(Xs) νj,�′(Xs) ds

for 1 ≤ 	, 	′ ≤ d which gives the (matrix) predictable quadratic variation (14). �
3.2. Semi-martingale decomposition for φ(x) with polynomial growth

Let us denote by Cp(Rd
+) the space of continuous functions Rd

+ �→ Rd′ with polynomial growth. We say 
that a function φ has polynomial growth if ∃ C such that |φ(x)| ≤ C (1 + |x|p) for some p ≥ 1 (it includes 
trivially the space C0(Rd

+) of continuous vanishing functions).
For any test function φ : Rd

+ �→ Rd′ in Cp(Rd
+) we have:

φ(Xt) = φ(X0) +
J∑

j=1

t∫
0

∞∫
0

1[0,λj(Xs− )](u)
[
φ(Xs− + νj(Xs−)) − φ(Xs−)

]
Nj(ds,du)

Otherwise, we can write:

φ(Xt) = φ(X0) +
t∫

0

Lφ(Xs) ds + Mφ
t (17)

where

Mφ
t

def=
J∑

j=1

t∫
0

∫
R+

1[0,λj(Xs− )](v) [φ(Xs− + νj(Xs−)) − φ(Xs−)] Ñj(ds,du)

Proposition 3.3. Let φ : Rd
+ → Rd′ ∈ Cp(Rd

+) and let us assume E [|X0|2p+1] < ∞, then: Mφ
t is a square 

integrable martingale, with predictable quadratic variation matrix

〈Mφ〉t =
J∑

j=1

t∫
0

λj(Xs)
[
φ(Xs + νj(Xs)) − φ(Xs)

] [
φ(Xs + νj(Xs)) − φ(Xs)

]∗ ds (18)

Proof. First suppose d′ = 1.
In (11), the integrand

1[0,λj(Xs− )](v) [φ(Xs− + νj(Xs−)) − φ(Xs−)] (19)

is adapted to (Ft)t≥0 and left-continuous so it is predictable.
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Then, and using Corollary 2.3:

E [
∑J

j=1
∫ t

0 λj(Xs) |φ(Xs + νj(Xs)) − φ(Xs)| ds]

≤ Ct E [
∫ t

0
(
1 + |Xs|p+1) ds]

≤ Ct

(
1 + E [sup

s≤t
|Xs|p+1]

)
< ∞

Moreover

E
[∑J

j=1
∫ t

0 λj(Xs) [φ(Xs + νj(Xs)) − φ(Xs)]2
]
ds

≤ Cp E [
∫ t

0
(
1 + |Xs|2 p+1)] ds

≤ Cp,t

(
1 + E [sup

s≤t
|Xs|2 p+1]

)
< ∞

Hence, according to Ikeda and Watanabe [12, Theorem II-3.1 and Lemma II-3.1, p. 60-62], Mφ
t is a square 

integrable martingale with predictable quadratic variation (18).
For the case d′ > 1, each component of Mφ

t is an FX
t -martingale and we can compute the predictable 

quadratic covariation 〈Mφ
.,�, M

φ
.,�′〉t like in the case d′ = 1. �

Let us remark that

Mφ
t = φ(Xt) − φ(X0) −

t∫
0

Lφ(Xs) ds (20)

and then

E [φ(Xt)] = E [φ(X0)] + E [
t∫

0

Lφ(Xs) ds] (21)

= E [φ(X0)] +
t∫

0

E [Lφ(Xs)] ds (22)

for all t ≥ 0, the last integral inversion is due to Fubini’s theorem since we can verify easily that ∫ t

0 E [|Lφ(Xs) ds|] < ∞ a.s. due to Corollary 2.3.

Remark 3.4. The previous proposition is valid particularly for the set of continuous, vanishing at infinity 
functions and (Xt)t≥0 is the unique solution of the martingale problem associated with the generator L, i.e. 
it is the only Markov process such that (20) is a martingale for all φ ∈ C0(Rd

+) (definition in [8, Ch. 4]).

4. Law of large numbers

We consider a sequence of Markov pure jump processes (Xn
t )t≥0 taking values in Rd

+ with intensity 
functions λn

j (x) and with jump functions νnj (x) satisfying x + νnj (x) ∈ Rd
+ for all x ∈ Rd

+, for all j such that 
λj(x) > 0 and for all n. Hence,

Xn
t = Xn

0 +
t∫

0

Fn(Xn
s ) ds + Mn

t (23)
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where

Fn(x) def=
∑
j

λn
j (x) νnj (x) (24)

Mn
t

def=
J∑

j=1

t∫
0

∫
R+

Gn
j (Xn

s− , u) Ñj(ds,du) , (25)

with

Gn
j (x, u) = 1[0,λn

j (x)](u) νnj (x), for x ∈ Rd .

We suppose E(|Xn
0 |) < ∞ so that Mn

t is square integrable martingale with predictable quadratic covari-
ation matrix:

〈Mn〉t = 1
n

t∫
0

Γn(Xn
s ) ds (26)

where

Γn(x) def= n
J∑

j=1
λn
j (x) νnj (x) νnj (x)∗ (27)

For i.i.d. random variables Yi, i = 1, ..., n where Yi
L= Y for some random variable Y , the law of large 

numbers 
∑n

i=1
Yi

n −→
n→∞

E[Y ] can be interpreted as the value reached by a random walk at time t = 1, where 

the jump size is divided by n and where simultaneously the jump rate is increased by the same factor n
(the number of jumps is multiplied by n). Here, t = 1 is an arbitrary choice to insist that we focus on a 
fixed time interval [0, t]. The random walk position at time t=1 is then almost surely deterministic when n
is big enough.

For a jump pure random processes, we should then intuitively guess that if the jump size and the jump rate 
are scaled in the same way (respectively reduced/multiplied by n), and if the jumps are with independent 
increments, then the position of the process at any time should be deterministic. We make then the following 
assumptions

Hypotheses 4.1.

(i) There exists functions νj(x) and λj(x) defined on Rd
+ verifying Hypotheses 2.1 for some constants 

named again Cλ et Cν and such that we have

∀x ∈ Rd
+ n νnj (x) −→

n→∞
νj(x) , 1

n
λn
j (x) −→

n→∞
λj(x) ;

(ii) Asymptotically

∀n ∈ N,∀x ∈ Rd
+ n νnj (x) ≤ Cν ,

1
λn
j (x) ≤ Cλ(1 + |x|) ;
n
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(iii) We have the uniform convergence on Rd
+ for the sequence of flow functions

‖Fn − F‖∞ −−−−→
n→∞

0;

where

F (x) def=
∑
j

λj(x) νj(x)

and where ‖.‖∞ denotes the standard infinity norm.

Let us now consider the deterministic function x(t) given by

x(t) = x0 +
t∫

0

F (x(s)) ds (28)

The solution for (28) exists and is unique due to Cauchy Lipschitz Theorem since x → F (x) is overall 
Lipschitz on Rd

+.

Proposition 4.2. Suppose first that E [|Xn
0 − x0|2] −−−−→

n→∞
0. Under Hypotheses 4.1;

E [sup
s≤t

|Xn
s − x(s)|2] −−−−→

n→∞
0

Proof. First, we remark that due to the quadratic convergence of Xn
0 , E[Xn

0 ] is uniformly bounded in n by 
some constant Xmax

0 . Let

δns
def= |Xn

s − x(s)|2 .

From:

|Xn
t − x(t)|2 =

∣∣∣Xn
0 +

∫ t

0 Fn(Xn
s ) ds + Mn

t − x0 −
∫ t

0 F (x(s)) ds
∣∣∣2

≤ 3
(
|Xn

0 − x0|2 +
∣∣∣ ∫ t

0
(
Fn(Xn

s ) − F (x(s))
)
ds

∣∣∣2 + |Mn
t |2

)
≤ 3

(
|Xn

0 − x0|2 + t
∫ t

0

∣∣Fn(Xn
s ) − F (x(s))

∣∣2 ds + |Mn
t |2

)

Since F is C-Lipschitz for some C > 0 as a consequence of Hypothesis 2.1 (vii), then,

|Fn(Xn
s ) − F (x(s))|2 ≤ 2 |F (Xn

s ) − F (x(s))|2 + 2 |Fn(Xn
s ) − F (Xn

s )|2

≤ 2 ‖Fn − F‖2
∞ + 2C2 |Xn

s − x(s)|2

≤ 2 ‖Fn − F‖2
∞ + 2C2 δns

we deduce that

δnt ≤ 3
(
|Xn

0 − x0|2 + 2C2t
∫ t

0 δns ds + 2 t2 ‖Fn − F‖2
∞ + |Mn

t |2
)
,

and then, for all s ≤ t
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δns ≤ 3
(
|Xn

0 − x0|2 + 2C2t

s∫
0

δnr dr + 2 t2 ‖Fn − F‖2
∞ + sup

s≤t
|Mn

s |2
)

(29)

From Gronwall’s inequality we get for all s ≤ t

δns ≤ 3
(
|Xn

0 − x0|2 + 2 t2 ‖Fn − F‖2
∞ + sup

s≤t
|Mn

s |2
)
e6C2t× s (30)

Hence

sup
s≤t

δns ≤ 3
(
|Xn

0 − x0|2 + 2 t2 ‖Fn − F‖2
∞ + sup

s≤t
|Mn

s |2
)
e6C2t2

and then

E [sup
s≤t

δns ] ≤ 3
(
E [|Xn

0 − x0|2] + 2 t2 ‖Fn − F‖2
∞ + E [sup

s≤t
|Mn

s |2]
)
e6C2t2

Using Doob inequality

E [sup
s≤t

δns ] ≤ 3
(
E [|Xn

0 − x0|2] + 2 t2 ‖Fn − F‖2
∞ + 4E 〈Mn〉t

)
e6C2t2

≤ 3
(
E [|Xn

0 − x0|2] + 2 t2 ‖Fn − F‖2
∞ + 4

n
E

t∫
0

Γn(Xn
s ) ds

)
e6C2t2

≤ 3
(
E [|Xn

0 − x0|2] + 2 t2 ‖Fn − F‖2
∞ + 4 c

n
E

t∫
0

(1 + |Xn
s |) ds

)
e6C2t2

≤ 3
(
E [|Xn

0 − x0|2] + 2 t2 ‖Fn − F‖2
∞ + 4 c t

n
(1 + E [sup

s≤t
|Xn

s |])
)
e6C2t2

It remains to show that E [sups≤t |Xn
s |] is uniformly bounded. In fact, let Cλn ≡ n Cλ and Cνn ≡ 1

n Cν . 
Under Hypotheses 4.1, let ζnt be a pure jump Markov process taking values in N, starting from 0 and which, 
conditionally to ζnt = k will increase by one at rate Cλn (1 +Cνn k). Clearly ζnt is a simple immigration-birth 
process with immigration rate Cλn and birth rate Cλn Cνn , admits a negative binomial distribution and:

E [ζnt ] = Cλn

CλnCνn

(exp(Cλn Cνnt) − 1) ≤ 1
Cνn

(exp(CλCνt) − 1) .

Similarly to Corollary 2.3, we have

E [sup
s≤t

|Xn
s |] ≤ E [|Xn

0 |] + Cνn E [sup
s≤t

ζns ]

≤ Xmax
0 + (exp(CλCνt) − 1) (31)

As a consequence

E [sup
s≤t

δns ] ≤
(
3E [|Xn(0) − x0|2] + 6 t2 ‖Fn − F‖2

∞ + 12 c t
n (Xmax

0 + exp(CλCνt))
)
e6C2t2 (32)

From the last inequality and taking into account (30), we deduce that:

E [sup δns ] →
n→∞

0 . �

s≤t
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The quadratic convergence obtained in Proposition 4.2 implies convergence in probability (weak LLN 
result). For this, we mainly used the uniform boundedness on n of E[sups≤t,n X

n
s ] for fixed t. As for the 

almost sure convergence (strong LLN), it is not immediate (λ is not bounded). However, the process Xn
t can 

be uniformly bounded on n (we cite the example of conservative reaction systems with Xn
0 being uniformly 

bounded on n, see [11]). In this case, we have this result:

Proposition 4.3. Let us assume that |Xn
0 −x(0)| a.s→

n→∞
0. Under Hypotheses 4.1 and if the process Xn

t defined 

in (23) is uniformly bounded on n, we have

sup
s≤t

|Xn
s − x(s)| a.s→

n→∞
0

Proof. If we use the following inequality

|Xn
t − x(t)| ≤ |Xn

0 − x0| +
∣∣∣

t∫
0

(
Fn(Xn

s ) − F (x(s))
)
ds

∣∣∣ + |Mn
t |

≤ |Xn
0 − x0| +

∣∣∣ ∫ t

0
(
Fn(Xn

s ) − F ((Xn
s )

)
ds

∣∣∣ + C
∣∣∣ ∫ t

0 |Xn
s − x(s)| ds

∣∣∣ + |Mn
t |

and then Gronwall lemma, we conclude that |Mn
t | → 0 a.s. In fact,

|Mn
t | = |

J∑
j=1

t∫
0

∞∫
0

νnj (Xn
s−)1[0,λn

j (Xn
s− )](u)Ñj(ds,du)|

≤ 2Cν

J∑
j=1

t∫
0

∫
R+

1[0,λn
j (Xn

s− )](u) Ñj(ds,du)
n

≤ 2Cν

J∑
j=1

t∫
0

∫
R+

1[0, 1
n λn

j (Xn
s− )](u) Ñj(ds,ndu)

n

Since 1
n λn

j (Xn
s ) ≤ 2Cλ(1 + |Xn

s |) and having Xn
s uniformly bounded on n, we can deduce the convergence 

of |Mn
t | to the null measure. This deduction is due to LLN for the compensated measure [26]: Ñj(ds,ndu)

n ⇒ 0, 
where 0 denotes here the null measure: (∀A ∈ B(R+), 

∫
A

Ñj(ds,ndu)
n

a.s→ 0 ). �
Example of application

As an application of the LLN Proposition 4.2, we can cite the anaerobic model AM2b [27] since the 
infinitesimal parameters of the model they consider depend on the variable states. In fact, AM2b model 
describes the dynamics of biological and anaerobic wastewater treatment, where in summarized words S1
and S2 denote substrates degraded by biomasses B1 and B2. The state of the AM2b model is described by 
x = (s1, b1, s2, b2, s) where s1, b1, s2, b2, s are the concentrations in S1, B1, S2, B2, S.

The reaction scheme of AM2b model correspond to J = 15 reactions classified in three sets: The first set 
correspond to Biological reactions (j = 1 : 5) and the second and third set of reactions (j = 6 : 15) are not 
biochemical reactions since they just describe the inflows and outflows in the AM2b process. Here, we will 
detail only the first reaction (j = 1) because it is an example of biological one:

k1 S1 + B1
λ1−→ 2 B1 + c12 S2 + c10 S + κ1 CO2 ,
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with k1, c12, c10 and κ1 being fixed parameters.
The rate functions λ1 is density-dependent and then can be expressed as function of the mass-density if we 

substitute molar density by mass density. Then, for m being the ‘mean’ molecular mass, and for n 
def= vol

m , 
we have Xn(t) ≡ X(t)

vol
m

, describing the state of the scaled process and for Xn(t) = x, the infinitesimal 
parameters are such that:

λn
1 (x) def= nλ1(x) , νn1 (x) def= [x + 1

nν1]+ − x

where we remind that [x]+ is the orthogonal projection of x onto R5
+ and where:

λ1(x) = μ1(s1) b1,

ν1(x) = (−k1, 1, c12, 0, c10)∗ if x1 > 0 ν1(x) = (0, 1, c12, 0, c10)∗ if x1 = 0

for μ1 being the (Monod) growth function

μ1(s1) = μmax
1

s1

K1 + s1

with K1 being the half saturation constant associated with S1.
We remark that for this biological reaction, λn

1 (x) does not cancel for s1 ≤ k1
n and then we need to impose 

the non-negativity of x + νn1 (x).
We precise that applying the result of our proposition to this model is possible since Hypotheses 2.1 are 

verified for the considered model, particularly ν1(x)λ1(x) is continuous and we verify moreover the uniform 
convergence of Fn(x) to F (x) on Rd

+ and all Hypotheses 4.1 are verified.

5. Central limit theorem

Let us denote D ≡ D([0, ∞), R) the usual space of cadlag functions defined on [0, ∞) endowed with 
the Skorohod d0 topology for which D is separable and complete (see [4,8]). In consequence P(D) ≡
P(D([0, ∞), R)) is separable and complete. Let us consider Dd ≡ D([0, ∞), R)d. Dd is made complete and 
separable in the standard way.

Let us consider V n
t ≡ √

n (Xn
t − x(t)) where Xn satisfy (23) and x satisfy (28):

V n
t =

√
n (Xn

0 − x0) +
t∫

0

√
n
(
Fn(Xn

s ) − F (x(s))
)
ds +

√
nMn

t

= V n
0 +

t∫
0

√
n
(
Fn(Xn

s ) − F (x(s))
)
ds +

√
nMn

t

Hypotheses 5.1.

i)
√
n ‖Fn − F‖∞ −→

n→∞
0;

ii) ∃V0 with bounded variance such that V n
0 ⇒ V0;

iii) F is differentiable and DF ≡ (∂jFi)1≤i,j≤d is a continuous application on Rd ;

iv) ‖Γn − Γ‖∞ −→ 0;

n→∞
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Theorem 5.2. Under Hypotheses 5.1, V n ⇒ V where:

Vt = V0 +
t∫

0

DF (x(s)).Vsds +
J∑

j=1

t∫
0

∫
R+

Gj(x(s), u)Wj(ds,du) (33)

with Wj being independent Gaussian white noises determined each one by

E[Wj(t, A)Wj(s,B)] = l(A ∩B) min(t, s)

where l is the usual Lebesgue measure on R.

Proof. This proof is done in three steps:
Step 1
At this step we prove that V n is tight (it induces tight measures in Dd). We should mention that V n is 

tight if and only if each one of its components is tight in D. For this, we apply Lemma A.2:
First We verify that V n is stochastically bounded (see Definition A.1), which is equivalent to have 

stochastic boundedness for each V n
t,�: the 	th component of V n

t , 1 ≤ 	 ≤ d). In fact, due to (32):

E [|V n
t |2] ≤ E [sup

s≤t
|V n

s |2] ≡ n sup
s≤t

E [δns ]

≤
(
3E [|V n

0 |2] + 6 t2 n ‖Fn − F‖2
∞ + 12 c t (Xmax

0 + exp(CλCνt))
)
e6C2t2

≤ C̄t

where C̄t is a constant independent of n such that the last inequality is true for n ≥ n0 for some integer n0
(taking into account Hypotheses 5.1 i) and ii)).

From Tchebychev inequality, ∀n ≥ n0:

P (|V n
t | > α) ≤ 1

α2E [|V n
t |2] ≤ 1

α2E [sup
s≤t

|V n
s |2] ≤ 1

α2 C̄t

Then, ∀ε > 0, ∃ Kt,ε ≡ [−αε, αε] such that sup
n≥n0

P (|V n
t |) /∈ Kt,ε)| < ε where αε is chosen such that 

αε >
√

C̄t

ε .
Second We verify ii) of Lemma A.2: for all t ≤ T :

|V n
t+u − V n

t |2 ≤ 2
(
2C2u

∫ t+u

t
n δns ds + 2u2 n ‖Fn − F‖2

∞ + n|Mn
t+u −Mn

t |2
)

≤ 2
(
2C2 nu2 sup

t≤s≤t+u
δns + 2u2 n ‖Fn − F‖2

∞ + n|Mn
t+u −Mn

t |2
)

Then

Et [|V n
t+u − V n

t |2]

≤ 2
(
2C2 nu2 Et [ sup

t≤s≤t+u
δns ] + 2u2 n ‖Fn − F‖2

∞ + nEt [|Mn
t+u −Mn

t |2]
)

≤ 2
(
2C2 nu2 Et [ sup

t≤s≤t+u
δns ] + 2u2 n ‖Fn − F‖2

∞ + Et [
J∑

j=1

t+u∫
nλn

j (Xn
s−) νnj (Xn

s−) νnj (Xn
s−)∗ds]

)

t
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≤ 2
(
2C2 nu2 Et [ sup

t≤s≤t+u
δns ] + 2u2 n ‖Fn − F‖2

∞ + c u (1 + Et [ sup
t≤s≤t+u

|Xn
s |])

)

≤ 2
(
2C2 nu2 Et [ sup

s≤t+u
δns ] + 2u2 n ‖Fn − F‖2

∞ + c u (1 + Et [ sup
s≤t+u

|Xn
s |])

)

Let

Zn(η, T ) = 2
(
2C2 n η2 sup

s≤T+η
δns + 2 η2 n ‖Fn − F‖2

∞ + c η (1 + sup
s≤T+η

|Xn
s |)

)
(34)

Then we have ∀1 ≤ 	 ≤ d, for 0 ≤ t ≤ T and 0 ≤ u ≤ η:

Et [|V n
t+u,� − V n

t+u,�|2] ≤ Et [|V n
t+u − V n

t |2]

≤ Et [Zn(η, T )] w.p.1 .

Given (32), we have:

E [ sup
s≤T+η

δ
n
s ] ≤

(
3E [|Xn

0 − x(0)|2] + 6 (T + η)2 ‖Fn − F‖2
∞ +

12 c (T + η)
n

(Xmax
0 + exp(CλCν(T + η)))

)
e
6C2(T+η)2

and

E(1 + sup
s≤T+η

|Xn
s |) ≤ (Xmax

0 + exp(CλCν(T + η)))

Form the last two inequalities combined with (34), we deduce that:

lim
η→0

limsup
n→∞

E [Zn(η, T )] = 0

In consequence, we have ∀1 ≤ 	 ≤ d, V n
t,� is tight in D and then V n

t is tight in Dd. Hence, there exists a 
subsequence of V n, which will be still denoted V n such that V n ⇒ V where V is a process with paths in 
Dd.

Moreover, applying Theorem A.3, the limit process V is of continuous paths. In fact, for the jumps νnj
of Xn, we have n‖νnj ‖∞ ≤ 2Cν for n ≥ n0 and then νnj = O( 1

n ). In consequence, due to scaling, the jumps 
in 

√
n(Xn

s − x(s)) are at most of size 1√
n

and then, j(V n) ≡ sup
0≤t≤T

|V n
t − V n

t− | ⇒ 0. We conclude that V is 

continuous.
Step 2
Here we prove that:

√
nMn

t ⇒
J∑

j=1

t∫
0

∫
R+

Gj(x(s), u) Wj(ds,du) (35)

From (26), we remind that:

〈
√
nMn〉t =

t∫
0

Γn(Xn
s ) ds

Applying the martingale central limit Theorem A.4, we can verify that:
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〈
√
nMn〉t ⇒

t∫
0

Γ(x(s)) ds

We do this in two sub-steps:
First, we verify the two conditions in i) of Theorem A.4:

lim
n→∞

E [ sup
0<t≤T

n(〈Mn
i ,M

n
j 〉t − 〈Mn

i ,M
n
j 〉t−)] = 0

This is well verified since 〈Mn
i , M

n
j 〉t is continuous: the discontinuity may occur in t which is of null measure 

according to the Lebesgue measure on [0, ∞). Moreover:

lim
n→∞

E [n( sup
0<t≤T

|Mn
t −Mn

t− |)2] = 0

In fact, as explained in step 1, and due to scaling, the jumps in 
√
nMn are at most of size 1√

n
.

Second, we verify condition ii):

〈
√
nMn〉t =

t∫
0

[Γn(Xn
s ) − Γ(Xn

s )] ds +
t∫

0

Γ(Xn
s ) ds

⇒
t∫

0

Γ(x(s)) ds

In fact, due to the uniform convergence of Γn to Γ (Hypotheses 4.1), the first term on the right of the 

equality P−−−−→
n→∞

0.
For the second term on the right of the equality, since Γ is continuous, and since the mapping z �→∫ t

0 Γ(zs) ds is continuous on Dd (see Lemma A.6), we can then apply the mapping Theorem A.5.
Since (Xn

s )s≥0
P−−−−→

n→∞
(x(s))s≥0, then we have the convergence in probability (and then particularly 

convergence in law):

t∫
0

Γn(Xn
s ) ds P−−−−→

n→∞

t∫
0

Γ(x(s)) ds

Finally, we use Slutsky theorem (Theorem A.7 i)) for f(x, y) ≡ x + y:

√
nMn

t ⇒
J∑

j=1

t∫
0

νj(x(s))
√

λj(x(s)) dWj(s) (36)

where Wj(t) here designates standard Brownian motion.
Finally (36) is in accordance with (35) since:

t∫
0

∫
R+

νj(x(s))1[0,λj(x(s))](u)Wj(ds,du) =
t∫

0

νj(x(s))Wj(ds, λj(x(s)))

=
t∫

0

νj(x(s))
√
λj(x(s)) dWj(s)
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Step 3
At this step we decompose V n

t in the following way

V n
t =

√
n (Xn

0 − x0) +
√
nMn

t +
t∫

0

√
n
(
Fn(Xn

s ) − F (Xn
s (s))

)
ds

+
t∫

0

√
n
(
F (Xn

s ) − F (x(s))
)
ds

Equivalently

V n
t =

√
n (Xn

0 − x0) +
√
nMn

t +
t∫

0

√
n
(
Fn(Xn

s ) − F (Xn
s (s))

)
ds

+
t∫

0

DF (x(s)).V n
s ds +

t∫
0

|V n
s |θ

(
Xn

s − x(s)
)
ds

where θ is the error Rd-valued function derived when differentiating F . We should mention that θ is con-
tinuous since DF is assumed to be continuous. Now, for the convergence of V n

t we have
The first term of V n

0 ⇒ 0 by Hypotheses 5.1.
The second term ⇒

∑J
j=1

∫ t

0
∫
R+

Gj(x(s), u) Wj(ds, du) (step 2).
The third term → 0 with probability 1, due to uniform convergence of Fn.
The fourth term ⇒

∫ t

0 DF (x(s)).Vs ds using mapping theorem since the mapping z �→
∫ t

0 DF (x(s))
· z(s) ds for z ∈ D is continuous on D, see Lemma A.6.

The fifth term ⇒ 0: θ
(
Xn

s −x(s)
) P−−−−→

n→∞
0 due again to mapping theorem (θ being continuous). Moreover, 

|V n
t | ⇒ |V (t)| (using the fact that the mapping | . | is continuous. Using Slutsky theorem, we have then 

|V n
s | θ

(
Xn

s − x(s)
)

⇒ 0. Due to the continuity of z �→
∫ t

0 z(s)ds in D, we conclude that the fifth term ⇒ 0
In consequence, V n ⇒ V which verifies necessarily (33).
Recapitulation Since in step 1, we proved that V n is tight, and there exists a subsequence of V n such 

that V n ⇒ V where V is a process in Dd([0, ∞)), and since in step 3, we proved that necessarily, V verifies 
a unique stochastic SDE in the weak sense, we prove in consequence that the whole sequence V n ⇒ V . �
6. Conclusion

In this paper we studied LLN and TCL results in a specific case of jump Markov processes, where the 
jump sizes are reduced and the jump rates are multiplied by some scaling factor n. Other questions deserve 
interest like the speed convergence of Xn to the diffusion approximation:

Ṽt = X̃0 +
t∫

0

F (Ṽt(s))ds +
J∑

j=1

t∫
0

∫
R+

Gj(Ṽ (s), u)Wj(ds,du) (37)

Appendix A

Definition A.1. (Stochastic boundedness) [28, Definition 3.4 ] A sequence Xn, n ≥ 1 is stochastically bounded 
in Dd if {|Xn|T , n ≥ 1} is stochastically bounded in R for each T > 0, where |z|T ≡ sup |z(t)| for z ∈ Dd:
0≤t≤T
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∀ T > 0,∀ε > 0,∃KT,ε compact in R such that P
n≥0

(|Xn|T /∈ KT,ε) < ε

The following theorem is a step in [8, proof of theorem 7.1] and an equivalent version of the theorem is 
given by [21, Theorem 2.1 §9].

Lemma A.2. (Tightness in D) [28, Lemma 3.11] A sequence of stochastic processes Xn in D is tight if:

(i) The sequence {Xn} is stochastically bounded.
(ii) For each n ≥ 1, the stochastic process is adapted to a filtration Fn ≡ {Fn,t, t ≥ 0}. In addition, for 

each T > 0, there exists a family of nonnegative random variables Zn(η, T ) : n ≥ 1, δ > 0 such that:

Et

[
(Xn(t + u) −Xn(t))2

]
≤ Et [Zn(η, T )]w.p.1. for 0 ≤ t ≤ T, 0 ≤ u ≤ η

and

lim
η→0

lim sup
n→∞

E [Zn(η, T )] = 0

where Et is the expectation with respect to Fn,t.

Theorem A.3. (Continuity Limit Theorem) [4] Let z a function in D and let jT (z) ≡ sup
0≤t≤T

|z(t) − z(t−)|. 

Let Xn and X be random elements in D and suppose Xn ⇒ X, then:

jT (Xn) ⇒ 0 if and only if P [X ∈ C] = 1

where C is the set of continuous trajectories.

For the following FTCL theorem, an equivalent version is originally given in [8, theorem 7.1, p. 339]):

Theorem A.4. (Multidimensional martingale FCLT) [28, Theorem 2.1] For n ≥ 1, let Mn ≡ {Mn,1, ...,Mn,d}
be a local martingale in Dd with respect to a filtration Fn ≡ {Fn,t, t ≥ 0} satisfying Mn(0) = {0, ..., 0}. Let 
C ≡ (ci,j) be a d × d covariance matrix (nonnegative definite symmetric matrix of real numbers). If

i) The expected value of the maximum jumps in 〈Mn,i,Mn,j〉 and maximum squared jumps in Mn is 
asymptotically negligible; i.e., for each T > 0

lim
n→∞

E [ sup
0<t≤T

(〈Mn,i,Mn,j〉t − 〈Mn,i,Mn,j〉t−)] = 0

lim
n→∞

E [( sup
0<t≤T

|Mn(t) −Mn(t−)|)2] = 0

ii) For each pair (i, j) with 1 ≤ i ≤ d and 1 ≤ j ≤ d, and each t > 0,

〈Mn,i,Mn,j〉 ⇒ ci,j in R as n → ∞

Then,

Mn ⇒ M in Dd as n → ∞

where M is a d-dimensional (0,C) Brownian motion:

E[M(t)] = {0, ..., 0} and E [M(t)M(t)∗] = Ct, t ≥ 0
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Theorem A.5. (Mapping Theorem) [8, Corollary 1.9, p. 103] Let E be a metric space, and let {Pn, n < ∞}, 
and P be probability measures on E satisfying Pn ⇒ P . Let f be a real valued measurable function on S and 
define Df to be the measurable set of points at which f is not continuous. Let Xn and X be random variables 
which induce the measures Pn and P on E, respectively. Then, f(Xn) ⇒ f(X) whenever P {X ∈ Df} = 0.

Lemma A.6. [19, lemma 5.2 and examples 5.3] For h continuous on [0, ∞) and g continuous on Rd× [0, ∞), 
the following mappings are continuous on Dd([0, ∞)) in the Skorohod topology

i) z→
∫ t

0 h(t − s)g(z(s), s)ds
ii) z→ sup

s≤t
h(t − s) g(x(s) − x(s−), s)

Theorem A.7. (Slutsky Theorem) For any continuous function f on Rk ×Rl

(i) If Xn ⇒ X ∈ Rk and Y n P→ c ∈ Rl, then:

f(Xn, Y n) ⇒ f(x, c)

(ii) If Xn and Y n are independent and if Xn ⇒ X ∈ Rk and Y n⇒c ∈ Rl, then:

f(Xn, Y n) ⇒ f(x, c)
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