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We give an explicit description of the tracial state simplex of the C∗-algebra C∗(G)
of an arbitrary connected, second countable, locally compact, solvable group G. We 
show that every tracial state of C∗(G) lifts from a tracial state of the C∗-algebra 
of the abelianized group, and the intersection of the kernels of all the tracial states 
of C∗(G) is a proper ideal unless G is abelian. As a consequence, the C∗-algebra 
of a connected solvable nonabelian Lie group cannot embed into a simple unital 
AF-algebra.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

If G is a locally compact group, then any of its Haar measures leads via integration to a multiplicative 
linear functional on C∗(G), which is in particular a tracial state. Moreover, the following assertions are 
equivalent:

• G is amenable;
• the reduced group C∗-algebra C∗

r (G) is nuclear and admits a tracial state.

See [13, Th. 8] and also [9, Cor. 3.3] and [12]. There arises the natural question of finding an explicit 
description of the set of all tracial states of group C∗-algebras of amenable locally compact groups. In 
this paper we answer that question for connected, second countable, locally compact, solvable groups, 
which includes all connected solvable Lie groups (Theorem 2.8(iii)). To this end we prove that the extreme 
points of the tracial simplex of group C∗-algebras correspond to the 1-dimensional group representations 
(Proposition 2.7). This solves the above problem via the Krĕın-Milman theorem.

As an application, we show that if the C∗-algebra of such a group admits a faithful tracial state, then 
the group under consideration is necessarily abelian (Corollary 2.9). This implies that the C∗-algebra of a 
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connected solvable nonabelian Lie group never embeds into a simple unital AF-algebra (Corollary 2.10). In 
addition to our earlier examples of amenable connected Lie groups whose group C∗-algebras are not AF-
embeddable [3], this is still another aspect of AF-embeddability theory of group C∗-algebras which points 
out the sharp contrast between the behaviors of the C∗-algebras of discrete countable groups and connected 
Lie groups. We recall that the C∗-algebra of every amenable discrete countable group embeds into a simple 
unital AF-algebra, namely, the universal UHF-algebra [15, Th. B].

2. Main result

Notation 2.1. For an arbitrary C∗-algebra A with its topological dual space A∗ we will use the following 
notation:

• A∗
+ := {ϕ ∈ A∗ | 0 ≤ ϕ};

• A∗
+,tr := {ϕ ∈ A∗

+ | (∀a, b ∈ A) ϕ(ab) = ϕ(ba)};
• T (A) := {τ ∈ A∗

+,tr | ‖τ‖ = 1}, T≤1(A) := {τ ∈ A∗
+,tr | ‖τ‖ ≤ 1};

• extS := {χ ∈ S | χ is an extreme point of S} for any subset S ⊆ A∗;
• coS stands for the weak∗-closure of the convex hull of any subset S ⊆ A∗.

We also note the equality

T≤1(A) = {tϕ | t ∈ [0, 1], ϕ ∈ T (A)}. (2.1)

The elements of T (A) are called tracial states of A, and the sets T (A) ⊆ T≤1(A) are regarded as topological 
subspaces of A∗ with respect to the weak∗ topology of A∗. For every τ ∈ extT≤1(A) with ‖τ‖ �= 0 we 
necessarily have ‖τ‖ = 1, hence τ ∈ T (A), and then τ ∈ T (A) ∩extT≤1(A) ⊆ extT (A). Thus ext (T≤1(A)) ⊆
{0} ∪ ext (T (A)) ⊆ T≤1(A) hence, taking co(·) in these inclusions, we obtain

T≤1(A) = co({0} ∪ extT (A)) (2.2)

since the set T≤1(A) is compact and convex, therefore T≤1(A) = co(extT≤1(A)) by the Krĕın-Milman 
theorem. (In fact, by a slightly more elaborate argument, extT≤1(A) = {0} ∪extT (A) by [8, Prop. 6.8.7(ii)], 
since the points of extT (A) are the finite characters of norm 1 in the sense of [8, 6.7.1].)

We also note for later use in the proof of Theorem 2.8(i) that for any subset S ⊆ A∗ we have

⋂
ϕ∈co ({0}∪S)

Kerϕ =
⋂
ϕ∈S

Kerϕ =
⋂

t∈[0,1]

⋂
ϕ∈S

Ker (tϕ) =
⋂

ϕ∈
⋃

t∈[0,1] tS

Kerϕ (2.3)

For any ϕ ∈ A∗
+ we denote by (πϕ, Hϕ, ξϕ) the output of its corresponding GNS construction; thus 

πϕ : A → B(Hϕ) is a ∗-representation with a cyclic vector ξϕ ∈ Hϕ satisfying

(∀a ∈ A) ϕ(a) = (πϕ(a)ξϕ | ξϕ). (2.4)

The notation J � A indicates that J is a closed two-sided ideal of the C∗-algebra A.

We prove the following lemma for completeness, although its assertions are mostly known, as indicated 
in Remark 2.3 below.

Lemma 2.2. For every ϕ ∈ A∗
+,tr the following assertions hold:
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(i) One has A+ ∩ Kerϕ = A+ ∩ Kerπϕ.
(ii) The functional τϕ : πϕ(A)′′ → C, τϕ(T ) := (Tξϕ | ξϕ), is a faithful normal tracial positive functional 

hence the von Neumann algebra πϕ(A)′′ is finite.
(iii) If ϕ ∈ extT (A), then the von Neumann algebra πϕ(A)′′ is a factor.

Proof. (i) It follows by [8, Cor. 2.4.10] that Kerπϕ is the largest closed two-sided ideal of A contained in 
Kerϕ.

To prove that A+ ∩ Kerϕ ⊆ Kerπϕ let a ∈ A+ arbitrary with ϕ(a) = 0. For every b ∈ A one has by the 
Schwarz inequality |ϕ(a1/2b)|2 ≤ ϕ(a)ϕ(b∗b) = 0, hence a1/2b ∈ Kerϕ. Then for arbitrary c ∈ A one has

‖πϕ(a1/4)πϕ(c)ξϕ‖2 = (πϕ(a1/2)πϕ(c)ξϕ | πϕ(c)ξϕ) = ϕ(c∗a1/2c) = ϕ(a1/2cc∗) = 0

by the above remark, with b = cc∗. Thus πϕ(a1/4)πϕ(c)ξϕ = 0 for all c ∈ A. Since πϕ(A)ξϕ is dense in Hϕ, 
we then obtain πϕ(a1/4) = 0, hence πϕ(a) = 0.

(ii) It is clear that τϕ is a normal positive functional. The set πϕ(A) is dense in πϕ(A)′′ with respect to 
the strong operator topology (by the bicommutant theorem). Therefore, in order to see that τϕ is a tracial 
functional, it suffices to show that τϕ|πϕ(A) is tracial. The later property follows by ϕ ∈ A∗

+,tr since for all 
a ∈ A one has τϕ(πϕ(a)) = ϕ(a) by (2.4).

The fact that τϕ is faithful follows as in the proof of [3, Lemma 4.2]: Let T ∈ πϕ(A)′′ with τϕ(T ∗T ) = 0, 
that is, Tξϕ = 0. Then for every a ∈ A,

‖Tπϕ(a)ξϕ‖2 = (πϕ(a)∗T ∗Tπϕ(a)ξϕ | ξϕ) = τϕ(πϕ(a)∗T ∗Tπϕ(a)).

Since τϕ is a tracial state of πϕ(A)′′, it follows that

‖Tπϕ(a)ξϕ‖2 = τϕ(πϕ(a)πϕ(a)∗T ∗T ) = (πϕ(a)πϕ(a)∗T ∗Tξϕ | ξϕ) = 0.

Thus Tπϕ(a)ξϕ = 0 for every a ∈ A, hence T = 0,
(iii) For every central projection p = p∗ = p2 ∈ πϕ(A)′′ ∩ πϕ(A)′ we define

ϕp(·) := (πϕ(·)pξϕ | pξϕ) = (πϕ(·)ξϕ | pξϕ)

so that ϕ = ϕp + ϕ1−p and ϕp, ϕ1−p ∈ A∗
+, where 1 ∈ B(Hϕ) is the identity operator. Moreover, since 

p ∈ πϕ(A)′′ and πϕ(A) is dense in πϕ(A)′′ with respect to the strong operator topology, there exists a net 
{ci}i∈I in A with p = lim

i∈I
πϕ(ci) in the strong operator topology in B(Hϕ). Then for arbitrary a, b ∈ A we 

obtain

ϕp(ab) = (πϕ(ab)pξϕ | ξϕ) = (πϕ(a)pπϕ(b)ξϕ | ξϕ) = lim
i∈I

(πϕ(acib)ξϕ | ξϕ)

= lim
i∈I

ϕ(acib) = lim
i∈I

ϕ(ciba) = lim
i∈I

(πϕ(ciba)ξϕ | ξϕ) = (pπϕ(ba)ξϕ | ξϕ)

= ϕp(ba),

by (2.4) and the fact that ϕ is a tracial functional. Thus ϕp ∈ A∗
+,tr and similarly ϕ1−p ∈ A∗

+,tr. If 
pξϕ �= 0 and (1 − p)ξϕ �= 0, then ψ0 := 1

‖pξϕ‖2ϕp ∈ T (A) and ψ1 := 1
‖(1−p)ξϕ‖2ϕ1−p ∈ T (A) and moreover 

ϕ = ‖pξϕ‖2ψ0 + ‖(1 − p)ξϕ‖2ψ1, where ‖pξϕ‖2 + ‖(1 − p)ξϕ‖2 = ‖ξϕ‖2 = ‖ϕ‖ = 1, hence we obtain a 
contradiction with the hypothesis ϕ ∈ extT (A).

Therefore one must have either pξϕ = 0 or (1 − p)ξϕ = 0, that is, either pξϕ = ξϕ or pξϕ = 0. Then, 
using the fact that πϕ(A)ξϕ is dense in Hϕ and p ∈ πϕ(A)′, we obtain either p = 1 or p = 0. Since p is an 
arbitrary orthogonal projection in the center of πϕ(A)′′, it follows that πϕ(A)′′ is a factor. �
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Remark 2.3. Lemma 2.2(ii) can also be derived from [8, Prop. 6.8.3]. As noted above, the points of extT (A)
are the finite characters of norm 1, therefore the conclusion of Lemma 2.2(iii) can be obtained by [8, Th. 
6.7.3]. We also recall that the finite characters of norm 1 correspond bijectively to the quasi-equivalence 
classes of nontrivial finite-factor representations by [8, Cor. 6.8.6].

For an arbitrary locally compact group G we denote

G(1) := the closed subgroup generated by {ghg−1h−1 | g, h ∈ G}. (2.5)

Then G(1) is a closed normal subgroup of G and, by [2, Prop. 8.C.8], there exists a natural surjective 
∗-morphism

θ : C∗(G) → C∗(G/G(1)).

Hence, denoting

JG := Ker θ, (2.6)

we obtain the short exact sequence of C∗-algebras

0 → JG ↪→ C∗(G) θ−→C∗(G/G(1)) → 0. (2.7)

Lemma 2.4. We have that

JG = {0} ⇐⇒ G is commutative. (2.8)

Proof. If the group G is abelian then G(1) = {1} and θ is a ∗-isomorphism, hence JG = {0}. Conversely, 
if JG = {0}, then the short exact sequence (2.7) shows that θ : C∗(G) → C∗(G/G(1)) is a ∗-isomorphism. 
Since the quotient group G/G(1) is abelian, its C∗-algebra is commutative. It then follows that C∗(G) is 
commutative, which in turn implies that its dense ∗-subalgebra L1(G) is commutative, and this further 
implies that the group G is abelian. (See [14, A.3.1, page 321] and also [10, Th. (20.24)] for a more general 
result.) �

We denote by P1(G) ⊆ L∞(G) the set of all positive-definite functions f : G → C with f(1) = 1, and let

P1,c(G) := {f ∈ P1(G) | (∀x, y ∈ G) f(xyx−1) = f(y)}

be the set of all central positive-definite functions.
For every f ∈ P1(G), let ϕf : C∗(G) → C be its corresponding state of C∗(G). By [8, Th. 13.5.2], the 

affine mapping

Φ: P1(G) → S(C∗(G)), f �→ ϕf (2.9)

is a homeomorphism when P1(G) is endowed with the topology of uniform convergence on the compact 
subsets of G, while the state space S(C∗(G)) is endowed with its weak∗-topology. It is also well-known that

Φ(P1,c(G)) = T (C∗(G)). (2.10)

(See e.g., [8, 18.1.3 and proof of Prop. 17.3.1] and [9, §1.1].)
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Remark 2.5. In the above setting, we note for later use that Hom(G, T ) ⊆ P1,c(G). Thus if χ ∈ Hom(G, T )
and if we denote by χ̃ : C∗(G) → C the ∗-representation obtained by integrating the unitary representation 
χ, then for every g ∈ L1(G) ⊆ C∗(G) we have χ̃(g) =

∫
G
g(x)χ(x)dx = ϕχ(g), hence

ϕχ = χ̃ for every χ ∈ Hom(G,T ). (2.11)

Lemma 2.6. Let G be a connected, locally compact group and A := C∗(G). If ϕ ∈ extT (A), then there 
exists a positive integer n ≥ 1 such that πϕ is weakly equivalent to an irreducible representation of A on 
an n-dimensional Hilbert space. If moreover the group G is solvable, then n = dimHϕ = 1 and there exists 
χ ∈ Hom(G, T ) with πϕ = χ̃.

Proof. It follows by Lemma 2.2 that πϕ(A)′′ is a finite factor. On the other hand, since the representation 
πϕ : A = C∗(G) → B(Hϕ) is cyclic, hence nondegenerate, it corresponds to a unitary representation of G. 
Therefore, since the group G is connected, it follows by [11, Th. 1] that πϕ has no type II1 direct summand. 
Thus the finite factor πϕ(A)′′ is not type II1, and then it is type In for some positive integer n, that is, one 
has a ∗-isomorphism πϕ(A)′′ � Mn(C). Since πϕ(A) is dense in πϕ(A)′′ with respect to the strong operator 
topology, it follows that πϕ(A) � Mn(C).

Since πϕ is a factor representation, there exists an irreducible ∗-representation χ : A = C∗(G) → B(Hχ)
(see [8, 3.9.1(c) and 5.7.6((b),(d))]) with Kerπϕ = Kerχ. One then has ∗-isomorphisms

χ(A) � A/Kerχ = A/Kerπϕ � πϕ(A) � Mn(C)

and it then follows that dimHχ = n. Moreover, the irreducible ∗-representation χ is obtained by integrating 
a certain unitary irreducible representation of G, denoted also as χ : G → U(n) ⊆ Mn(C).

If moreover the group G is solvable, we obtain n = 1 by Sophus Lie’s classical theorem. (See e.g., [16, 
Part I, Ch. V, §5].) Therefore πϕ(A) = πϕ(A)′′ = C1. Then, since ξϕ ∈ Hϕ is a cyclic vector for the 
representation πϕ we obtain Hϕ = Cξϕ. Thus dimHϕ = 1, hence χ ∈ Hom(G, T ), and this completes the 
proof. �
Proposition 2.7. If G is a connected, locally compact, solvable group, then the map Φ|Hom(G,T) : Hom(G, T ) →
extT (C∗(G)), χ �→ ϕχ is a homeomorphism.

Proof. Use Lemma 2.6 and (2.9)–(2.10). �
In the statement of the next theorem, we use the notation in (2.5) and (2.6).

Theorem 2.8. Let G be a connected, locally compact, solvable group. Then the following assertions hold:

(i) The closed two-sided ideal JG is the interesection of all kernels of tracial states of C∗(G), that is,

JG =
⋂

ϕ∈T (C∗(G))

Kerϕ.

(ii) JG is equal to the closed linear span of any of the sets

{ab− ba | a, b ∈ C∗(G)} and {a ∈ C∗(G) | a2 = 0}.

(iii) The mapping T (C∗(G/G(1))) → T (C∗(G)), τ �→ τ ◦ θ, is bijective.
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Proof. (i) We actually prove the following equality:

JG =
⋂

χ∈Hom(G,T)

Kerϕχ =
⋂

ϕ∈T (C∗(G))

Kerϕ. (2.12)

It follows by Proposition 2.7 and the consequence of the Krĕın-Milman theorem (2.2) along with (2.3) and 
(2.1) that

⋂
χ∈Hom(G,T)

Kerϕχ =
⋂

ϕ∈extT (C∗(G))

Kerϕ

=
⋂

ϕ∈co({0}∪extT (C∗(G)))

Kerϕ

=
⋂

ϕ∈T≤1(C∗(G))

Kerϕ

=
⋂

ϕ∈T (C∗(G))

Kerϕ,

hence the second equality in (2.12) holds true.
We now prove the first equality in (2.12). Let q : G → G/G(1) be the canonical quotient map. Then, since 

the group G/G(1) is abelian, the map

q∗ : ̂G/G(1) → Hom(G,T ), ω �→ ω ◦ q

is bijective and is actually a homeomorphism. Using the canonical homeomorphism Ĝ � ̂C∗(G) along with 
the short exact sequence (2.7), we then obtain

JG =
⋂

ω∈ ̂G/G(1)

Ker ω̃ ◦ q =
⋂

χ∈Hom(G,T)

Ker χ̃ =
⋂

χ∈Hom(G,T)

Kerϕχ

where the later equality follows by (2.11).
(ii) Let us denote by A0 the set of all norm-convergent series 

∑
n≥1

(ana∗n−a∗nan) for a1, a2, . . . ∈ A := C∗(G). 

If we denote by A00 the closed linear span of the set {ab − ba | a, b ∈ C∗(G)}, then it is clear that

A0 + iA0 ⊆ A00 ⊆
⋂

ϕ∈T (A)

Kerϕ = A0 + iA0

where the latter equality follows by [7, Thms. 2.6 and 2.9]. Therefore, the above inclusions are actually 
equalities and then, using (2.12), we obtain A00 = JG. On the other hand, A00 coincides with the closed 
linear span of {a ∈ C∗(G) | a2 = 0} by [1, Prop. 2.2].

(iii) As θ is a surjective ∗-morphism, the mapping T (C∗(G/G(1))) → T (C∗(G)), τ �→ τ ◦θ, is well defined 
and injective. To prove that this mapping is surjective, let ϕ ∈ T (C∗(G)) arbitrary. Then Ker θ = JG ⊆
Kerϕ by (i), hence the functional τ : C∗(G/G(1)) → C, θ(a) �→ ϕ(a), is well defined, and moreover τ ◦θ = ϕ. 
Since the group G/G(1) is abelian, we directly obtain τ ∈ T (C∗(G/G(1))), and this completes the proof. �

We are now in a position to prove the following generalization of [3, Prop. 4.4] to groups that need not 
be type I.

Corollary 2.9. If G is a connected, second countable, locally compact, solvable group, then there exists a 
faithful ϕ ∈ T (C∗(G)) if and only if G is abelian.
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Proof. If G is abelian, then its dual group Ĝ is second countable by [2, Prop. A.G.3]. Then we may select a 
dense sequence {χn}n≥1 in Ĝ. Denoting by δχ the Dirac measure concentrated at any point χ ∈ Ĝ, it then 
follows that μ :=

∑
n≥1

1
2n δχn

is a probability Radon measure on Ĝ := Hom(G, T ) with suppμ = Ĝ. We then 

define

f : G → C, f(x) :=
∫
Ĝ

χ(x)dμ(χ).

Since G is abelian, it is clear that f ∈ P1,c(G). On the other hand the Fourier transform gives the ∗-
isomorhism C∗(G) � C0(Ĝ). Then, since suppμ = Ĝ, it is straightforward to check that ϕf ∈ T (C∗(G)) is 
faithful.

Conversely, if there exists ϕ ∈ T (C∗(G)) with (C∗(G))+ ∩ Kerϕ = {0} then, by (2.12), we obtain 
(C∗(G))+ ∩ JG = {0}. Since JG is a C∗-algebra, this implies JG = {0} since JG is linearly spanned by its 
positive cone (C∗(G))+ ∩ JG. (See e.g., [8, 1.5.7(2)].) Then Lemma 2.4 shows that the group G is abelian. 
Alternatively, JG = {0} implies by Theorem 2.8(ii) that C∗(G) is commutative, and then the group G is 
abelian as in the proof of Lemma 2.4. �
Corollary 2.10. If G is a connected, second countable, locally compact, solvable group, then the following 
assertions are equivalent:

(i) C∗(G) embeds as a closed ∗-subalgebra of a unital simple AF-algebra.
(ii) C∗(G) embeds as a closed ∗-subalgebra of a unital quasidiagonal simple C∗-algebra.
(iii) G is abelian.

Proof. (i)⇒ (ii): Clear.
(ii)⇒ (iii): Let us assume that there exists a unital quasidiagonal simple C∗-algebra A with an embedding 

C∗(G) ⊆ A. Since A is unital quasidiagonal, it follows by [5, Prop. V.4.2.7] that A has a tracial state 
ϕ : A → C. Since A is simple, we have that Kerπϕ = {0}. Thus Lemma 2.2(i) implies A+∩Kerϕ = {0}, that 
is, ϕ is faithful. Then ϕ|C∗(G) is a faithful positive tracial functional on C∗(G), which is moreover nonzero 
since the C∗-algebra C∗(G) is generated by its positive cone. Therefore G is abelian by Corollary 2.9.

(iii)⇒ (i): Since G is abelian, there is a ∗-isomorphism C∗(G) � C0(Ĝ). Let G denote the 1-point 
compactification of Ĝ if Ĝ is not compact, and G = Ĝ otherwise. Since G is second countable, its dual 
group Ĝ is second countable by [2, Prop. A.G.3], hence G is a compact metrizable space. Then there exists 
a continuous surjective mapping K → G, where K is the Cantor set, hence one has embeddings

C∗(G) � C0(Ĝ) ↪→ C(G) ↪→ C(K).

On the other hand, it is well-known that C(K) is ∗-isomorphic to the canonical diagonal Cartan subalgebra 
of the CAR-algebra M2∞ . We thus finally obtain an embedding C∗(G) ↪→ M2∞ , where M2∞ is a unital 
simple AF-algebra. �
Remark 2.11. The C∗-algebras of many connected solvable Lie groups are AF-embeddable as shown in [3]
and [4], hence Corollary 2.10 shows that such embeddings cannot be done into unital simple AF-algebras 
in the case of nonabelian groups.

Remark 2.12. If G is a connected, separable, locally compact, solvable group, using the notation of [6, Def. 
3.4.1], one has

T (C∗(G)) = UAT(C∗(G))LFD (2.13)
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that is, every tracial state of C∗(G) is uniform locally finite dimensional, and in particular is quasidiagonal. 
(See [6, §3.5].)

In fact, for arbitrary ϕ ∈ T (C∗(G)), there exists τ ∈ T (C∗(G/G(1))) with ϕ = τ ◦ θ by Theo-
rem 2.8(iii). The quotient group G/G(1) is an abelian Lie group, hence C∗(G/G(1)) is type I, and then 
τ ∈ UAT(C∗(G/G(1)))LFD by [6, Cor. 4.4.4]. Now, by [6, Prop. 3.5.6], we obtain ϕ ∈ UAT(C∗(G))LFD. This 
proves the inclusion ⊇ in (2.13), while the converse inclusion is obvious.

However, we recall that there exist connected solvable Lie groups whose C∗-algebras are not quasidiagonal. 
(See [3, Thm. 2.15].)
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