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In this article, we first use a fourth order partial differential equation with
boundary conditions to model a flexible robot arm on a moving base with a payload
at the tip end. Through the state-space formulation, we show that such a system is
both controllable and observable in an infinite dimensional Hilbert space. We also
show that the system is stabilizable via a feedback control. ~ © 1998 Academic Press
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1. INTRODUCTION

Structural flexibility in robotic systems has been emerging as an issue of
increasing concern, for it is only realistic to include the vibration of such a
system in the design of control to secure a certain degree of accuracy. The
demands for high speed and low cost are driving the research for control
of lightweight flexible robots. In this paper, we first formulate a mathemat-
ical model for a flexible robot arm on a moving base with a payload at the
tip end. In general a Cartesian robot consists of components which are
flexible robot arms with a payload at the tip end. There have been many
investigations of the subject of flexible beam and its control. Among them
we list a few, such as works of Cannon and Schmitz [1] in 1984, and works
of Goong Chen et al. (see references in [2]), F. L. Huang [7], and Z. H. Luo
et al. [9, 10] We take the fourth order well-known Euler—Bernoulli beam
equation to model the transverse vibration of the flexible robot arm with
four boundary conditions, which are similar to but not identical with that
in [9]. This model is quite unique and different from all other models
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found in [2], [7], [9], and [10]. Our approach is more theoretical than that in
[9, 10] and in general. Our methodology starts with a corresponding
state-space control system in which the parameter matrix has as its entries
differential operators. In this setting we are able to determine the spec-
trum of the parameter matrix (see Section 2) and, subsequently, to show
that the robotic system with a sliding base is both approximately control-
lable and observable (see Section 3). In this infinite dimensional control
analysis, one needs a heavy dose of functional analysis and operator theory
in order to investigate approximation controllability and observability of
the system. We also have investigated the stability in a specified feedback
control, and we show that we may design a boundary point feedback
control loop to stabilize the system (see Section 4). This work has laid
down a foundation for the design of a real-time closed-loop feedback
control for a flexible Cartesian robot. It is becoming more urgent that the
traditional design of robot arms dependent on only the kinematics needs a
makeover to include the dynamics of the system in the control. Our work
fits nicely in this thrust of research which is becoming the focus of the
research of dynamical robotics. Further work along this line is presently
being pursued [6].

2. THE MODEL AND SPECTRAL STRUCTURE OF A
FLEXIBLE ROBOT SYSTEM

2.1. The Model and the Evolution Equation of the System

Consider a Cartesian robot with a long tip arm, illustrated in Fig. 1.
Since any motion in the x—y plane can be decomposed into its x and y
components, the vibrations in the x-direction and y-direction can be
considered independently. Figure 2 shows motion of an x—y robot in the
x-direction. m represents the mass of a moving body driven by a control
motor. The one end with a payload M of the flexible arm is attached to
this moving body.

Let the amplitude of vibration of the flexible arm at time ¢ and position
r be w(¢, r). Then the dynamic model for vibration of this flexible arm in
the x-direction can be written as follows [9]:

pw(t,r) + EW"(t,r) = —px(t), 0<r<t,t>0,
w(t,0) =w'(¢,0) =0,
M[w(t, 1) +X(t)] — EW"(t,1) =0, (2.1)
Jw'(t, 1) + EW"(t,1) =0,
w(0,r) = wy(r), w(0,r) = wy(r),
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FIG. 1. A Cartesian robot with a long tip arm.

where x(¢) denotes the acceleration of the moving body, “.”” denotes the
time derivative, and “'” denotes the spatial derivative, p denotes the line
density of mass for the arm, EI denotes the bending rigid degree of the
flexible arm, / denotes the length of the arm, w,(r) and w,(r) denote the
initial displacement and initial velocity of the arm, respectively, J denotes
the turning inertia, and the first equation is the Euler—Bernoulli equation.
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FIG. 2. Motion of an x—y robot in the x-direction.
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For the motor system, we shall establish the following control equation:
mx(t) = u(t) — EIwW"(t,0), (2.2)

where the sliding friction was neglected and u(¢) is a control.
Let y(¢,7) be the total displacement in the x-direction of the flexible
arm. Thus, we have

y(t,r) =w(t,r) +x(1). (2.3)

Substituting (2.3) into (2.1) yields the following controlled closed-loop
system equation about state y(z, r):
py(t,r) + EB(t,r) =0, O<r<l,t>0,
y'(2,0) =0,
mi(1,0) + EIy"(1,0) = u(1), (24)
My(t,l) — EN"(t,1) =0,
J(t, 1) + EDN'(t,1) =0.
In order to investigate the system (2.4) under the abstract frame, we now

consider a real Hilbert space H = R® X Lf,(O, 1) equipped with the inner
product as

(), Dy)y =mé & + Mamy + T4 + {pry @200,
where @, =[&,m, & e €H, i=12, (¢, @) = [5pes(x)@,(x) dx,

and T means the transpose. We define a linear operator A with domain
D(A) in H as follows:

EI
Z‘PW(O)
ET ¢(0)
BEERTARS | e
Ap = EGD,,(Z) , for ¢ = o (1) € D(A),
EJI e(*)
— " (")
- p .

where D(A) ={F € H: ¢, ¢, ¢, ¢", ¢" € L2(0,]), ¢'(0) = 0}.
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Using the operator A4, (2.4) becomes the following second-order abstract
evolution equation in H:

d*y(t)
dt?

+ Ay(t) = bu(t), (2.5)

where y(¢) = [y(¢,0), y(¢, D), y' (¢, 1), y(¢, I, b =[1/m,0,0,0]".

2.2. The Spectral Structure of the Operator A

In this section we shall investigate the spectrum of the operator A in
(2.5).

THEOREM 2.1. A: D(A) — H is a nonnegative self-adjoint operator.

Proof. It is clear that D(.A) = H. For any o, & € D(A), using integra-
tion by parts, we have

~ L, " ~ N
(A7) = EL[ ¢ (x)9(x) dv = (. AT) .
and A is the symmetric operator; moreover,
~ ~ l ~
(AG, @)y = Elflqo"(x)|2 dc>0, FeD(A).
0

Thus, A is nonnegative. It can be checked that A4 is a closed linear
operator. Consider the restriction of 4 on the orthogonal complement K
of the kernel of A. Al|x is densely defined and closed, and by the
symmetry of A|x we know that A(K) is dense in K. Hence by the open
mapping theorem and the fact that 4(K) is of second category in K, we
have that the range of Al|x is open and the range of A4 is K [14].
Therefore, A|x and A are self-adjoint.

Let A be an eigenvalue of A, and suppose that ¢ is the eigenvector
corresponding to A. Then, A = A, namely,
El¢" (x) = Ape(x), 0<x <,
¢'(0) =0,
El¢" (0) — Ame(0) =0, (2.6)
Elo" (1) + AMe(l) =0,
Elo"(1) — M¢'(1) = 0.
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It is obvious that A, = 0 is an eigenvalue of A with its eigenvectors of the
form B[1,1,0,1]" for some scalar 8. We denote [1,1,0,1]" by @,. Let
v* = Ap/EI (A > 0). Then it follows from (2.6) that

¢"(x) = vip(x),

¢'(0) =0,
&"(0) — v* 2 o(0) = 0,

p

(2.7)
M
o" (1) + v*—e(l) =0,
p
n 4J ’
¢"(l) —v ;cp(l) =0.
The general solution of (2.7) can be obtained as follows:
a b
o(x) = E(cosh vx + cos vx) + F(cosh VX — COS vX)
14
c .
+ F(smh vx — sin vx), (2.8)
14

where @ = ¢(0), b = ¢"(0), € = ¢”(0). Let y = vl. Then it follows that

a b
o(l) = E(cosh z+cosz) + F(cosh z — C0S z)
14
c .
+ m(smh z —sin z),

~

av : b . :
¢'(l) = —(sinh z —sinz) + —(sinh z + sin z)
2 2y
c
+ ﬁ(cosh z —C0Sz),
av? b
o"(l) = T(cosh z—C0Sz) + E(cosh z +C0S z)
c
+ —(sinh z + sin z),
2v
avs ] by _
" (1) = T(smh z +sinz) + ?(smh z — sin z)

C
+ E(cosh z + oS z).
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THEOREM 2.2. (i) Let o= [¢(0), (), ¢'(1), ()" be any nonzero
eigenvector corresponding to an eigenvalue A > 0 of A. Then ¢(0) # 0 and
o'(l) + 0.

(i)  Every eigenvalue of A is of multiplicity 1; that is, every eigenspace
corresponding to an eigenvalue of A is one-dimensional.

Proof. (i) If ¢(0) = 0, then in view of the boundary conditions of (2.7)
it follows that ¢”(0) = 0, and subsequently ¢(x) = b'(cosh vx — cos vx);
here b’ = b/2v?, v* = Ap/EI Hence, we can derive from the boundary
condition of (1.7) that

sinh z — sin z + az(cosh z — cos z) = 0.

It is easy to see that the above equation has no positive root. This
contradicts the hypothesis that A > 0. Thus, ¢(0) # 0.
If ¢'(I) = 0, then it follows from (2.7) that ¢"(I) = 0, that is,

av3(sinh z — sin z) + by (sinh z + sin z) + ¢(cosh z — cos z) = 0,
@v3(cosh z — cos z) + br(cosh z + cos z) + &(sinh z + sin z) = 0.

Since ¢ = v*(m/p)a, by eliminating the b term from the above two
equations, we get

vm
al(sinh z cos z — sin z cosh z) — ——sinh zsin z| = 0.
p

For z>0, it can easily be seen that cos zsinh z — sin z cosh z —
(vm/p)sinh zsin z # 0, and so @ = 0 and ¢ = 0. Thus, ¢(x) = b(cosh vx
— cos vx), but ¢”(1) + v*(m/p)e(l) = 0. Therefore,

sinh z — sin z + az(cosh z — cos z) = 0.

Note that the above equation has no positive root, a contradiction to the
assumption, ¢'(I) # 0. Thus, ¢'(I) # 0.

(i) From the paragraph following (2.6) we know that the eigenspace
of zero is one-dimensional. Suppose that there are two eigenvectors ¢ and
 for the same eigenvalue A > 0 of 4. Then f= ¢(0)% — ¢(0)¢ is also
an eigenvector for A of A, but f(0) = 0, and it follows from (i) that f = 0.
This implies that ¢ and « are linear dependent, and therefore the
eigenspace corresponding to this eigenvalue of A4 is one-dimensional.

THEOREM 2.3. The resolvent of A is a compact operator.

Proof. Since A is the self-adjoint operator by Theorem 2.1, it follows
from a theorem in [3, XI111.4] that the resolvent R(A, A) of A is compact.
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THEOREM 2.4. The spectrum of A consists of only nonnegative eigenvalues
with single multiplicity.

Proof. This is a direct consequence of a theorem in [5, XII1.4], and
Theorems 2.1, 2.2, and 2.3.

3. THE WELL-POSEDNESS, CONTROLLABILITY, AND
OBSERVABILITY OF THE SYSTEM

3.1. The Existence and Uniqueness of the Solution to the System

Forany r > 0, let A, = A + I (I denotes the identity operator on H).
Denote #= H X H equipped with the inner product

(D, V) = (51’”’71)11 + (fzvnz)H'
forevery ® = [&,,&,], ¥ = [0, n,] €7

It is easy to see that with the inner product defined above .# is a Hilbert
space.

We now define a linear operator ./ on # below. For r in p(A), the
resolvent set of A, we define

0 AL/2
S VLV

with D(&) = D(AY?) X D(AY?). We also denote [0, b]" by %, where b
is defined in (2.5). Consider a subspace .% of Z consisting of z = [z, z,]",
where z;, = A¥?y and z, =y and ¥ is defined in (2.5) In this notation,
(2.5) with initial conditions

S0) — 7

J’( ) =Yo (3.1)

5(0) =7,

becomes a first-order evolution equation in . with initial conditions as
follows:

dz
— =Yz +%Bu,

dt (3.2)
2(0) = [ 475, 7] .
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We denote the spectrum of ./ by o (%), a resolvent of 4 by R(A, A),
and the resolvent set of A4 by p(A).

LEMMA 3.1.

W) o =0 45

(i) D(«) = D(&*).

(i) o) = a(&™).

(iv)  The resolvents of s/ and &* are compact.

(v) & is densely defined closed linear operator and the spectrum of &

denoted by o(&) is equal to {p,: pwy =0, n, = £iy/A,, n=1,2,...},
where A,, n =1,2,..., are the eigenvalues of A.
Proof. (i)—(iii) Parts (i), (ii), and (iii) follow from A4 being self-adjoint.
(iv) Let
0 AY?

XL

0 0
and 9 = l’A;l/z 0 .

—Ai/z 0

Then it is clear that D(«/,) = D(AY?) X D(AY?), d(2) =#,and 9 is
bounded on Z It is also clear that & =, +2 and (i%/,)* = i%,. By
Stone’s theorem on infinitesimal generator of a one-parameter group of
unitary operators. By the Hille-Yosida theorem [3] we know that
IR(A, Il < 1/ for A > 0. Let A € p(/). We have

AMA, +X) A (A4, +22)

R(M, ) = ~ ’
U —aza, 40t A4, 40

Since every entry in R(A, ) is a compact operator, it follows that
R(A, #7,) is compact.
Since & is bounded, it follows that |2l < A, for some A,. Thus,

R(Ao, ) = (Mg — (4, +2)) " = (A —%) —2) "

= R(Ao, %) [1 = R(Ag, ) 2]

= R( A, %) Z (R(/\O,MO)Q) '
n=0
The convergence of the infinite series in the above equation is due to
IR(Ag, ) 2| < [IR(Ag, LI || < [IR(Ag, #)IIAg < 1. Thus R(Ay, &) is
compact, and hence R(A,.%) is compact for each A in p(%). Similarly, one
can show that R(A,.o*) is also compact.
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(v) By Theorems 2.2 and 2.4, let {g,}7_, be an orthonormal set of
eigenvectors of A corresponding to the eigenvalues {A,},_, with A, = 0 <

A < A, < -+ Let w be an eigenvalue of «/. Thus,
¢ (21 7 for (21 EFXT,
P2 P2 P2

which is A4Y%, = we, and (—AY2 + 147 Y?)p, = pe,. From this we
have A~Y2(—A, + r)e, = w(A; %) and thus —A¢@, = uip,. Hence
I h a S

to be +iy/A, for n > 0 (denoted by +u,), and [&,,(+p,/ /A, +1),T",
denoted by @, ,, are eigenvectors corresponding to +u,, respectively.
Zero is an eigenvalue of 7, for w1 ¢,, ¢,1” =[0,01" implies [¢,, ¢,] =
Bl @y, 0] for some scalar B, and we denote [g,,0]" by ®_,. By a theorem
in [5, X111.4], that the spectrum of 7, o (&), is { p,: pto = O, p,, = £iy/A,,
n < 1}, where A,, n = 1,2,..., are the eigenvalues of A.

LeEMMA 3.2.  The operator & is the infinitesimal generator of a C, semi-
group T(t), t > 0, on 7 satisfying |[T(t)|| < e'?V, where Z is defined in the
proof of Lemma 3.1.

Proof.  Since (i/,)* = isz,, we know from the celebrated Stone theo-
rem [8] that &/, is the infinitesimal generator of a C, group of unitary
operators on /7. Since & is a bounded linear operator of .7, it follows from
the perturbation theory of the semigroups of linear operators [4] that
& =, + generate a C, semigroup on #, denoted by T(¢), ¢ > 0, and
1T < el

TheoreM 3.3. () If Z, € D(AY?), Z, € H, u € L*(0,T) 0< T <
+ ), then the abstract Cauchy problem (3.2) has a unique mild solution:

(i) if Z, € D(A), Z, € D(AY?), u e CY0,T) 0< T < +=), the
Cauchy problem (3.2) has a unique classical solution.

Proof. We first note that D(AY?) = D(A"?) > D(A). It follows from
the assumption in (i) that z, = [(4AY?y,)", 7" €%, and then problem
(3.2) has a unigue mild solution. Since the hypothesis (ii) implies that
zo, € D(&), and hence problem (3.2) has a unique classical solution [12].

Remark. The existence and uniqueness of problem (3.2) are equivalent
to the existence and uniqueness of original flexible robot control system.
3.2. The Approximate Controllability and Observability of the System

The following two theorems can be found in [3], and their proofs are not
included here.
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THEOREM 3.4. Let T(¢) be the C, semigroup generated by /. System
(3.2) is approximately controllable if and only if one of the following is
satisfied:

D If Z*T@)Y*V =0, then ¥ =0 for ¥V in Z.
(i) If ¥R\, &YW =0 forall Ain p(&), then ¥V =0 for ¥ in #.

THEOREM 3.5. Let W(t) = {C, z)» be an observation equation. System
(3.2) is observable if and only if one of the following is satisfied:

) IfC*T@)® = 0, then ® =0 for ® in Z.
(i) IfC*RA, )P =0 forall \in p(&), then ® =0 for ® in 7.

It is clear from the proof of (v) of Lemma 3.1 that the positive
eigenvalues of . have multiplicity 1. Now we show that the zero eigen-
value has multiplicity 2. /([ ¢,, ¢,17) = @, implies [ ¢, ¢,] = [ BE,, (1/
Vr)@,] for some scalar B, and we denote [0, ,]” by ®_,. Since

A ¢, ,]I") = ®_, has no solution for ¢,, ¢,, we see that the eigenspace
of 0 is spanned by ®_, and ®_,. Similarly, we can get a family

of eigenvectors of &* corresponding to + u,. The eigenspace of 0 for .&*
is spanned by ®,, and ®_, with &*®_;=0and &*®,,=d_, We
normalize {®,},{¥}, n = £1,+ 2,..., in the following way. Let ®, =
@, /|, and (¥, &,> =1forall n = +1, + 2,.... Then {®,} and (¥}
form a biorthogonal basis for .7 i.e., (\Tfm, CT),) = §,, ,, such that every ®
in 2Z can be uniquely expressed as

o

D= Y (D, T)D, + (D, D, )P, + (D, D_HD_, (3.3)
Inl=1

for (&, ¥,) =5, and (¥, &, > = (¥ & > =(D,,, P ,) =0. Now
we are ready for the following theorem.

THEOREM 3.6. Let b € H, & = [0, b]". Then system (3.2) is approxi-
mately controllable if and only if

(b,)y #0, n=0 (3.4)
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Proof. For A € p(&) and ® €%, we have by (3.3)

(®,%). 1
RANA)DP= ), ——— D, + (D, D, )P,
In|=1 /\_/J“n A

1 Vr
+ X((I),(I)_OND_O + 7<c1>,<1>_0>al>+0.

For every u € L2[0,T] (0 < T < «), we have
(B*R(\, )V, u)
(W, R(\, &) Bu)

< <\If ®,) ~ 1
= ) <@u,wn>+ —(Bu, @ (¥, D)
Inl=1

1 Vr
(B, @YW o) + o (Bu, W)W, D o)

wﬁ(*lf(b),/)\+

(bu, @)y + —(bu 0), (¥, D_o)

.
S (b, ) W), (35)

where {17,, =BY,. It is clear that {1/(A — w,),1/A,1/A% are linearly
independent functions in A. Thus, the above equation equals zero for all
in L?[0, T if and only if

(¥, 8,)(bu, §,), = 0,
(¥, (D—o>(b”: '950)H =0, (3.6)
(W, )(bu, @)y =0
for |n|=1,2,... and all u in L?[0, T]. Now (3.4) implies that there exists

w, in L*[0, T such that (bu,, @)y # 0 for n = 0,1,2,.... Letting u = u,
in (3.6) we see that (3.3) implies (¥, ®,) = (W, <I>+0> =(V,®_,) = 0

for [n|=1,2,..., in (3.5), and hence ¥ = 0. By this, we have shown that
condition (3.3) is sufficient via Theorem 3.4. Conversely suppose that
(b, g)y =0 for all n=0,1,2,.... It follows from (3.4) that

(BFR(N )V, wy, = 0 for all ¥, and (ii) in Theorem 3.4 does not hold.
Hence, Theorem 3.6 is proved.
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THEOREM 3.7. The flexible robot system (3.2) is approximately control-
lable.

Proof. We first note that, in system (3.2), b = [1/m,0,0,0]", and then
(b, 8)y = ¢,(0) (n > 0). However, in view of Theorem 2.4 we see that
¢,(0) # 0 and thus we know from Theorem 3.6 that flexible robot system
(3.2) is approximately controllable.

Next, we shall discuss the observability of the flexible robot system. Let
b,=b, b,=[0,1/M,0,0]", b, =1[0,0,1/7,0]". (3.7)

Now we consider the following six major point observations for system
(3.5):

Wa(t) = (b Ty Wolt) = (. 5(1)) ;0 i=1,2,3, (38)

where W, (1), W,(¢), i = 1,2,3, denote the displacement x(¢), the line
velocity x(¢z) of the moving body on the end of the arm, the total
displacement y(z, 1), its velocity y(¢,1) of the end of the arm, the turning
angle w'(¢,1), and the angular velocity w'(¢,1) of the end of the arm,
respectively.

Similarly, we consider the following observation equations for system
(3.2):

Wi(t) =<C,, z(t)), i=1,2,...,6. (3.9)

Here

-1/2 -1/2
C1= I:Ay bljl] C2=[b0:|’ C3=[Ay bZ:I’
0 1

0 AZY?%p 0
colt) e[ el

Explicitly, W,, (t) = W (t), W, (t) = W (1), i = 1,2,3.

THEOREM 3.8.  The system (3.2) is observable for the measured data W(t)
and W(t), while it is not observable for the measured data W,(t),
WL(0), Wy (1), Wy(¢). In other words, the flexible robot system (2.4) is observ-
able for the displacement x(t) of the moving body on the end of the arm and
the angular velocity W'(¢,1) of the end of the arm, but for other measured
data the flexible robot system is not observable.
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Proof. By Theorem 3.5, (3.2) with Wi(¢),.%#, i = 1,2,...,6, is observable
if and only if

C*R(\, )P =0,
VA€ p(&) = & =0, VO ez

(0,7,

~ 1
<Ci1®n> + _<(D1\I,+0><Cil(b+0>
A=, A

@li

nl=1

1
+ X(@,‘I’_())(Ci,(b_o)

‘/’_,
+7<C51(D+0><(D11P70>=0 = &=0 Vbez

(C,, NP, W>=0 n=+1,+2,...
<Ci'q)+0><q)'q’+o> =0

‘/_
<Cinq)—o> + Tr<civq)+o><¢>, l/Lo> =0
= & =0, Vb ez

The last equivalence relation is due to the fact that

{ 1 1 1}°°
l_!_2
A—pu, A A =1

is linearly independent. Clearly, one necessary condition for the above
implication to be valid is that {C;, ®,,) # 0, for {C,,®_,) = (C,, D, >
={Cq, P, = 0. Thus W,, W,, and W, are not observable.

Since, for any n > 0,

- 1
®IC, D, Y= —— ¢ (0),
D, IKC,, @, > /\n+7%( )
10, KCo > = g (1

n 31 ¥ 0/ T \/m%( )’

1D, IKCs, D, > =

1
ﬁ%(”’
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and ¢,(0) # 0, ¢/(I) # 0 (see Theorem 2.4) (n > 0), it follows that
(O, ¥,,>=0 and ®=0, VIez

This implies that the measured data W,, W, are observable.

Because we cannot assure that ¢,(/) #+ 0 for n > 0, we cannot obtain
from ¢, (D{P,¥,> =0 (n=0,+1,£2...) that & = 0. Therefore, the
system with measured data W, is not observable.

4. THE FEEDBACK CONTROL FOR THE BOUNDARY
POINTS OF THE SYSTEM

In this section we shall consider the feedback control of flexible arms
under the general control law (2.2). In practical applications, it is necessary
to control not only the vibrations but also positions of the moving body. It
should be pointed out that in general the control for the robot is realized
by the sensors and the actuators which were collected at the two ends of
the arm of the robot. Therefore, it is imperative to design the feedback
control for the boundary points of the robot system.

4.1. A Feedback Control for the Output of the Boundary Points

In system (2.1), if we add the controllers v,(¢), v,(¢) to the root end of
the arm and assume X(¢) = 0, then system (2.1) becomes as follows:

pw(t,r) + EmW"(t,r) =0,
w'(t,0) = w(t,0) =0,

. (4.1)
Ew"(t,1) — Mw(t,1) +v,(t) =0,
EW"(t,1) +Jw'(t, 1) — v,(¢) =0,
where the controllers are defined as
v,(t) = Mw(t, 1) — Bw(t,l) — EI,
(1) (t,1) ( ) @2)
vy (2) = —Jw'(¢t, 1) — yw(t,1).
Then the closed loop system (4.1) becomes as follows:
pw(t,r) + EmW"(t,r) =0,
W/ t,O =w tyo = Ol
(1,0) = w(1,0) (43

Emw"(t,1) = Bw(t,1),
Ew'(t,1) = yw'(t,1).
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It is appropriate to point out that system (4.1) follows control law (2.2). So
this system is both approximately controllable and observable. Now we
shall stabilize it with additional controllers v,(¢), v,(¢).

Now, we introduce the space

Z={W=(ww) =heHZ0,1),w e L*0,1)},
where HZ(0,1) is the Sobolev space
H2(0,1) = {e € L}(0,1) = ¢, ¢', ¢" € L*(0,1), ¢(0) = 0, ¢'(0) = 0}.

The inner product in # is defined as follows:
1 l. =
W, Ve = Elf w'o" dr + pf wodr,
0 0

where W= (w,w)", V = (v,0)" € H, i = 1,2. We can verify that the space
H with the inner product defined above is a Hilbert space. We shall also
define an energy norm as follows:

~ ! I . ~
E(t) = %El]lw”l2 dr + %p/lwl2 dr, W ez7. (4.4)
0 0
We can describe (4.1) as a dynamical system

W(t) =ZW(t), @5)
w(0) = W,, '

where

0 1
EI ¢*

p art

]
I

and D(&) = {(w,w): we H“0,I), we HEZO,D, EW"(1) = Bw(t, 1),
Ew'(1) = —yw' (D} while H*©0,D) ={¢: ¢, ¢, ¢", ¢", ¢"" € L*0,D}. In
this notation we show the following lemmas.

LEMMA 4.1. Forall t > 0, we have E(t) < 0.

Proof.  All functions considered here are real-valued. By the first equa-
tion in (4.1) we have

dE(t)
dt

— EI f W dr + p f "wivdr = EI f "W dr — EI / Sow dr.
0 0 0 0
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By integration by parts, with w € HZ, the above equation becomes
dE(t)
dt

. . l.
= Elflw”w” dr — EI{(ww’”)Ié — fw’w”’ dr}
0 0

= E]fo’w"w" dr — EI{(ww")lo} + EI{(v'v’w”)Ié - [Olw"w" dr}

= EI{(ww")lo} + EI{(W'w")lo}. (4.6)

It is easily seen that w'(¢,0) = (d/dt)(w'(¢,0)) = 0, w(¢,0) = 0 from (4.1).
It also follows from the last two equations in (4.3) that —ERw(¢, Dw” (¢, 1)
— w(t,0w”(t,00} = —Bw3(t,1) and EKw'(t,Dw"(t, 1) — w'(t,0w"(¢,0)}
= —y[w'(¢, DI>. Thus, (4.6) becomes dE(t)/dt = —pBw3(t, 1) —
yIw'(t, D]? < 0.

To investigate the stability of the robot control system of (4.5), we shall
define a Lyapunov functional as follows:

~ 1.
V(1) = 2(1 = e)E(1) +2p [ mivdr,
0
LEMMA 4.2. Forall t > 0 we have

[2(1 — e)r — Q]E(t) < V(1) < [2(1 — €)t + Q] E(1).

Proof. It is easy to see that 2 [(mw'wdr < [lr(w? + w?)dr < Ifiw'® +
w2 dr. Now

w(t,r)? = (/:w'(t,r) dr) < fordr-forw”(t,r)z dr

) L2
<r-|wdr<l|w'?dr.
Jwrar=i,
Applying Cauchy’s inequality we get

folw’z dr < l/:w”z dr - foldr = lzfolw”2 dr.

Thus,

pi[rw’v'vdr < pl{lzflw”2 dr + flv'vz dr}
0 0

! l.
=p13‘/;w”2dr+lpfow2dr

< QE(1)
with Q = 2pI3/EI + 2L.
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Then the result in Lemma 4.2 follows easily.

LEMMA 4.3.  For any real number t large enough, we have
V(r) < 0.
Proof.  Applying integration by parts, we can obtain that
Zp/Olrv'v’v'vdr — plv?(1,1) — pfo’wzczr.
By the first equation in (4.2) we have

2pflrwf43dr = —2E1flrw’w”” dr
0 0

1
—2EI(rw'w")|y + ZEIf w”[w' + m" ] dr
0

= 2EIw'(t,1)w" (1)

)
+ 2EI (—w” )
2

2EIW (t,1)w"(t,1)

1 ;1 ;
* 2E1{5w"2(r,1) = [wrtdr+ (wwlo = [w dr}

_351fl(w")2 dr + EN[w"(1)]?
0

— 2EIw' (¢, 1)[ " (£,1) — w"(¢,1)]

IA

—3E1fl(w”)2 dr +
0

Ell EL 2 )*
+ — '(t,
2,7 (w'(t,1))
EI
+ 2EI(e; + &)1 ['(w')? dr + —1%82[in(1,1)]",
0 €,

whenever taking €, and e, small enough.
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Combining the above equality and inequality, we have

V(1) = 2(1 — e)E(t) + 2(1 — ) E(1) + 2p [ rivivdr + 2p [riivar

2[2
< [—2(1 —€)tp+ —_—EI (w(z,1))?
7’2
+|—2(1 — e)tr + | = + L|EI|(w(z,1))?
2¢,

H[=2- e+ 2(e + &) P|EI[ (W) dr — ep [ WP,
0 0

and if r > T, (T} is large enough), €, and €, are small enough, it is clear
that V(1) < 0.

THEOREM 4.4.  For system (4.5), we have the following results:
o is the infinitesimal generator of a C, sengroup S(t), t > 0, on #Z that

decays exponentially, and, for any w(0) € D(&7), there is a unique classical
solution W(t) to the system (4.5) satisfying

IW ()l < Mye™+o",

where M, and ., are positive constant numbers.
Thus, the robot feedback control system (4.3) is asymptotically stable with
exponential decay.

Proof. We decompose o7 =y% +3, where

0 0
7 - | EI ¢ 5-10 1
A AR and 2 [0 ol
p Jr

It is clear that Mo is the infinitesimal generator of a ¢, semigroup, and
thus 7, the perturbation of &/, by a bounded operator 2, is also an
infinitesimal generator of a ¢, semigroup S(¢), t > 0. By Lemma 4.2, we
see that if there is 7, such that 2(1 — )T, — Q > 0, and

E(t) <V(T,) /(21— e)t— Q)  (t=T,),

where T, = max{Ty, /(1 — €)}. It is known from Lemma 4.3 that V(¢) is
unlformly bounded, and therefore £(¢) = O(1/t) for n large enough, thus

fx(ﬁ(t))2 dt < +oo,
0
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It follows from a theorem in [8] that for a solution to decay exponen-
tially there are constants M, and w, > 0 such that

E(1) < E(0) M e+,

Since  E(1) = HIW@I* = HISOWOI? and [fE*(t)dr < =, we have
JEIS(O)I* < . Thus, we have, for some constant M,,

IS(2)Il < Mye™+ot.
Since the solution of (4.5) is W(¢) = S(:)W(0) [8], it should satisfy
W) < IWO)IIS()II < Mge™*",
where M, = |[W(0)|[M,. This implies that the solution of system (4.5) is
exponentially stable.
4.2. Dynamical Feedback Control

Consider the following feedback control:
vy(1) = Miw(z,1) = fi(1),
va(1) = =W (1, 1) + f,(2),
where f(1) = €7z, + d.w,(t) and the z,’s are solutions of z, = A,z, + bw,(1)
with 4, an n; X n; matrix, b, ¢' € R" the constant column vectors, d, a

real number, w,(t) = w(t, ), w,(¢) = w'(¢,1),and z,(0) = 0,i = 1,2.
For controller (4.7), we assume that

(4.7)

() All the eigenvalues of the matrixes A4; (i = 1,2) are located on
the left half of the plane;

an (4, 'l;, ¢,) is controllable and observable;

() _d, >0, d, > 0; moreover, there are vy, > 0, v, > 0 such that
d, > vy, d, > v,, and

Re{g,(x)} > v, i=1,2, xR,

where g(x) = d, + ¢(xI — A)"'b, (i = 1,2).

Since (D—(11) are valid, we obtain from the Kalman-Yacubovitch
lemma [15] that, for the given positive numbers €, i = 1,2, and any
positive defined symmetric matrixes Q; € M, , the space of all n; X n;
matrices, i = 1, 2, there exist positive defined symmetric matrixes P, € M,, ,
i = 1,2, and columns vectors ¢; € R", i = 1, 2, satisfying

AP+ P A, = —q,q9] — Q;,

~

PE"%E': di =% q;

11
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Now, we introduce the following space of functions:
= HE(0,1) X L?(0,1) X R™ X R"
equipped with inner product
((@1(), 9a() by ) (@2() a() B €2) )z,
= fol( EIG. &y + pyih,) dr + b3P,b, + c3Pyc,,  (4.8)
and define the linear operator &7: 7 — %, by

Ml(@(')l ‘/’(')azlvzz)T

T

- {w(-), “E ), Az B (D). gz + B ()
with domain
D(s) = {((). ¥ (), 21, 2,): ¢ € HY(0,1),
Y€ H2(0,1), ¢(0) = ¢'(0) = ¥'(0) =0,
w, €ER", w, € R"2, EI¢"(l) + ¢iw, +d ¥ (l) =0,
—Elg"(1)Tw, + dy (1) = 0},

In terms of the above notation we can describe the system (4.1) with (4.7)
as the following linear evolution equation in /Z:

W(r)
dt

+aW(t) =0, 49)

W(0) = W,,

where W(t) = (w(z, ), w(t, "), 2, z,)".
It is easy to verify that the space ., with inner product (4.8) is a Hilbert
space, and so the energy of the system can be derived from (4.8) as follows:

~ Iro.
E(t) = W (0)II° = %f [ pw? + El(w”)z] dr + z]P,z; + 23 P,z,.
0
(4.10)

LEMMA 4.5.  Suppose system (4.9) satisfies conditions (1)—=(111). Then the
energy of the system given by (4.10) is a decreasing function of time t along
with the classical solution to (4.9).
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Proof. Using control (4.7), we have
E(1) = fO’[ piiv + EIw'"| dr + 51Pyz, + 21P,2, + 33Py 2, + 25 Py 5,
= —Ew(t,)w"(t, 1) + EW'(t,)w(t,1)
+(Az] + Dy (2, 1)) Pyzy + 2iPy(Ayzy + B]iv(1,1))
+[Azzs + 3w (t,1)| Pyz, + 23P,[ Ayz, + bW/ (2,1)]
= —w(t,1)[Ez, + dv(1,1)] = EW (1,1) [T 2, + dv' (1,1)]
+ 2]( AP, + P A;) 2, + 2b7P zw(1,1)
+ 25(AYP, + Py Ay) 2z, + 2b3 Py 2w (1, 1)
=~y (1,1) = v, [W(1,)]° — €2]0:2 — €230,2,
V& = i~z V& - v - za,

It follows easily that E,(f) < 0.

2

In order to investigate the stability of the feedback control system (4.9),
we now consider a Lyapunov functional as follows:

Vi(1) = 2(1 = e)E(1) + 2p [T, )W (t,r)dr (0 <e<1).
0
LEMMA 4.6.  Let B(t) = [{rw(t, r)W'(¢t, r) dr. Then there exist the positive

constants a;, i = 0,1,2,...,5, such that the following inequalities hold:

B < aoEy(r)  (120),

dp(1)
dt

< —a E(t) + apw?(t,1) + ap[ W (2, )]’
+ a,2{042; + a5250,2,.

Proof. By definition of B(¢#) and integration by parts, we have
1 .
B < L[ (w)*()* dr
0

< (13/E1)f1EI(w”)2 dr + (l/p)/lpw2 dr
0 0

< coEqy(t),
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where ¢, = max{/®*/EI, l/p}, and
dp(1) .
J

1. .
mw' dr + frww’ dr
dt 0

1 ., 3EL. I
_E/;(w) dr—z—pj;(w) dr+§w (t.1)
IEI —_ ~., 2
_2—p[5222 + d,w (t,l)]

- %w’(t, 1){1[2‘;z1 +dov(1, )] - [Gz, + Efzw’(t,Z)]}.

THEOREM 4.7. The dynamical feedback control system (4.1) and (4.7)
about the flexible robot is exponentially asymptotically stable.

Proof. From Lemma 4.6 we can easily see that
[2(1 — €)t — ¢ | Ei(1) < Vi(1) < [2(1 — €)1 + ¢o| Ef(2) (4.11)
and
Vi(t) = 2(1 = e)Ey(1) + 2(1 — €) Ex(1) + 2pB(1)
< [—2(1 =€)yt + 2pa,|W?(2,1)
+[=2(1 = €)y,t — 2pag][W(1,1)]?
+[-2(1 - €) et + 2pay| 220,z
+[—2(1 - €) eyt + 2pas|250,2, — €E,(1)

-2 - oy [YT = vty - |

V& =) - 74| ).

It is obvious that if + > T, and T, is large enough, then we have that
Vi(t) < 0. Due to (4.11) we know that

E(1) < Vi(T,)/(2(L — €)t —¢,), t=T,,
where T, = max{T},, pc,/(1 — €)}. However, this implies that V(T,) < o,
and, for ¢ large enough, we have E,(¢) = O(1/t). Thus,

waf(t) di < +oo.
0
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By means of the decision theorem of the solution for exponential decay
[12], there exist M, > 1 and u, > 0 such that

E(t) < E(0)M,e *,

and therefore the dynamical feedback control system (4.1) about the
flexible robot is exponentially asymptotically stable, that is,

10.

11.

12.

13.

14.

W ()7 < Mye .
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