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1. INTRODUCTION

Ž . � YLet X be a topological space, Y a metric space, C Y � a � 2 : A is
4 Yclosed and convex , where 2 is the set of all nonempty subsets of Y.

Ž . � Ž . 4Suppose A � Y and denote B A, � as the set x � Y : d x, A � �
Ž . Ž .where d x, A � inf d x, y .y � A

A continuous mapping f : X � Y is called a continuous selection of a
Y Ž . Ž .multivalued mapping F : X � 2 if f x � F x for all x � X.

Y Ž .F : X � 2 is called lower semicontinuous l.s.c. at x � X, if for each0
Ž . Ž .y � F x and � � 0, there exists a neighborhood N x of x s.t.0 0 0 0

Ž . Ž . Ž .B y , � � F x � � for all x � N x . F is called lower semicontinuous if0 0
F is l.s.c. at each point of X.

� �In 1956, E. Michael 1 established the following continuous selection
theorem.

THEOREM A. Let X be a paracompact space and Y a Banach space. Then
Ž .e�ery l.s.c. mapping F : X � C Y admits a continuous selection.

1 Supported by the National Natural Science Foundation of China.
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Since then, this result has been generalized in many aspects, such as
from l.s.c. cases to various other kinds of l.s.c. cases, and from convex

Ž � �.valued to non-convex valued cases see, e.g., 2, 3, 6�10 . In 1985, F. S. De
� �Blasi and J. Myjak 3 introduced weakly Hausdorff lower semicontinuity.

That is, a mapping F : X � 2Y is called weakly Hausdorff lower semicontin-
Ž .uous H -l.s.c. at x � X if given � � 0 and a neighborhood V of x ,w 0 0

Ž . �there exist a neighborhood U U � V of x and a point x � U s.t.0
Ž �. Ž Ž . . �F x � � B F x , � . If x � x, we call F Hausdorff lower semicontin-x �U

Ž . Žuous H-l.s.c. at x . F is weakly Hausdorff lower semicontinuous resp.0
. Ž .Hausdorff lower semicontinuous if F is H -l.s.c. resp. H-l.s.c. at everyw

point of X. Obviously, a H-l.s.c. mapping is l.s.c. and H -l.s.c. A continu-w
� �ous selection theorem was given in 3 as the following.

THEOREM B. Let X be a paracompact space and Y a Banach space. Then
e�ery H -l.s.c. mapping admits a continuous selection.w

Since a H -l.s.c. mapping F : X � 2Y is not necessarily l.s.c, and vicew
versa, Theorem A and Theorem B do not follow from each other.

In Section 2 of this paper, we establish a continuous selection theorem
which is a generalization of both Theorem A and Theorem B. We also
investigate the continuous selection of a class of multivalued mappings, say
partial lower semicontinuous mappings, in Section 3. In addition, as some
simple applications, we give a fixed point theorem and a theorem about
differential inclusions, which generalize some known results.

2. THE CONTINUOUS SELECTIONS OF r-LOWER
SEMICONTINUOUS MAPPINGS

Let X be a topological space and Y a metric space. F : X � 2Y is called
Ž . Ž � �.almost lower semicontinuous a.l.s.c. at x � X see 2 if for each � � 0,0

Ž . Ž Ž . .there exists a neighborhood N x of x s.t. � B F x , � � �. F0 0 x � NŽ x .0

is called almost lower semicontinuous if F is a.l.s.c. at every point of X.

Ž . YDEFINITION 2.1. Letting r � 0, 1 , F : X � 2 is r-lower semicontinu-
Ž .ous r-l.s.c. at x if F is a.l.s.c. at x and the following statement is true:0 0

Ž . Ž .P For every � � 0 and every neighborhood N x of x , if y �0 0 0
Ž Ž . . Ž .� B F x , � , there exists a neighborhood N x of every x �x � NŽ x . 1 10

Ž .N x s.t.0

y � B B F x , r� , � . 2.1Ž . Ž .Ž .�0 ž /
Ž .x�N x1

F is r-lower semicontinuous if F is r-l.s.c. at each point of X.
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Ž . Ž .If r 	 1 in Definition 2.1, we may choose N x � N x and then the1 0
Ž . Ž .statement P is self-evident. That is why we focus on the case r � 0, 1 .

PROPOSITION 2.1. If F : X � 2Y is l.s.c. or H -l.s.c., F is r-l.s.c. for eachw
Ž .r � 0, 1 .

Proof. Obviously, F is l.s.c. or H -l.s.c. implies that F is a.l.s.c. Letw
Ž . Ž .r � 0, 1 , x � X, � � 0, and N x be a neighborhood of x s.t.0 0 0

y � B F x , � . 2.2Ž . Ž .Ž .�0
Ž .x�N x0

Ž . Ž . Ž . Ž .By 2.2 , we may find a point y � F x � B y , � for every x � N x .1 1 0 1 0
Ž .If F is l.s.c., there exists a neighborhood N x of x s.t. y �1 1 1

Ž Ž . . Ž .� B F x , r� . Then 2.1 holds. Thus F is r-l.s.c.x � NŽ x .1

Ž . Ž .If F is H -l.s.c., since N x is a neighborhood of every x � N x ,w 0 1 0
Ž . Ž Ž . Ž ..there exist a neighborhood N x of x N x � N x and a point1 1 1 0

� Ž .x � N x s.t.1

F x� � B F x , r� .Ž . Ž .Ž .�
Ž .x�N x1

Ž . Ž Ž �. . Ž .At the same time, 2.2 implies that y � B F x , � . Then 2.1 holds, so0
that F is r-l.s.c. The proof is complete.

The converse of Proposition 2.1 is not true. For example, F : R � 2 R is
defined as

�0, 
� , if x 	 0,.
F x �Ž . ½ ���, 0 , if x � 0.Ž

It is easy to verify that F is not l.s.c. or H -l.s.c. at x � 0, but F is r-l.s.c.w
Ž .for each r � 0, 1 .

Now we are in a position to give our main result in this paper.

THEOREM 2.1. Let X be a paracompact space and Y a Banach space.
Ž .Then e�ery r.l.s.c. mapping F : X � C Y admits a continuous selection,

Ž .where r � 0, 1 .

Proof. We construct a sequence of continuous mappings f : X � Yn
such that

Ž . Ž . Ž Ž . n.i For each x � X, f x � B F x , r , n � 1, 2, . . . , andn

f x � � x y ,Ž . Ž .Ýn n , i n , i
i�In
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� 4where � is a partition of unity, and subordinate to some locallyn, i i� In
� 4finite open cover � of X. For each i � I , � is a subset of an, i i� I n n, in

Ž .neighborhood N x of some point x s.t.n, i n, i

y � B F x , r n .Ž .Ž .�n , i
Ž .x�N xn , i

Ž . � Ž . Ž .� n�2ii For each x � X, f x � f x � r , n � 2, 3, . . . .n n�1

Ž .Step 1. Construct f satisfying i . For each x � X, since F is a.l.s.c.,1 0
Ž .there exist a neighborhood N x of x and a point y � Y s.t. y �0 0 0 0

Ž Ž . . � Ž .� B F x , r . Since X is paracompact, the open cover N x : x �x � NŽ x .0

4 � 4 Ž .X of X has a locally finite refinement � . Then � � N x for1, i i� I 1, i 1, i1

Ž .each i � I , where N x is a neighborhood of some point x , and1 1, i 1, i

Ž Ž . . � 4y � � B F x , r . Suppose that � is a partition of unity1, i x � NŽ x . 1, i i� I1, i 1

� 4and subordinate to � . Set1, i i� I1

f � � x y .Ž .Ý1 1, i 1, i
i�I1

It is trivial to check that f satisfies all our requirements.1
Ž .Step 2. Supposing that we have f satisfies i up to n � k and constructn

Ž . Ž . Ž . � 4f satisfying i and ii . Set I x � i � I : x � � for each x � X.k
1 k 0 k 0 k , i 0

Ž . Ž Ž . k .Then I x is a finite set, and y � � B F x , r for eachk 0 k , i x � NŽ x .k , i

Ž . Ž .i � I x . Since F is r-l.s.c., for each i � I x , there exist a neighbor-k 0 k 0

Ž . Ž k . Ž .hood N x of x and a point y � B y , r s.t. for all x � N xi 0 0 i k , i i 0

y � B F x , r k
1 . 2.3Ž . Ž .Ž .i

�Ž . Ž . Ž . Ž .Let N x � � N x , y � Ý � x y . Then 2.3 holds0 i� I Ž x . i 0 0 i� I Ž x . k , i 0 ik 0 k 0
�Ž . Ž . Ž Ž . k
1.for all x � N x and i � I x . Since B F x , r is convex, for all0 k 0

�Ž .x � N x we have0

y � � x y � � x y � B F x , r k
1 . 2.4Ž . Ž . Ž . Ž .Ž .Ý Ý0 k , i 0 i k , i 0 i
Ž . i�Ii�I x kk 0

Ž k .Since y � B y , r ,i k , i

y � f x � � x y � � x yŽ . Ž . Ž .Ý Ý0 k 0 k , i 0 i k , i 0 k , i
i�I i�Ik k

� �� � x y � yŽ .Ý k , i 0 i k , i
i�Ik

� r k .
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Ž .On the other hand, since f x is continuous, there exists a neighborhoodk
�Ž . Ž .N x of x s.t. for all x � N� x0 0 0

k�1 kf x � f x � r � r .Ž . Ž .k 0 k

�Ž .Thus, for each x � N x we have0

k�1y � f x � r . 2.5Ž . Ž .0 k

Ž . �Ž . �Ž . Ž . Ž .Let N x � N x � N x . Then y satisfies both 2.4 and 2.5 for0 0 0 0
Ž . � Ž . 4each x � N x . Since X is paracompact, the open cover N x : x � X0 0 0

� 4of X has a locally finite refinement � . Then for each i � I ,k
1, i i� I k
1k
 1

Ž .there exist a neighborhood N x of some point x and a pointk
1, i k
1, i
Ž .y s.t. � � N x and y satisfiesk
1, i k
1, i k
1, i k
1, i

y � B F x , r k
1 2.6Ž . Ž .Ž .�k
1, i
Ž .x�N xk
1, i

and

y � B f x , r k�1 . 2.7Ž . Ž .Ž .�k
1, i k
Ž .x�N xk
1, i

� 4Suppose that � is a partition of unity and subordinate tok
1, i i� Ik
 1
� 4� . Setk
1, i i� Ik
 1

f x � � x y .Ž . Ž .Ýk
1 k
1, i k
1, i
i�Ik
1

Ž .Obviously, f is well-defined and continuous. For each x � X, 2.6k
1 0
Ž . Ž Ž . k
1. Ž . � Ž . Ž .�implies f x � B F x , r , and 2.7 implies f x � f xk
1 0 0 k
1 0 k 0

k�1 Ž . Ž .� r . Hence f satisfies i and ii .k
1
� 4 Ž .Now we have constructed the continuous sequence f satisfying i andn

Ž . Ž . � 4ii by induction. By ii , f is a uniformly Cauchy sequence, and there-n
Ž .fore converges uniformly to a continuous f : X � Y. It follows from i

Ž . Ž .that f x � F x for every x � X. This completes the proof.

Remark 2.1. By Proposition 2.1, we know that Theorem 2.1 is a
generalization of both Theorem A and Theorem B.

3. CONTINUOUS SELECTIONS FOR PARTIAL LOWER
SEMICONTINUOUS MAPPINGS AND APPLICATIONS

DEFINITION 3.1. Let X be a topological space and Y a Banach space.
Y Ž .F : X � 2 is a partial lower semicontinuous p.l.s.c. at x � X, if0

Ž1.Ž . � Ž .F x � y � Y : for each � � 0, there exists a neighborhood N x of0 0 0
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Ž Ž . .4x s.t. y � � B F x , � � �. F is partial lower semicontinuous0 0 x � NŽ x .0

if F is p.l.s.c. at every point of X. F Ž1. is called the main mapping of F.
Generally, for each n � N, F is partial lower semicontinuous of order n if

Žn�1. Ž Ž0. . Žn.F is p.l.s.c. where F denotes F , and the main mapping F of
F Žn�1. is called the main mapping of order n of F.

Ž . Ž1. Ž1.Ž .PROPOSITION 3.1. 1 If F is p.l.s.c., F is closed-�alued and F x
� F x for each x � X.Ž .

Ž . Ž1.2 If F is con�ex-�alued p.l.s.c., F is con�ex-�alued.
Ž .3 If F is closed-�alued, F is l.s.c. if and only if F is p.l.s.c. and

F � F Ž1..
Ž .4 If F has a continuous selection f , F is p.l.s.c. of order n for each

n � N and f is a continuous selection of F Žn..

Ž . Ž . Ž .Proof. By the definition, it is easy to verify that 1 , 2 , and 3 hold. To
Ž .prove 4 , suppose f is a continuous selection of F. Given x � X and0

Ž . Ž . Ž Ž . .� � 0, let y � f x . Then f x � � B f x , � for some neigh-0 0 0 x � NŽ x .0

Ž . Ž . Ž Ž . .borhood N x of x . Thus y � f x � � B F x , � , which0 0 0 0 x � NŽ x .0

Ž . Ž1.Ž .shows that F is p.l.s.c. at x and f x � F x . Since x is arbitrary, F0 0 0 0
is p.l.s.c. and f is a continuous selection of F Ž1.. Take F Ž1. in the place of
F in the above discussion. We know that F Ž1. is p.l.s.c. and f is a
continuous selection of F Ž2.. Repeat this discussion finite times. Then we
get that F is p.l.s.c. of order n for each n � N, and f is a continuous
selection of F Žn.. This completes the proof.

Ž . Žn.By Proposition 3.1 3 , if F is p.l.s.c. of order n, and F is l.s.c.,
Žn. Žn
k . Ž .F � F for every k � N. By Proposition 3.1 4 , if F is p.l.s.c. of

order n, to discuss the continuous selections of F, it is sufficient to
consider those of F Žn.. By Theorem 2.1 and Proposition 3.1, that F is

Ž .r-l.s.c. for some r � 0, 1 implies that F is p.l.s.c. of order n for every
n � N, and we can immediately obtain the following theorem which is
actually Theorem 2.1 when n � 1.

THEOREM 3.1. Let X be a paracompact space and Y a Banach space.
Ž . Žn�1.F : X � C Y is p.l.s.c. of order n for some n � N, and F is r-l.s.c. for
Ž .some r � 0, 1 . Then F admits a continuous selection.

ŽThe following example is a modification of a counterexample men-
� �.tioned in 2 which was kindly communicated by Professor F. Deutsch.

� � R 2
EXAMPLE 3.1. Suppose that F : 0, 1 � 2 is defined as

1 1OA , if x � , , n � 1, 2, . . . ,Žn n 
 1 nF x �Ž . ½ OA , if x � 0,�
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Ž . Ž .where OA is the line segment from O � 0, 1 to A � 1, 0 , and OA� � n
1Ž .from O to A � 1, , n � 1, 2, . . . .n n

Ž .It is not difficult for us to verify that, for every r � 0, 1 , F is not r-l.s.c.
1at x � for n sufficiently large. So Theorem 2.1 cannot be applied here.n

But it is easy to verify that F is p.l.s.c. and

1O , if x � , n � 1, 2, . . . ,nŽ1.F x �Ž . ½ F x , otherwise.Ž .

By definition, it is easy to check that F Ž1. is H-l.s.c. at x � 0, and H -l.s.c.w
Ž1. Ž .but not l.s.c. at x � 0. Thus F is r-l.s.c. for each r � 0, 1 . By Theorem

3.1, F has a continuous selection.
Furthermore, it is easy to see that

O , if x � 0,Ž2.F x �Ž . Ž1.½ �F x , if x � 0, 1 ,Ž . Ž

and F Ž2. is H-l.s.c., consequently l.s.c., and then F Ž2. � F Žn. for all n 	 2.

Theorem 2.1 and Theorem 3.1 guarantee the existence of continuous
selections for multivalued mappings. So the fixed point theorems concern-
ing the continuous single-valued mappings can be naturally generalized to
the multivalued case. The following theorem is one which generalizes
Schauder’s fixed point theorem.

THEOREM 3.2. Let X be a Banach space and K � X be con�ex compact.
Ž . Žn�1.If F : K � C K is p.l.s.c. of order n for some n � N, and F is r-l.s.c.
Ž .for some r � 0, 1 , then F has a fixed point in K.

The proof of Theorem 3.2 is an immediate consequence of Theorem 3.1
and Schauder’s fixed point theorem.

The following Theorem 3.3 about differential inclusions is a generaliza-
� �tion of 4, Theorem 2.1 . The proof of Theorem 3.3 is a slight modification

to that one, so we omit it here.
n Ž .THEOREM 3.3. Let � � R � R be open with 0, x � �. If F : � �0

Ž n. Žn�1.C R is p.l.s.c. of order n for some n � N, and F is r-l.s.c. for some
Ž . Ž .r � 0, 1 , then there exists some inter�al I � � , � , � � 0 � � and at� 
 � 


least one continuously differential function x : I � Rn, a solution to the
Cauchy problem for differential inclusion

x� t � F t , x t , x 0 � x .Ž . Ž . Ž .Ž . 0

Ž .Moreo�er either � � 
� or the solution x t tends to the boundary of � as

t � � and analogously for � .
 �
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