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In this paper we present some basic results on the generalized Lebesgue spaces
LP™(Q) and generalized Lebesgue—Sobolev spaces W™ P3)(()). These results
provide the necessary framework for the study of variational problems and elliptic
equations with non-standard p(x)-growth conditions.  © 2001 Academic Press

Key Words: generalized Lebesgue space; Nemytsky operator; imbedding; density.

The study of variational problems with nonstandard growth conditions is
a new topic developed in recent years [2-8, 20]. p(x)-growth conditions
can be regarded as a very important class of nonstandard growth condi-
tions. In this paper we present some basic theory of the spaces LP™(Q)
and W™ P®(Q). Most of the results are similar to those for Lebesgue
spaces L?(Q) and Sobolev spaces W™ ?(Q)), but the Sobolev-like imbed-
ding theorem and result on density are new; they show the essential
difference between W™ 7™)(Q) and W™ ?(Q). These results provide the
required framework for the study of problems with p(x)-growth condi-
tions.

Throughout this paper, for simplicity, we take Lebesgue measure in R”,
and denote by meas () the measure of () C R"; all functions appearing in
this paper are assumed to be real.
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1. THE SPACE L”™(Q)

Let () C R" be a measurable subset and meas ) > 0. We write
E = {u:u is a measurable function in Q}.

Elements in E that are equal to each other almost everywhere are
considered as one element.

Let p € E. In the following discussion we always assume that u € £
and write

o(x,s) =s"®,  VYxeQ,s>0, (1)
p() = pp() = [ @l = [ Ju(x)l" dx, (2)
Lro(Q) = {ueE: Jimp(Au) = 0}, (3)
LE(Q) = {u € E: p(u) <=}, (4)
LIO(Q) = {u € E:VA > 0, p(Au) < =}, (5)
and
L(Q) = {u e 7(Q) tess inf u > 1}. (6)

It is easy to see that the function ¢ defined above belongs to the class @,
which is defined in [18, p. 33], i.e., ¢ satisfies the following two conditions:

1) Forall x € Q, ¢(x,-): [0,0) = R is a non-decreasing continuous
function with ¢(x,0) = 0 and ¢(x,s) > 0 whenever s > 0; ¢(x,s) >
when s — oo,

2) Foreverys >0, ¢(-,s) € E.
Obviously, ¢ is convex in s.
In view of the definition in [18, p. 1], p is a convex modular over E, i.e.,
p: E — [0, ] verifies the following properties (a)—(c):
(@ pw)=0eu=0;
®  p(—uw) = p(w);
© plau + Bv) < ap(u) + Bp(v),Vu,v €EE,Va,B=>0,a+ =1,
and thus by [18], L?™(Q) is a Nakano space, which is a special kind of
Musielak—Orlicz space. L{(Q) is a kind of generalized Orlicz class. It is

easy to see that LP™(Q) is a linear subspace of E, and L{*(Q) is a
convex subset of L?™(Q). In general we have

LIM(Q) c LEO(Q) c LPO(Q).
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By the properties of ¢(x, s) we also have
LPO(Q) ={u€E:IA> 0, p(Au) < »}.

THEOREM 1.1.  The following two conditions are equivalent:

D pel~i(Q).
2) LPO(Q) = LPOQ).

Proof. 1) = 2) is obvious.

2)=1). If 1) is not true, then we can take a sequence {/,} of
disjoint subsets of () with positive measure such that

p(x)>m forxel,.

Choosing an increasing sequence {u,,} < (0,%) such that u,, = % as m —
o, we can find k,, satisfying the inequality

f uf™ dx > L
I, 2m

By the absolute continuity of integral, we can shrink 7, to ,, such that

1
[ ubde = 5
Q,

Denote by x,, (x) the characteristic function of 1,,, i.e.,

1, ifxeq,
Xa,(¥) = 1 ifxeQ .

if we write
uy(x) = ) Uy Xnm(x)>
m=1

then we have
1
/|u x)IP(x)dx Z[ up(x)dx Z — =1,

f|2u ()P dx = Zf 2POup dy > Z2”f uf™ dx = oo

n=1

thus we have u, € L?™(Q), but u, & L{*(Q). This contradicts condition
(2), and we complete the proof. |
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From now on we only consider the case where p € L, (Q), i.e.,

1 <p =tess inf p(x) <ess sup p(x) =p <. (7)
x€eQ)

xe)

For simplicity we write E, = L?*(Q) = L{*(Q) = L{*(Q), and we call
LP™(Q) generalized Lebesgue spaces. By [18, p. 7], we can introduce the
norm |lull ) on E, (denoted by |lull,) as

u
llull, = inf{/\ > 0: p(x) < 1},

and (Ep, llull,) becomes a Banach space.
It is not hard to see that under condition (7), p satisfies

(d plu+0v) <27 (plu) + p(v); Yu,v € E,
() Foru € E,if A > 1, we have

p(u) < Ap(u) < A p(u) < p(Iu) <A p(u),
and if 0 < A < 1, we have
A p(u) < p(Au) < A p(u) < Ap(u) < p(u).
(f) For every fixed u € E,\ {0}, p(Au) is a continuous convex even
function in A, and it increases strictly when A € [0, %)
By property (f) and the definition of |- ||, we have
THEOREM 1.2. Letu € E, \A0}; then |lull, = a if and only if p() = 1.
The norm [|lull, is in close relation with the modular p(u). We have
THEOREM 1.3. Letu € E; then

D ull, <1(=1>1 e plu) <1(=1;> 1)
2) If llull, > 1, then |lull? < p(u) < lull?;
3) If llull, <1, then IIuIIfJ’+ < p(w) < |lull? .
Proof.  From (f) and Theorem 1.2 we can obtain 1). We only prove 2)

below, as the proof of 3) is similar. Assume that [|ull, = a > 1, by Theorem
1.2, p(*) = 1. Notice that 1 < 1, by (¢). We have

1 u 1
o p(u) < P(;) = 1< —=p(u),

so we obtain 2). |
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THEOREM 1.4. Let u,u;, € E,, k =1,2,.... Then the following state-
ments are equivalent to each other:

D lim,  llu, — ull, = 0;
2) lim_ . p(u, —u) =0
3) u, converges to u in Q in measure and lim, _, . p(u,) = p(uw).

Proof. The equivalence of 1) and 2) can be obtained from Theorem 1.6
in [18] and the property e) of p stated above. Now we prove the equiva-
lence of 2) and 3).

If 2) holds, i.e.,

lim fﬂluk —ul”® dx =0,

k— o

then it is easy to see that u, converges to u in ) in measure; thus |u,|” 2
converges to |u|”"* in measure. Using the inequality

|uk|p(x) < 2p+71(|uk _ ulP(X) + |u|p(X))

and using the Vitali convergence theorem of integral we deduce that
p(u,) = p(u), so 3) holds.

On the other hand, if 3) holds, we can deduce that |u, — ul” ™) con-
verges to 0 in () in measure. By the inequality

g = ul”® < 27" (Ju PO + ] ")
and condition p(u,) — p(u), we get lim, ., p(u, —u) =0. |
For arbitrary u € L?™(Q), let

u(x), if lu(x)| < n;
if lu(x)| > n.

It is easy to see that
lim p(u,(x) —u(x)) =0,
n—ow

so by Theorem 1.4 we get

THEOREM 1.5. The set of all bounded measurable functions over () is
dense in (L?O(Q), |1l ,).

For every fixed s > 0, under condition (7), the function (-, s) is local
integral in ); thus by Theorem 7.7 and 7.10 in [18], we get
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THEOREM 1.6.  The space (L*™(Q), |-l ,,) is separable.
By Theorem 7.6 in [18] we have

THEOREM 1.7. The set S consisting of all simple integral functions over ()
is dense in the space (LP(Q), - |l,)

When () CR”" is an open subset, for every element in S, we can
approximate it in the means of norm |||, by the elements in Cj({)
through the standard method of mollifiers, so we have

THEOREM 1.8. If Q C R" is an open subset, then C;(Q) is dense in the
space (LPOCQ), -1l ,).

We now discuss the uniform convexity of L?™(Q).
First we give the following conclusion:

LEMMA 1.9. Let p(x) > 1 be bounded. Then ¢(x,s) = sP¥) is strongly
convex with respect to s; i.e., for arbitrary a € (0,1), there is 8(a) € (0,1)
such that for all s > 0 and b € [0, al, the inequality

e(a,s) + ¢(x,bs)

go(x, ! ; bs) < (1 - 8(a)) . (8)

holds.
Proof. We rewrite (8) as

1+b)\P® 1+ br®
) sy 2

It is easy to see that for almost all x € Q and b € [0, 1), we always have
(52)P < (1 + bP™) /2. Let

1L+ \P9 [1 4¢P

It is not hard to prove that for almost all x € Q, 6(¢) increases strictly in
[0, 1). We only need to prove that the inequality 6,(a) < 1 — 8(a) holds. If
this is not so, then we can find a sequence {x,} of points in ) such that
lim, . 6, (a) = 1; thus we can choose a convergence subsequence plx, )
of p(x,) ‘that still verifies lim, .6, (a) = 1. Setting p* =lim,  p(x, )
elp,ptlweget ()P =1+ a?") /2, which is a contradlctlon Thus
we must have sup, . 6(a) < 1; i.e., there is 8(a) € (0,1) such that for
almost all x € Q, we have 6(a) < 1 — §(a). This completes the proof. [




430 FAN AND ZHAO

By Lemma 1.8 and Theorem 11.6 in [18], we can get immediately

THEOREM 1.10. Ifp~> 1, p* < o, then LP*)X(Q) is uniform convex and
thus is reflexive.

Now we give an imbedding result.

THEOREM 1.11. Let meas Q < o, p,(x), p,(x) € E, and let condition
(7) be satisfied. Then the necessary and sufficient condition for LP>*(Q)
L7Y(Q) is that for almost all x € Q we have p(x) < p,(x), and in this

1+t

case, the imbedding is continuous.
p(x) 1 + tl’(x)
0.(t) = ,
SORIES ;

and we deduce that L72¥(Q) c LP™(). From Theorem 8.5 in [18] we
know that the imbedding is continuous. On the other hand, if L?>*(Q) c
L7™)(Q), from Theorem 8.5 in [18], there exists a positive constant K and
a non-negative integrable function f(x) over Q such that

sP < KsP2 4 f(x), Vs >0,x €.

Proof. Let p(x) < p,(x). Then

If p,(x) <p,(x) is not true, then there exists a subset A of () with
positive measure such that p,(x) > p,(x) for x € A. By the non-negative
integrability of f(x), we can find a subset B € A such that for some
positive constant M, f(x) < M whenever x € B, and at the same time the
inequality s”® < Ks?>™) + f(x) holds; i.e., for arbitrary s > 0, when
x € B, there holds

sPD=Pa%) « K 4 MeTP2AX)
Let s — . We get a contradiction, and this ends the proof. |

The norm || ||, of L?*)(Q) defined before is usually called the Luxem-

bury norm. We can introduce another norm ||| - [, as
-1, = ot A1+ 05 9
“l, = in +pl—=|]|
YY) p( A ) ©)

This is called the Amemiya norm. The above two norms are equivalent;
they satisty

lull, < Mull, < 2lull,,  Yu € LP9(Q).

A simple calculation shows that if p(x) = p is a constant and we write

1/p
o = ([ 1)1 )
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then we have
llull, = llull L2, Melll, = 2llullLrq)-

If p~> 1, we can also introduce the so-called Orlicz norm as

||u||/ﬂ — ||u||/Lp(x)(Q) = Sup
P =<1

fﬂu(x)v(x)dx‘,

and we have
lull, < llull, < 2llull,,  Vue Lr9(Q),

so llull, is equivalent to |lull, and [l u ||l ,. For the norm [lull,, we have the
Holder inequality [18, p. 87]

‘ /Qu(x)v(x)dx‘ <llully, 10l Vu(x) € LPO(Q),

v(x) € L19(Q),

and therefore we have

‘ fﬂu(x)v(x)dx‘ <2lull, ol Vu(x) € LPO(Q),

v(x) € L19(Q),

1 1
where o tao=1

DEFINITION 1.12. Let u € LP™(Q), let D C Q) be a measurable sub-
set, and let x, be the characteristic function of E. If

lim Ollu(x))(D(x)Hp =0,

meas D —
then we say that u is absolutely continuous with respect to norm || -|f,.

THEOREM 1.13. u € L*™X(Q) is absolutely continuous with respect to
norm || - || ,.

Proof.  As
LPO(Q) ={u € E:VA> 0, p(\u) < =}
for arbitrary & > 0, we have p(%) < . Let

u(x), if lu(x)l <n,

() = 0, if lu(x)| > n.
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Then by Theorem 1.5, we can take N such that

lu — uyll, <

| &

Because u,(x) is bounded, we can find & > 0 such that when meas D < §,
we have

iy () 100}l < 5

and thus we get
() xp ()l < M(ue =y (2)) xp (Ol + Nty () xp (), < &
1

Let « €F and 0 <a < a(x) <b < », where a and b are positive
constants. Setting ¢,: O X R"— R as

@ (x,8) = a(x)e(x,s) = a(x)s’,

similar to the definition of p and E,, let

pa(u) = fﬂ%(x,lu(xmdx,

and

E, = {u eE: )\linol+ p.(Au) = 0}.
By

ap(x,s) < @, (x,5) <be(x,s),
and

ap(u) < p,(u) < bp(u),

we have E, = E, = LP™(Q). If we define the norm |-/, of E, as
before,

u
||u||pa=inf{)\>0:pa(x) sl}, (10)

it is easy to see that |||, and ||-||, are equivalent norms on E,.
Let us begin to discuss the conjugate space of LP*(Q), i.e., the space
(LP™(Q))* consisting of all continuous linear functionals over L7™(Q).
We suppose that p(x) satisfies condition 7 and p~> 1. By the definition
in [18, p. 33] ¢(x, s) = s belongs to the class ®, and for x € Q, ¢ is
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convex in s and satisfies

PLX, S
(0): lim (x.5) = 0;
s—=>0% N
X,
() tim 2
§—>®© S
Let @,(x,5) = ,(58"™). Then ¢, also belongs to the class ®. Writing

pp(0) = [ @y lu(x)l)dr,

u
||u||pp = inf{/\ >0: pp(x) < 1},

llull,, is an equivalent norm on L?“Y(Q). Obviously, the Young’s conjuga-
tive function of ¢, is

sq(X)’

KATEy

where g(x) is the conjugative function of p(x), ie., 55 + ;55= 1. It is
obvious that (gop )t = ¢, and q°, gt are con]ugatlve numbers of p*, p~
respectively. In particular, we have q~> 1 and g* < . Writing

* 1 q(x) *

pr(w) = [ o™ de = [ g (el
E;“p = {l} €E: Al_i)rgl+ py () = 0},

we have

Ef, = 1(0) = 140(0) = {0 € B+ [ lo(n)l"” de <o),

By Corollary 13.14 and Theorem 13.17 in [18] we have
THEOREM 1.14. (LPP(Q))* = LIX(Q), i.e.,
1°)  For every v € L1*X(Q), f defined by

f(u) = fQu(x)U(x)dx, Yu € LP9(Q), (11)

is a continuous linear functional over LP(Q).
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2°)  For every continuous linear functional f on LP*)X(Q), there is a
unique element v € L1*)(Q) such that f is exactly defined by (11)

From Theorem 1.14 we can also deduce that when p~> 1, p* < =, the
space L7(Q) is reflexive.

We know that for Banach space (X, || - ), the norm || - [|" on its conjugate
space X* is usually defined by the formulation
lx*|I" = sup{<x*, x) : [|x]l < 1}, (12)
where x* € X*, {(x*, x) = x*(x), and the inequality
IKx*, 0] < lx*l llxll,  Vxe X, x* e X* (13)
holds.
It is obvious that the norm || -] on X* depends on the norm |- || on X.

Now we take X = LP™)(Q), then X* = L19(Q). For v € X* and
ueX,

Cu,vy = [u(x)v(x)d. (14)
Q
If we use the norm || - || p, ON X, then according to Theorem 13.11 in [18],
we have
ol < llollyr, Yo eX* (15)

An interesting question we are concerned with is the relation between
the prime norm || [l sy of X* and the norm |||, of X* when X is
equipped with norm || -[,. It is well known that when p(x) is a constant
p € (1,), the two norms defined above are exactly the same. Here we give

THEOREM 1.15.  Under the above assumptions, for arbitrary v € L1(Q),
we have

ol zeocay < llolf, < (p—_ + q—_)llvllmw(m- (16)

Proof. For v € L1(Q), u € LP™(Q), setting |vllLeo) = a,
lullLrorey = b < 1,

(x) )
f u(x) . v(x) 0 <], 1 |u(x) ) +f 1 Jo(x) ]|
o b a N Qp(x) b QQ(x) a
(x) (x)
<if u(x) dx+if v(x)|?
T p Jal b q ‘ol a
1 1
= — + —.
p q



ON THE SPACES L7”™(Q) AND W™ rP(Q) 435

So we get

[ u(x)o(x)ds (1+1)b (1+1)
u(xo(x)dx<|— + —|ab<|— + —a,
Q P q B B
and then

||U||L4(~‘>(Q)-

) 1 1
loll, < |{— + —
p q

On the other hand, for v € LY®(Q) with [[vllpe) = a,

q(x)—1

u(x) =‘U(a—x) sgn v(x).
Then
o =2 [

thus u(x) € L?™(Q) and llullpro0) = 1. So

v(x)

a

q(x)

dx =a = ||U||Lq(l’)(Q).

fﬂu(x)u(x)dx = fﬂa

This equality means that IIUII/,, > |lvll Lencqy. The proof is completed. |}

This theorem can be regarded as a generalization of conclusion (15).

The importance of Nemytsky operators from L?1(Q) to L?2(Q) is well
known. Here we give the basic properties of Nemytsky operators from
LP(Q) to LP2I(Q).

Let p,, p, € L”,(Q). We denote by p,, p, the modular corresponding to
p; and p,, respectively. Let g(x,u) (x € Q, u € R) be a Caracheodory
function, and G is the Nemytsky operator defined by g, i.e., (Gu)(x) =
g(x, u(x)). We have

THEOREM 1.16. If G maps LP*(Q) into LP**(Q), then G is continu-
ous and bounded, and there is a constant b > 0 and a non-negative function
a € L7(Q) such that forx € Q and u € R, the following inequality holds:

g(x,u) <a(x) + blu|"/ P2, (17)

On the other hand, if g satisfies (17), then G maps L***)(Q) into L?>*(Q),
and thus G is continuous and bounded.
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First we give

LEMMA 1.17. If the operator G maps a ball B,(0) C L?(Q) into
L72(Q), then G maps all of LP*(Q) into LP**)(Q). Here, we denote by
B,(0) the ball with radius r and center at the origin 0.

Proof. We may assume that g(x,0) = 0. Otherwise we can consider
g(x,s) — g(x,0) instead. Let u € L”)(Q). By the absolute continuity of
the norm |/-|l,, we can divide  into the union of disjoint subsets
QO.(i € 1) such that

””(x))(n,.(x)”p <r,

where x, (x) is the characteristic function of ;. Therefore we have
u(x) = Yu(x)xo(x).
iel
Writing ,(x) = u(x) xo (x), then u; € B,(0) € L»(Q) and

Gu = ) Gu,.

1

By the assumption, Gu, € L?>*(Q), and thus we obtain Gu € L7*¥(Q).
|

Proof of Theorem 1.16. We need only prove G that is continuous at 0
when g(x,0) = 0. If this is not true, we can find a sequence {u,(x)} C
LP™(Q) (n =1,2,...) satisfies

lim [lu,,l[,, = 0,

n—w

but
Gu,ll,, > &,

where g, is some positive constant. Without loss of generality we can
suppose that [|u,|l,, < 1; thus by Theorem 1.3 we have

pi(u,) <l lp,- (18)

and therefore

tim [ Ju,|" dx = 0.
Q

n— o

For v € L'(Q)), we now define

(Hv)(x) = h(x,v(x)) = IG(sgn v(x)Iv(x)ll/”’(x))IPZ(x), (19)
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where h: QO X R - R, defined by A(x, s) = |G(sgn s|s|V/ P P2AD  Then
H maps L'(Q) into L'(Q), and thus H is continuous at 0 ([19]). Writing

0,(x) = sgn u, ()|, (x)1", (20)
then
’}LIILHU””E(Q) =0,
and thus
nli_I)I}c”HUnHLl(Q) = 0.
We get

lim [ |Ho,ldx = lim [ 1G(sgn u,(x)lu, ()7 dx
n— o J() n—ow /()

= lim [ |Gu, | dx
Q

n— o
= 0.

By Theorem 1.4, in L?®(Q), u,(n = 1,2,...) coverage to u in modular iff
u, coverage to u in norm, we have

lim [|Gu, |l ,, = 0.

n— o

This contradicts [|Gu,ll,, > &,, and we have proved the continuity of G.

Let A be a bounded set in L”(Q), i.e., for arbitrary u(x) € A4, |lull,,
is uniform bounded, so by Theorem 1.3, A is bounded in modular. For
v(x) € LY(Q) let H be defined as above; then H: L'(Q)) — L'(Q) and
thus H is bounded. For u(x) € A, sgn u(O)|lu(x)|”'™ e LN(Q) and
llsgn u(x)Iu(x)|p‘(x)||Ll(Q) = p,(u) is uniformly bounded. There is a constant
K > 0 such that

I1H (sgn u(x)lu(x) 1" ) < K,
i.e., we have

[ 1Gul"™ dx < K. (21)
Q

Inequality (21) shows that G(A) is bounded in modular. Again from (21)
we know that G(A) is bounded in norm.

Now if (17) holds, we let u(x) € L7™(Q). It is obvious that a(x) +
blu| 1V P20 e [ p2()(Q)), Therefore

f |Gu(x)|p2(x)dx < fla(x) + qu(x)Ipl(x)/pZ(x)IPZ(x)dx < oo,
Q Q

and thus G maps L”(Q) into L7>*(Q).
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On the other hand, if G maps L?**)(Q) into LP>¥(Q), for v € L'(Q),
as H: L'(Q) - L'(Q), we can assert that there is a constant b, > 0 and
function a, > 0, a, € L'(Q) such that

I(Hv) ()| < ay(x) + bilv(x)l,

for u e LP™(Q). Let v(x) = sgn u(x)|u(x)|”'™; then v € L'(Q) and
thus

|(HU)(X)| = |(Gu)(x)|l’2(x) < al(x) + b1|u(x)|pl(x)’

as p,(x) > 1. From (17) we can deduce that

(x)
(Gu) ()] < (ay(x) + bylul”) /"
< al(x)l/Pz(X) + bi/pZ(x)|u|pl(x)/Pz(x)
<a(x) + blu| P13 P20

where a(x) = a,(x)"/72® > 0, a(x) € LP>*(Q), and b = by/P>™. We
conclude the proof. |

As an application, we give an example.

EXAMPLE. Let ) be a measurable set in R"” and meas(Q)) < oo,
f: Q X R — R is a Caratheodory function satisfying the condition

f(x,u) < a(x) + blul”™,

where p(x) € L% (Q), a(x) € L'(Q), a(x) = 0, b > 0 is a constant. Then
the functional

J(u) = [ f(x,u(x))dx
Q
defined on L”™(Q) is continuous and J is uniformly bounded on a
bounded set in L7™M(Q).
2. THE SPACE W™ r™(Q)

In this section we will give some basic results on the generalized
Lebesgue—Sobolev space W™ 7)), where Q is a bounded domain of R”
and m is a positive integer, p € L”, (Q). W™ P(Q) is defined as

Wmre(Q) = {u € LP™(Q): Du € LPD(Q), |al < m}.
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WmPE(Q) is a special class of so-called generalized Orlicz—Sobolev
spaces. Some elementary conceptions and results of the general case can
be found in Hudzik’s papers [9-17]. From [11] we know that W™ P™)(Q)
can be equipped with the norm [|ully ».»xq), as Banach spaces, where

llullyrm.reoay = Z | D “ull . reoqy-

lal<m

According to [17] and Theorem 1.10 in Section 1, we already have
THEOREM 2.1. W™ P(Q) is separable and reflexive.
An immediate consequence of Theorem 1.7 is

THEOREM 2.2. Assume that p,(x), p,(x) € L*.(Q). If p(x) < p,(x),
then W™ P>)(Q) can be imbedded into W™ P*)(Q) continuously.

Now let us generalize the well-known Sobolev imbedding theorem of
Wmr(Q) to W™ P(Q). We have

THEOREM 2.3. Let p,q € C(Q) and p,q € L*.(Q). Assume that

np(x)

_— Vx € Q.
n—mp(x)

mp(x) <n, q(x) <

Then there is a continuous and compact imbedding W™ 7(Q) — L1(Q).
Proof.  For positive constant r with mr < n, denote

nr

r¥ =

n—mr

Under the assumptions it is easy to see that for arbitrary x € Q, we can
find a neighborhood U, in () such that

q"(U,) <(p (L))",

where p~(U) = inf{p(y):y € U}, q (U) =sup{g(y):y € U}. Now
{U,}, < g is an open covering of compact set ). Choosing a finite sub-cover-
ing{U;:i =1,2,...,s} and denoting

pi =p (U), a4 =q"(),

it is obvious that if u € W ?*Y(Q) then u € W™ P)(U)), and thus from
Theorem 2.2, u € W™ ?i(U,). Therefore by the well-known Sobolev
imbedding theorem [1] we have continuous and compact imbedding,

W (U - L9 (U).
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According to Theorem 1.7, there is a continuous imbedding
L (U) = L),

so for every U, i = 1,2,...,s, we have u € L1X(U,) and therefore u €
LI®(Q). We can now assert that W™ ?™(Q) c LI®(Q), and the imbed-
ding is continuous and compact.

Remark 2.4. We do not known whether we have the imbedding
Wm,p(x)(Q) N Lp*(X)(Q)’
but if the assumption on p(x) is not satisfied, we cannot have it.

ExampLE. Let Q = {x = (x,,x,): 0 <x, < 1,0 <x, <1} CR?, p(x)
=1+x,, u(x) =@ + x,)/3**); then we have u(x) € Wh-r(Q) and
p*(x) =201 — x,) /(1 — x,). It is easy to test that u & L? (Q).

Let us turn to the problem of density.

DEFINITION 2.5. We define W;"?"(Q) as the closure of Cj(Q) in
W PeO(Q)) and WP = P A Q).

It is well known that when p(x) is a constant p on ), we have
Wr(Q) = W™ P(Q), and in this case C*(Q) is dense in W™ ?(Q). For
the general function p(x), from the definition we have Wy ?)(Q) c
Wwm P(Q), and Wmr(Q) is a closed linear subspace of W™ ?®)(Q). In
general W Pe(Q) + W Pe(Q). Zhikov showed the following. Let
={x = (x,,x,) € R?: IxI <1},1< a, <2< a,. If we define

aq, if x;x, >0
P =V o ifxx, <0,
then
WLre(Q) # Whro(Q).

This example also shows that C*({) is not dense in W P™(Q).
The identity

W rO(Q) = Wmro(Q)

means that C;(Q) is dense in (Vf/m’p(x)(n),”'||W"”~P(‘)(Q)). As Musielak
pointed out in [18], for Orlicz—Sobolev spaces, the problem of density is
very complicated. But by the method of Fan [3, 4], we can get

THEOREM 2.6. If () is a bounded open set in R" with a Lipschitz
boundary p € L*.(Q) and p(x) satisfies condition (F-Z) on Q, i.e., there is
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a constant L > 0 such that

—lp(x) — p(y)lloglx —yl <L, Vx,y €Q, (22)
then
1) C™(Q) is dense in W™ PE(Q).
2) Wmro(Q) = W PO(Q).

Proof. Essentially the proof can be found in [3]; Zhikov improved the
proof later. For completion we write it out here.

1) For simplicity we assume that the domain Q) is star-shaped (with
respect to the origin). For the more general case, one can write the proof
similarly according to [3]. Let u € W™ ?™)((). We denote by u, € C*(Q)
the typical mollifier of u; i.e., u, is defined as

u, =" fﬂp(x 8y)u(y)dy. (23)

It suffices to prove
u, > uin WHrQ), ase— 0.

Denote o (&) = 1/log L. From (22) it follows that for x € Q,

- o(e X)— g(e —_ y
|u€(x)|p(x) L ()Sfl |u(y)|p() Lo(e), np(

y—xl<e

— X

o

Noticing that p(x) — Lo (&) < p(y), for every s € (0, 1) we have

—x
|u€(x)|]7(x)—L(r(£)Sf |u(y)|]7(x)—L(r(s)8_np(y )dy
|M(y)\<s
_ y — X
+ |u(y)|1’(“ La(g)g_np( )dy
lu(y)l=> e

<s+sen
|

y—xl<e

y—x
|u(}))|p(y)87”p(7)dy. (24)
From (24) it follows that

f |u£(x)|p(X)—L0(€) dx
Q

<s|Q| + s_ZL”(E)/;)(/l

y—xl<e

- X
Iu(y)l”(”s‘”p(—y )dy)dx
&

<slQf + s‘“"(”fﬂ(f n(@‘"ﬁ(%)ﬁ)lu(ﬂldy

=s]Q| + s*ZL”(’S)fQu(y)p(y) dy.



442 FAN AND ZHAO
Let £ > 0 be given. Choosing s € (0,1) such that s|Q| < &, then
/ |u€(x)|p(x)—er(8)dx <o+ S_zL”(g)/|u(x)|p(X)dx.
Q Q
and hence
Tm [ u ()PP de < o+ [ Ju(x)]7 dx, (25)
e-070 Q
By the arbitrariness of £ > 0 we obtain
Tim [ LT e <[ a7 d. (26)
Q

-0

By (23), (26), and Fatou’s lemma we have

lim | lu AP e = [ a7 dx, (27)
e—0 Q
By (23) and the Holder inequality we can deduce that for x € Q,
y -
s [ u)lep( |
ly—xl<e
1/p~ — P’ p
. y—x
<[ 1 Ipd) ( a*"( ) d)
(fﬂ ] | [ Je7p|— y
., 1/p™’
SC](/ e p(2)I” &" dz)
Rn
B _, 1/p™
=c,g "4 /p )(f [p(2)I” dz)
R"
=cce P (28)
where 1/p~+ 1/p~' =1, ¢, = (Jolu(WI” dy)'/?", and c, =

(Jeel pI7 " d)V/P .
From (28) it follows that for x € (),

lu, (X)) < (c0y) 7 e @LrA/P) = 7(g).

It is easy to see that (&) - (2)"'/P < 1 as & — 0, and therefore

/ |u£(x)|p(X)dx = / |u£(x)|p(x)7l‘a'(3)|u€(x)|L0'(8)dx
@ Q

= T(g)fﬂms(x)lp(x)—ur(s) dx. (29)
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From (29) and (27) it follows that

Tm [ u, ()P dx < [ Ju(x)1" dx. (30)
e—>070 Q
By (30), (23), and Fatou’s lemma we obtain
im [ Ju ()P dy = [ Ju(x)1" d. (31)
Q Q

e—=0

From (31) and (23) we get
lim [ fu,(x) = u(x)|"™ dx = 0. (32)
e—>07Q

From (23) it is easy to see that
Diu, = (Du),, (33)
where D, = d/dx;,i = 1,2,...,n.
Using arguments similar to those above, we can prove that
lim [ |Dju,(x) — Du(x)I"Pdx =0, i=1,2,...,n. (34)
e—>07Q

Thus we have proved that C*(Q) is dense in W 7¥)(Q). Using induction
for m, we can complete the proof.
The proof of 2) is similar to 1), and we omit it. [

THEOREM 2.7. Let p(x) € C(Q). Then we can take

||u||,m,p(x) = Z ”0’)au||LP(X)(Q)

a=m
o
as an equivalence norm in the space (W™ P(Q), || - |lyym.rw); i.e., there is a
positive constant C such that
o
||5’au||Lﬁ<—*>(Q) < C”u”/m,p(x); VO <|al<m,uc Wm’p(x)(ﬂ)'

Proof.  For simplicity we only give the proof for m = 1. It is easy to see
that || Dull,reqy is equivalent to X7 1I_I(&“/c?xi)llLm)(m.
As p*< o, we can find p(x) € C(Q) (i = 1,2,...,s) such that

p(x) = po(x) = pi(x) 2py(x) = =+ =p(x) =1 (35)
and

pi(x) <pi(x), i=0,1,...,5s — 1, (36)
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where p*(x) = 5 2'5;. By Theorem 3.3 there are continuous imbed-
dings,

WP () - LPO(Q), i=0,1,...,5s — 1,
so we can get, subsequently,

lull L reoay < CO(IIDulle<<\-)(Q) + ||u||Lp1(X)(m)
< CyllDullroay + Collullpreoga)
leell 1 ricogay < C1(||Du||Lm<x)(Q) + Nl L r2ogay)
< CilIDullrevay + Cyllull Loy
“u”LPxf](-V)(Q) < CS_I(HDMHLI’X(-Y)(Q) + ||M||Ll’x(-‘>(g))
< C;_IIDull L reocay + Co_yllull Lesnca,y

“u”Ll’s(*)(Q) = ||U||L1(Q) < Cs”Du”Ll(Q) < C;”Du“u’m(n)-

The last equality above is represented by the fact u € W '(Q). Combin-
ing these inequalities, we complete the proof. ||

Remark 2.8. In Theorem 2.6, replace W™ P™(Q) by W™ P*((Q). The
conclusion is obviously true.

Remark 2.9. Condition (F-Z) is given by Fan and Zhikov [20]. It is easy
to see that if p(x) € C**(Q) then p(x) satisfies condition (F-Z).

We now point out a difference between W™ ?*X(Q) and W™ ?(Q). This
difference shows that in W;"-7)((}), the variational problems become very
complicated. Let

leDu|P(X) dx

A = m T.
02uewd o) [olul” dx

(37)

It is well known that when p(x) is a constant p, A (defined above) is the
first eigenvalue of p-Laplace operator —A, = —div(|Dul” ~?Du). Tt must
be a positive number. But for general p(x), this is not true; A may take 0.

ExampLE. Let Q = (—2,2) c R% Define

(x) = 3 if0<l|x| <1;
p 4—\x| if1<lxl <2
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Then we have

[Q'DM|P(X) dx

A= 1n1 )
0#uc Wy r(Q) fQ|u| dx
Proof.  Let

u(x) = 1 if0 <lx|<1;
2 — x| ifl <|x|<2.

Then u(x) € W P*(Q). Let us prove that for a > 0, there holds

Jolau' (x)1" dx
a—x© fQIaLtI”(x)dx -

(38)
In fact, we have

[Q|au/(x)|1’<x> dx = 2([010dx + flz(a S dx)

2a*

=2f2a4*xdx= (a—1)
1

log a

and
1
f lau|”™® dx > 2[ addx = 2d’.
0 0

The conclusion is dropped. 1

At last we present an elementary result of the difference quotients in
WL r(Q).

THEOREM 2.10. Ler Q' cc Q, h <dist(Q’,dQ), if u € W r(Q),
where p(x) € L. (Q) satisfies condition (F-Z). Then A,u(x) € L?™(Q")
and we have

D ol AuCoOl”™® dx < [o| Du()"™ dx;
2) A, u(x) converges strongly to D,u(x) in LY (Q"), where

, 1
Ayu(x) = E(u(x + he;) — u(x))

is the ith quotient of u(x) (e; denotes the unit vector of the x; axis),
D,u(x) = (9/dx)ulx).

The proof of Theorem 2.10 is easy and we omit it.
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