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In this paper we present some basic results on the generalized Lebesgue spaces
pŽ x .Ž . m , pŽ x .Ž .L � and generalized Lebesgue�Sobolev spaces W � . These results

provide the necessary framework for the study of variational problems and elliptic
Ž .equations with non-standard p x -growth conditions. � 2001 Academic Press
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The study of variational problems with nonstandard growth conditions is
� � Ž .a new topic developed in recent years 2�8, 20 . p x -growth conditions

can be regarded as a very important class of nonstandard growth condi-
pŽ x .Ž .tions. In this paper we present some basic theory of the spaces L �

m , pŽ x .Ž .and W � . Most of the results are similar to those for Lebesgue
pŽ . m , pŽ .spaces L � and Sobolev spaces W � , but the Sobolev-like imbed-

ding theorem and result on density are new; they show the essential
m , pŽ x .Ž . m , pŽ .difference between W � and W � . These results provide the

Ž .required framework for the study of problems with p x -growth condi-
tions.

Throughout this paper, for simplicity, we take Lebesgue measure in Rn,
and denote by meas � the measure of � � Rn; all functions appearing in
this paper are assumed to be real.
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pŽ x .Ž .1. THE SPACE L �

Let � � Rn be a measurable subset and meas � � 0. We write

� 4E � u : u is a measurable function in � .

Elements in E that are equal to each other almost everywhere are
considered as one element.

Let p � E. In the following discussion we always assume that u � E
and write

� x , s � s pŽ x . , � x � � , s � 0, 1Ž . Ž .

� � � � pŽ x .� u � � u � � x , u dx � u x dx , 2Ž . Ž . Ž . Ž . Ž .H HpŽ x .
� �

L pŽ x . � � u � E : lim � �u � 0 , 3Ž . Ž . Ž .½ 5	��0

L pŽ x . � � u � E : � u � � , 4� 4Ž . Ž . Ž .0

L pŽ x . � � u � E : �� � 0, � �u � � , 5� 4Ž . Ž . Ž .1

and

L� � � u � L� � : ess inf u � 1 . 6Ž . Ž . Ž .½ 5	
�

It is easy to see that the function � defined above belongs to the class �,
� �which is defined in 18, p. 33 , i.e., � satisfies the following two conditions:

. Ž . � .1 For all x � �, � x, 	 : 0, � � R is a non-decreasing continuous
Ž . Ž . Ž .function with � x, 0 � 0 and � x, s � 0 whenever s � 0; � x, s � �

when s � �.
. Ž .2 For every s � 0, � 	, s � E.

Obviously, � is convex in s.
� �In view of the definition in 18, p. 1 , � is a convex modular over E, i.e.,

� � Ž . Ž .� : E � 0, � verifies the following properties a � c :

Ž . Ž .a � u � 0 � u � 0;
Ž . Ž . Ž .b � 
u � � u ;
Ž . Ž . Ž . Ž .c � 
 u 	 � � � 
� u 	 �� � , �u, � � E, �
 , � � 0, 
 	 � � 1,

� � pŽ x .Ž .and thus by 18 , L � is a Nakano space, which is a special kind of
pŽ x .Ž .Musielak�Orlicz space. L � is a kind of generalized Orlicz class. It is0

pŽ x .Ž . pŽ x .Ž .easy to see that L � is a linear subspace of E, and L � is a0
pŽ x .Ž .convex subset of L � . In general we have

L pŽ x . � � L pŽ x . � � L pŽ x . � .Ž . Ž . Ž .1 0
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Ž .By the properties of � x, s we also have

L pŽ x . � � u � E : �� � 0, � �u � � .� 4Ž . Ž .

THEOREM 1.1. The following two conditions are equi�alent:

. � Ž .1 p � L � .	

. pŽ x .Ž . pŽ x .Ž .2 L � � L � .1

. .Proof. 1 � 2 is obvious.

. . . � 42 � 1 . If 1 is not true, then we can take a sequence I ofm
disjoint subsets of � with positive measure such that

p x � m for x � I .Ž . m

� 4 Ž .Choosing an increasing sequence u � 0, � such that u � � as m �m m
�, we can find k satisfying the inequalitym

1
pŽ x .u dx � .H k mm 2Im

By the absolute continuity of integral, we can shrink I to � such thatm m

1
pŽ x .u dx � .H k mm 2�m

Ž .Denote by 
 x the characteristic function of � , i.e.,� mm

1, if x � �m

 x �Ž .� m ½ 0, if x � � .m

if we write
�

u x � u 
 x ,Ž . Ž .Ý0 k �m m
m�1

then we have

� � 1pŽ x . pŽ x .� �u x dx � u dx � � 1,Ž . Ý ÝH H0 k nn 2� �nn�1 n�1

� �
pŽ x . pŽ x . pŽ x . n pŽ x .� �2u x dx � 2 u dx � 2 u dx � �;Ž . Ý ÝH H H0 k kn n

� � �n nn�1 n�1

pŽ x .Ž . pŽ x .Ž .thus we have u � L � , but u � L � . This contradicts condition0 0 1
Ž .2 , and we complete the proof.
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� Ž .From now on we only consider the case where p � L � , i.e.,	

1 � p
� ess inf p x � ess sup p x � p
� �. 7Ž . Ž . Ž .
x�� x��

pŽ x .Ž . pŽ x .Ž . pŽ x .Ž .For simplicity we write E � L � � L � � L � , and we call� 0 1
pŽ x .Ž . � �L � generalized Lebesgue spaces. By 18, p. 7 , we can introduce the

� � pŽ x . Ž � � .norm u on E denoted by u asL Ž� . ��

u
� �u � inf � � 0 : � � 1 ,� ½ 5ž /�

Ž � � .and E , u becomes a Banach space.��

Ž .It is not hard to see that under condition 7 , � satisfies

Ž . Ž . p	Ž Ž . Ž ..d � u 	 � � 2 � u 	 � � ; �u, � � E .�

Ž .e For u � E , if � � 1, we have�

� u � �� u � � p

� u � � �u � � p	

� u ,Ž . Ž . Ž . Ž . Ž .

and if 0 � � � 1, we have

� p	
� u � � �u � � p


� u � �� u � � u .Ž . Ž . Ž . Ž . Ž .

Ž . � 4 Ž .f For every fixed u � E � 0 , � �u is a continuous convex even�

� .function in �, and it increases strictly when � � 0, �

Ž . � �By property f and the definition of 	 , we have�

u� 4 � � Ž .THEOREM 1.2. Let u � E � 0 ; then u � a if and only if � � 1.�� a

� � Ž .The norm u is in close relation with the modular � u . We have�

THEOREM 1.3. Let u � E ; then�

. � � Ž . Ž . Ž .1 u � 1 � 1; � 1 � � u � 1 � 1; � 1 ;�

. � � � � p

Ž . � � p	

2 If u � 1, then u � � u � u ;� � �

. � � � � p	
Ž . � � p


3 If u � 1, then u � � u � u .� � �

Ž . . .Proof. From f and Theorem 1.2 we can obtain 1 . We only prove 2
. � �below, as the proof of 3 is similar. Assume that u � a � 1, by Theorem�

u 1Ž . Ž .1.2, � � 1. Notice that � 1, by e . We havea a

1 u 1
� u � � � 1 � � u ,Ž . Ž .	 
p pž /aa a

.so we obtain 2 .
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THEOREM 1.4. Let u, u � E , k � 1, 2, . . . . Then the following state-k �

ments are equi�alent to each other:

. � �1 lim u 
 u � 0;�k �� k

. Ž .2 lim � u 
 u � 0;k �� k

. Ž . Ž .3 u con�erges to u in � in measure and lim � u � � u .k k �� k

. .Proof. The equivalence of 1 and 2 can be obtained from Theorem 1.6
� � .in 18 and the property e of � stated above. Now we prove the equiva-

. .lence of 2 and 3 .
.If 2 holds, i.e.,

� � pŽ x .lim u 
 u dx � 0,H k
k�� �

� � pŽ x .then it is easy to see that u converges to u in � in measure; thus uk k
� � pŽ x .converges to u in measure. Using the inequality

� � pŽ x . p	
1 � � pŽ x . � � pŽ x .u � 2 u 
 u 	 uŽ .k k

and using the Vitali convergence theorem of integral we deduce that
Ž . Ž . .� u � � u , so 3 holds.k

. � � pŽ x .On the other hand, if 3 holds, we can deduce that u 
 u con-k
verges to 0 in � in measure. By the inequality

� � pŽ x . p	
1 � � pŽ x . � � pŽ x .u 
 u � 2 u 	 uŽ .k k

Ž . Ž . Ž .and condition � u � � u , we get lim � u 
 u � 0.k k �� k

pŽ x .Ž .For arbitrary u � L � , let

� �u x , if u x � n;Ž . Ž .
u x �Ž .n ½ � �0, if u x � n.Ž .

It is easy to see that

lim � u x 
 u x � 0,Ž . Ž .Ž .n
n��

so by Theorem 1.4 we get

THEOREM 1.5. The set of all bounded measurable functions o�er � is
Ž pŽ x .Ž . � � .dense in L � , 	 .�

Ž . Ž .For every fixed s � 0, under condition 7 , the function � 	, s is local
� �integral in �; thus by Theorem 7.7 and 7.10 in 18 , we get
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Ž pŽ x .Ž . � � .THEOREM 1.6. The space L � , 	 is separable.�

� �By Theorem 7.6 in 18 we have

THEOREM 1.7. The set S consisting of all simple integral functions o�er �
Ž pŽ x .Ž . � � .is dense in the space L � , 	 .�

When � � Rn is an open subset, for every element in S, we can
� � �Ž .approximate it in the means of norm 	 by the elements in C �� 0

through the standard method of mollifiers, so we have
n �Ž .THEOREM 1.8. If � � R is an open subset, then C � is dense in the0

Ž pŽ x .Ž . � � .space L � , 	 .�

pŽ x .Ž .We now discuss the uniform convexity of L � .
First we give the following conclusion:

Ž . Ž . pŽ x .LEMMA 1.9. Let p x � 1 be bounded. Then � x, s � s is strongly
Ž . Ž . Ž .con�ex with respect to s; i.e., for arbitrary a � 0, 1 , there is � a � 0, 1

� �such that for all s � 0 and b � 0, a , the inequality

1 	 b � a, s 	 � x , bsŽ . Ž .
� x , s � 1 
 � a 8Ž . Ž .Ž .ž /2 2

holds.

Ž .Proof. We rewrite 8 as

Ž .p x pŽ x .1 	 b 1 	 b
� 1 
 � a .Ž .Ž .ž /2 2

� .It is easy to see that for almost all x � � and b � 0, 1 , we always have
1 
 b pŽ x . pŽ x .Ž . Ž .� 1 	 b �2. Let2

Ž .p x pŽ x .1 	 t 1 	 t
� t � .Ž .x ž /2 2

Ž .It is not hard to prove that for almost all x � �, � t increases strictly in
� . Ž . Ž .0, 1 . We only need to prove that the inequality � a � 1 
 � a holds. Ifx

� 4this is not so, then we can find a sequence x of points in � such thatn
Ž . Ž .lim � a � 1; thus we can choose a convergence subsequence p xn�� x nn j

Ž . Ž . Ž .of p x that still verifies lim � a � 1. Setting p* � lim p xn n�� x n nn j� � jj1 	 a
 	 p* p*� � Ž . Ž .� p , p , we get � 1 	 a �2, which is a contradiction. Thus2
Ž . Ž . Ž .we must have sup � a � 1; i.e., there is � a � 0, 1 such that forx � �

Ž . Ž .almost all x � �, we have � a � 1 
 � a . This completes the proof.
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� �By Lemma 1.8 and Theorem 11.6 in 18 , we can get immediately

 	 pŽ x .Ž .THEOREM 1.10. If p � 1, p � �, then L � is uniform con�ex and

thus is reflexi�e.

Now we give an imbedding result.

Ž . Ž .THEOREM 1.11. Let meas � � �, p x , p x � E, and let condition1 2
Ž . p2Ž x .Ž .7 be satisfied. Then the necessary and sufficient condition for L � �

p1Ž x .Ž . Ž . Ž .L � is that for almost all x � � we ha�e p x � p x , and in this1 2
case, the imbedding is continuous.

Ž . Ž .Proof. Let p x � p x . Then1 2

Ž .p x pŽ x .1 	 t 1 	 t
� t � ,Ž .x ž /2 2

p2Ž x .Ž . p1Ž x .Ž . � �and we deduce that L � � L � . From Theorem 8.5 in 18 we
p2Ž x .Ž .know that the imbedding is continuous. On the other hand, if L � �

p1Ž x .Ž . � �L � , from Theorem 8.5 in 18 , there exists a positive constant K and
Ž .a non-negative integrable function f x over � such that

s p1Ž x . � Ks p2Ž x . 	 f x , �s � 0, x � � .Ž .
Ž . Ž .If p x � p x is not true, then there exists a subset A of � with1 2

Ž . Ž .positive measure such that p x � p x for x � A. By the non-negative1 2
Ž .integrability of f x , we can find a subset B � A such that for some

Ž .positive constant M, f x � M whenever x � B, and at the same time the
p1Ž x . p2Ž x . Ž .inequality s � Ks 	 f x holds; i.e., for arbitrary s � 0, when

x � B, there holds

s p1Ž x .
p2Ž x . � K 	 Ms
p 2Ž x . .

Let s � �. We get a contradiction, and this ends the proof.

� � pŽ x .Ž .The norm 	 of L � defined before is usually called the Luxem-�

� �bury norm. We can introduce another norm 	 as�

u
� �	 � inf � 1 	 � . 9Ž .� ž /ž /���0

This is called the Amemiya norm. The above two norms are equivalent;
they satisfy

� � � � � � pŽ x .u � u � 2 u , �u � L � .Ž .� � �

Ž .A simple calculation shows that if p x � p is a constant and we write
1�p

p
pŽ� .� � � �u � u x dx ,Ž .L Hž /

�
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then we have

� � � � p � � � � pu � u , u � 2 u .� L Ž� . � L Ž� .

If p
� 1, we can also introduce the so-called Orlicz norm as

� �
pŽ x .� � � �u � u � sup u x � x dx ,Ž . Ž .� L Ž� . H

�Ž .� � �1qŽ x .

and we have

� � � �� � � pŽ x .u � u � 2 u , �u � L � ,Ž .� � �

� �� � � � � � �so u is equivalent to u and u . For the norm u , we have the� � � �

� �Holder inequality 18, p. 87¨

� pŽ x .� � � �u x � x dx � u � , �u x � L � ,Ž . Ž . Ž . Ž .H � �pŽ x . qŽ x .
�

� x � LqŽ x . � ,Ž . Ž .

and therefore we have

pŽ x .� � � �u x � x dx � 2 u � , �u x � L � ,Ž . Ž . Ž . Ž .H � �pŽ x . qŽ x .
�

� x � LqŽ x . � ,Ž . Ž .
1 1where 	 � 1.Ž . Ž .p x q x

pŽ x .Ž .DEFINITION 1.12. Let u � L � , let D � � be a measurable sub-
set, and let 
 be the characteristic function of E. IfD

� �lim u x 
 x � 0,Ž . Ž . �D
meas D�0

� �then we say that u is absolutely continuous with respect to norm 	 .�

pŽ x .Ž .THEOREM 1.13. u � L � is absolutely continuous with respect to
� �norm 	 .�

Proof. As

L pŽ x . � � u � E : �� � 0, � �u � �� 4Ž . Ž .
uŽ .for arbitrary � � 0, we have � � �. Let�

� �u x , if u x � n ,Ž . Ž .
u x �Ž .n ½ � �0, if u x � n.Ž .



FAN AND ZHAO432

Then by Theorem 1.5, we can take N such that

�
� �u 
 u � .�N 2

Ž .Because u x is bounded, we can find � � 0 such that when meas D � � ,N
we have

�
� �u x 
 x � ,Ž . Ž . �N D 2

and thus we get

� � � � � �u x 
 x � u 
 u x 
 x 	 u x 
 x � � .Ž . Ž . Ž . Ž . Ž . Ž .Ž .� � �D N D N D

Ž .Let 
 � E and 0 � a � 
 x � b � �, where a and b are positive
constants. Setting � : � � R	� R	 as


� x , s � 
 x � x , s � 
 x s pŽ x . ,Ž . Ž . Ž . Ž .


similar to the definition of � and E , let�

� �� u � � x , u x dx ,Ž . Ž .Ž .H
 

�

and

E � u � E : lim � �u � 0 .Ž .½ 5� 

 	��0

By

a� x , s � � x , s � b� x , s ,Ž . Ž . Ž .


and

a� u � � u � b� u ,Ž . Ž . Ž .


pŽ x .Ž . � �we have E � E � L � . If we define the norm 	 of E as�� � �



before,

u
� �u � inf � � 0 : � � 1 , 10Ž .� 

 ½ 5ž /�

� � � �it is easy to see that 	 and 	 are equivalent norms on E .� � �

pŽ x .Ž .Let us begin to discuss the conjugate space of L � , i.e., the space

Ž pŽ x .Ž .. pŽ x .Ž .L � * consisting of all continuous linear functionals over L � .
Ž . 
We suppose that p x satisfies condition 7 and p � 1. By the definition

� � Ž . pŽ x .in 18, p. 33 � x, s � s belongs to the class �, and for x � �, � is



pŽ x .Ž . m, pŽ x .Ž .ON THE SPACES L � AND W � 433

convex in s and satisfies

� x , sŽ .
0 : lim � 0;Ž .

	 ss�0

� x , sŽ .
� : lim � �.Ž .

ss��

1 pŽ x .Ž .Let � x, s � s . Then � also belongs to the class �. WritingŽ .p pp x

� �� u � � x , u x dx ,Ž . Ž .Ž .Hp p
�

u
� �u � inf � � 0 : � � 1 ,� pp ½ 5ž /�

� � pŽ x .Ž .u is an equivalent norm on L � . Obviously, the Young’s conjuga-�p

tive function of � isp

1
� qŽ x .� x , s � s ,Ž .p q xŽ .

1 1Ž . Ž .where q x is the conjugative function of p x , i.e., 	 � 1. It isŽ . Ž .p x q x
Ž � . 
 	 	 
obvious that � * � � , and q , q are conjugative numbers of p , pp p

respectively. In particular, we have q
� 1 and q	� �. Writing

1 qŽ x .� �� � � �� � � � x dx � � x , � x dx ;Ž . Ž . Ž .Ž .H Hp pq xŽ .� �

E� � � � E : lim �� �� � 0 ,Ž .½ 5� pp 	��0

we have

� qŽ x . qŽ x . � � qŽ x .E � L � � L � � � � E : � x dx � � .Ž . Ž . Ž .H� 0 ½ 5p
�

� �By Corollary 13.14 and Theorem 13.17 in 18 we have

Ž pŽ x .Ž .. qŽ x .Ž .THEOREM 1.14. L � * � L � , i.e.,

. qŽ x .Ž .1� For e�ery � � L � , f defined by

f u � u x � x dx , �u � L pŽ x . � , 11Ž . Ž . Ž . Ž . Ž .H
�

pŽ x .Ž .is a continuous linear functional o�er L � .
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. pŽ x .Ž .2� For e�ery continuous linear functional f on L � , there is a
qŽ x .Ž . Ž .unique element � � L � such that f is exactly defined by 11

From Theorem 1.14 we can also deduce that when p
� 1, p	� �, the
pŽ x .Ž .space L � is reflexive.

Ž � �. � �We know that for Banach space X, 	 , the norm 	 � on its conjugate
space X* is usually defined by the formulation

� � ² : � �� 4x* � � sup x*, x : x � 1 , 12Ž .
² : Ž .where x* � X*, x*, x � x* x , and the inequality

�² : � � � � �x*, x � x* �, x , � x � X , x* � X* 13Ž .
holds.

� � � �It is obvious that the norm 	 � on X* depends on the norm 	 on X.
pŽ x .Ž . qŽ x .Ž .Now we take X � L � , then X* � L � . For � � X* and

u � X,

² :u , � � u x � x dx . 14Ž . Ž . Ž .H
�

� � � �If we use the norm 	 on X, then according to Theorem 13.11 in 18 ,�p

we have
� � � � ��

�� � � , �� � X*. 15Ž .� �p p

An interesting question we are concerned with is the relation between
� � qŽ x . � ��the prime norm 	 of X* and the norm 	 of X* when X isL Ž� . �

� � Ž .equipped with norm 	 . It is well known that when p x is a constant�

Ž .p � 1, � , the two norms defined above are exactly the same. Here we give
qŽ x .Ž .THEOREM 1.15. Under the abo�e assumptions, for arbitrary � � L � ,

we ha�e

1 1�
qŽ x . qŽ x .� � � � � �� � � � 	 � . 16Ž .L Ž� . � L Ž� .
 
ž /p q

qŽ x .Ž . pŽ x .Ž . � � q Ž x .Proof. For � � L � , u � L � , setting � � a,L Ž� .
� � pŽ x .u � b � 1,L Ž� .

Ž . Ž .p x q xu x � x 1 u x 1 � xŽ . Ž . Ž . Ž .
	 dx � dx 	 dxH H Hb a p x b q x aŽ . Ž .� � �

Ž . Ž .p x q x1 u x 1 � xŽ . Ž .
� dx 	 dxH H
 
p b q a� �

1 1
� 	 .
 
p q
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So we get

1 1 1 1
u x � x dx � 	 ab � 	 a,Ž . Ž .H 
 
 
 
ž / ž /p q p q�

and then

1 1�
qŽ x .� � � �� � 	 � .� L Ž� .
 
ž /p q

qŽ x .Ž . � � qŽ x .On the other hand, for � � L � with � � a,L Ž� .

Ž .q x 
1� xŽ .
u x � sgn � x .Ž . Ž .

a

Then

Ž .q x� xŽ .pŽ x .� �u x � ;Ž .
a

Ž . pŽ x .Ž . � � pŽ x .thus u x � L � and u � 1. SoL Ž� .

Ž .q x� xŽ .
qŽ x .� �u x � x dx � a dx � a � � .Ž . Ž .H H L Ž� .a� �

�
qŽ x .� � � �This equality means that � � � . The proof is completed.� L Ž� .

Ž .This theorem can be regarded as a generalization of conclusion 15 .
p1Ž . p2Ž .The importance of Nemytsky operators from L � to L � is well

known. Here we give the basic properties of Nemytsky operators from
p1Ž x .Ž . p2Ž x .Ž .L � to L � .

� Ž .Let p , p � L � . We denote by � , � the modular corresponding to1 2 	 1 2
Ž . Ž .p and p , respectively. Let g x, u x � �, u � R be a Caracheodory1 2

Ž .Ž .function, and G is the Nemytsky operator defined by g, i.e., Gu x �
Ž Ž ..g x, u x . We have

p1Ž x .Ž . p2Ž x .Ž .THEOREM 1.16. If G maps L � into L � , then G is continu-
ous and bounded, and there is a constant b � 0 and a non-negati�e function

p2Ž x .Ž .a � L � such that for x � � and u � R, the following inequality holds:

� � p1Ž x .� p2Ž x .g x , u � a x 	 b u . 17Ž . Ž . Ž .

Ž . p1Ž x .Ž . p2Ž x .Ž .On the other hand, if g satisfies 17 , then G maps L � into L � ,
and thus G is continuous and bounded.
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First we give

Ž . p1Ž x .Ž .LEMMA 1.17. If the operator G maps a ball B 0 � L � intor
p2Ž x .Ž . p1Ž x .Ž . p2Ž x .Ž .L � , then G maps all of L � into L � . Here, we denote by
Ž .B 0 the ball with radius r and center at the origin 0.r

Ž .Proof. We may assume that g x, 0 � 0. Otherwise we can consider
Ž . Ž . p1Ž x .Ž .g x, s 
 g x, 0 instead. Let u � L � . By the absolute continuity of

� �the norm 	 , we can divide � into the union of disjoint subsets�

Ž .� i � I such thati

� �u x 
 x � r ,Ž . Ž . �� i

Ž .where 
 x is the characteristic function of � . Therefore we have� ii

u x � u x 
 x .Ž . Ž . Ž .Ý � i
i�I

Ž . Ž . Ž . Ž . p1Ž x .Ž .Writing u x � u x 
 x , then u � B 0 � L � andi � i ri

Gu � Gu .Ý i
i

p2Ž x .Ž . p2Ž x .Ž .By the assumption, Gu � L � , and thus we obtain Gu � L � .i

Proof of Theorem 1.16. We need only prove G that is continuous at 0
Ž . � Ž .4when g x, 0 � 0. If this is not true, we can find a sequence u x �n

p1Ž x .Ž . Ž .L � n � 1, 2, . . . satisfies

� �lim u � 0,�n 1
n��

but

� �Gu � � ,�n 02

where � is some positive constant. Without loss of generality we can0
� �suppose that u � 1; thus by Theorem 1.3 we have�n 1

� �� u � u . 18Ž . Ž .�1 n n 1

and therefore

� � p1Ž x .lim u dx � 0.H n
n�� �

1Ž .For � � L � , we now define

� � �1� p1Ž x . � p2Ž x .H� x � h x , � x � G sgn � x � x , 19Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .
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Ž . � Ž � �1� p1Ž x .. � p2Ž x .where h: � � R � R, defined by h x, s � G sgn s s . Then
1Ž . 1Ž . Ž� �.H maps L � into L � , and thus H is continuous at 0 19 . Writing

� � p1Ž x .� x � sgn u x u x , 20Ž . Ž . Ž . Ž .n n n

then
� � 1lim � � 0,L Ž� .n

n��

and thus
� � 1lim H� � 0.L Ž� .n

n��

We get

� � � � � � p2Ž x .lim H� dx � lim G sgn u x u x dxŽ . Ž .Ž .H Hn n n
n�� n��� �

� � p2Ž x .� lim Gu dxH n
n�� �

� 0.
pŽ x .Ž . Ž .By Theorem 1.4, in L � , u n � 1, 2, . . . coverage to u in modular iffn

u coverage to u in norm, we haven

� �lim Gu � 0.�n 2
n��

� �This contradicts Gu � � , and we have proved the continuity of G.�n 02
p1Ž x .Ž . Ž . � �Let A be a bounded set in L � , i.e., for arbitrary u x � A, u �1

is uniform bounded, so by Theorem 1.3, A is bounded in modular. For
Ž . 1Ž . 1Ž . 1Ž .� x � L � let H be defined as above; then H: L � � L � and

Ž . Ž . � Ž . � p1Ž x . 1Ž .thus H is bounded. For u x � A, sgn u x u x � L � and
� Ž . � Ž . � p1Ž x . � 1 Ž .sgn u x u x � � u is uniformly bounded. There is a constantL Ž� . 1
K � 0 such that

� � � p1Ž x . � 1H sgn u x u x � K ,Ž . Ž .Ž . L Ž� .

i.e., we have

� � p2Ž x .Gu dx � K . 21Ž .H
�

Ž . Ž . Ž .Inequality 21 shows that G A is bounded in modular. Again from 21
Ž .we know that G A is bounded in norm.

Ž . Ž . p1Ž x .Ž . Ž .Now if 17 holds, we let u x � L � . It is obvious that a x 	
� � p1Ž x .� p2Ž x . p2Ž x .Ž .b u � L � . Therefore

� � p2Ž x . � � � p1Ž x .� p2Ž x . � p2Ž x .Gu x dx � a x 	 b u x dx � �,Ž . Ž . Ž .H H
� �

p1Ž x .Ž . p2Ž x .Ž .and thus G maps L � into L � .
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p1Ž x .Ž . p2Ž x .Ž . 1Ž .On the other hand, if G maps L � into L � , for � � L � ,
1Ž . 1Ž .as H: L � � L � , we can assert that there is a constant b � 0 and1

1Ž .function a � 0, a � L � such that1 1

� � � � �H� x � a x 	 b � x ,Ž . Ž . Ž . Ž .1 1

p1Ž x .Ž . Ž . Ž . � Ž . � p1Ž x . 1Ž .for u � L � . Let � x � sgn u x u x ; then � � L � and
thus

� � � � p2Ž x . � � p1Ž x .H� x � Gu x � a x 	 b u x ,Ž . Ž . Ž . Ž . Ž . Ž .1 1

Ž . Ž .as p x � 1. From 17 we can deduce that2

Ž .1�p x2p Ž x .1� � � �Gu x � a x 	 b uŽ . Ž . Ž .Ž .1 1

Ž .1�p x p Ž x .� p Ž x .1� p Ž x .2 1 22 � �� a x 	 b uŽ .1 1

� � p1Ž x .� p2Ž x .� a x 	 b u ,Ž .

Ž . Ž .1� p2Ž x . Ž . p2Ž x .Ž . 1� p2Ž x .where a x � a x � 0, a x � L � , and b � b . We1 1
conclude the proof.

As an application, we give an example.
n Ž .EXAMPLE. Let � be a measurable set in R and meas � � �,

f : � � R � R is a Caratheodory function satisfying the condition

� � pŽ x .f x , u � a x 	 b u ,Ž . Ž .

Ž . � Ž . Ž . 1Ž . Ž .where p x � L � , a x � L � , a x � 0, b � 0 is a constant. Then	
the functional

J u � f x , u x dxŽ . Ž .Ž .H
�

pŽ x .Ž .defined on L � is continuous and J is uniformly bounded on a
pŽ x .Ž .bounded set in L � .

m , pŽ x .Ž .2. THE SPACE W �

In this section we will give some basic results on the generalized
m , pŽ x .Ž . nLebesgue�Sobolev space W � , where � is a bounded domain of R

� Ž . m , pŽ x .Ž .and m is a positive integer, p � L � . W � is defined as	

m , pŽ x . pŽ x . 
 pŽ x . � �W � � u � L � : D u � L � , 
 � m .� 4Ž . Ž . Ž .
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m , pŽ x .Ž .W � is a special class of so-called generalized Orlicz�Sobolev
spaces. Some elementary conceptions and results of the general case can

� � � � m , pŽ x .Ž .be found in Hudzik’s papers 9�17 . From 11 we know that W �
� � m , pŽ x .can be equipped with the norm u as Banach spaces, whereW Ž� .

� � m , pŽ x . � 
 � pŽ x .u � D u .ÝW Ž� . L Ž� .
� �
 �m

� �According to 17 and Theorem 1.10 in Section 1, we already have
m , pŽ x .Ž .THEOREM 2.1. W � is separable and reflexi�e.

An immediate consequence of Theorem 1.7 is

Ž . Ž . � Ž . Ž . Ž .THEOREM 2.2. Assume that p x , p x � L � . If p x � p x ,1 2 	 1 2
m , p2Ž x .Ž . m , p1Ž x .Ž .then W � can be imbedded into W � continuously.

Now let us generalize the well-known Sobolev imbedding theorem of
m , pŽ . m , pŽ x .Ž .W � to W � . We have

�Ž . Ž .THEOREM 2.3. Let p, q � C � and p, q � L � . Assume that	

np xŽ .
mp x � n , q x � , � x � � .Ž . Ž .

n 
 mp xŽ .
m , pŽ x .Ž . qŽ x .Ž .Then there is a continuous and compact imbedding W � � L � .

Proof. For positive constant r with mr � n, denote

nr
r* � .

n 
 mr

Under the assumptions it is easy to see that for arbitrary x � �, we can
find a neighborhood U in � such thatx

q	 U � p
 U *,Ž . Ž .Ž .x x


Ž . � Ž . 4 
Ž . � Ž . 4where p U � inf p y : y � U , q U � sup q y : y � U . Nowx x x x
� 4U is an open covering of compact set �. Choosing a finite sub-cover-x x � �

� 4ing U : i � 1, 2, . . . , s and denotingi

p
 � p
 U , q	 � q	 U ,Ž . Ž .i i i i

m , pŽ x .Ž . m , pŽ x .Ž .it is obvious that if u � W � then u � W U , and thus fromi
m , p


i Ž .Theorem 2.2, u � W U . Therefore by the well-known Sobolevi
� �imbedding theorem 1 we have continuous and compact imbedding,

W m , p

i U � Lq	

i U .Ž . Ž .i i
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According to Theorem 1.7, there is a continuous imbedding

Lq	
i U � LqŽ x . U ,Ž . Ž .i i

qŽ x .Ž .so for every U , i � 1, 2, . . . , s, we have u � L U and therefore u �i i
qŽ x .Ž . m , pŽ x .Ž . qŽ x .Ž .L � . We can now assert that W � � L � , and the imbed-

ding is continuous and compact.

Remark 2.4. We do not known whether we have the imbedding

W m , pŽ x . � � L p*Ž x . � ,Ž . Ž .

Ž .but if the assumption on p x is not satisfied, we cannot have it.

� Ž . 4 2 Ž .EXAMPLE. Let � � x � x , x : 0 � x � 1, 0 � x � 1 � R , p x1 2 1 2
Ž . Ž .1�Ž1	x 2 . Ž . 1, pŽ x .Ž .� 1 	 x , u x � 2 	 x ; then we have u x � W � and2 2

Ž . Ž . Ž . p*Ž x .Ž .p* x � 2 1 
 x � 1 
 x . It is easy to test that u � L � .2 2

Let us turn to the problem of density.
m , pŽ x .Ž . �Ž .DEFINITION 2.5. We define W � as the closure of C � in0 0

m , pŽ x .Ž . m , pŽ x . m , pŽ x . m , 1Ž .W � and W � W 
 W � .0

Ž .It is well known that when p x is a constant p on �, we have
m , p ˚ m , p � m , pŽ . Ž . Ž . Ž .W � � W � , and in this case C � is dense in W � . For0

Ž . m , pŽ x .Ž .the general function p x , from the definition we have W � �0
˚ m , pŽ x . ˚ m , pŽ x . m , pŽ x .Ž . Ž . Ž .W � , and W � is a closed linear subspace of W � . In

˚ m , pŽ x . m , pŽ x .Ž . Ž .general, W � 	 W � . Zhikov showed the following. Let0
� Ž . 2 � � 4� � x � x , x � R : x � 1 , 1 � 
 � 2 � 
 . If we define1 2 1 2


 , if x x � 01 1 2p x �Ž . ½ 
 , if x x � 0,2 1 2

then

˚ 1, pŽ x . 1, pŽ x .W � 	 W � .Ž . Ž .0

�Ž . 1, pŽ x .Ž .This example also shows that C � is not dense in W � .
The identity

m , pŽ x . ˚ m , pŽ x .W � � W �Ž . Ž .0

� ˚ m , pŽ x .
m , pŽ x .Ž . Ž Ž . � � .means that C � is dense in W � , 	 . As MusielakW Ž� .0

� �pointed out in 18 , for Orlicz�Sobolev spaces, the problem of density is
� �very complicated. But by the method of Fan 3, 4 , we can get

THEOREM 2.6. If � is a bounded open set in Rn with a Lipschitz
� Ž . Ž . Ž .boundary p � L � and p x satisfies condition F�Z on �, i.e., there is	
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a constant L � 0 such that

� � � �
 p x 
 p y log x 
 y � L, � x , y � � , 22Ž . Ž . Ž .
then

. �Ž . m , pŽ x .Ž .1 C � is dense in W � .
˚ m , pŽ x . m , pŽ x .. Ž . Ž .2 W � � W � .0

� �Proof. Essentially the proof can be found in 3 ; Zhikov improved the
proof later. For completion we write it out here.

. Ž1 For simplicity we assume that the domain � is star-shaped with
.respect to the origin . For the more general case, one can write the proof

m , pŽ x . �� � Ž . Ž .similarly according to 3 . Let u � W � . We denote by u � C ��

the typical mollifier of u; i.e., u is defined as�

x 
 y

nu � � � u y dy . 23Ž . Ž .H� ž /��

It suffices to prove

u � u in W 1, pŽ x . � , as � � 0.Ž .�

1Ž . Ž .Denote � � � 1�log . From 22 it follows that for x � �,�

y 
 xpŽ x .
L� Ž� . pŽ x .
L� Ž� . 
n� � � �u x � u y � � dy .Ž . Ž .H� ž /�� �y
x ��

Ž . Ž . Ž . Ž .Noticing that p x 
 L� � � p y , for every s � 0, 1 we have
y 
 xpŽ x .
L� Ž� . pŽ x .
L� Ž� . 
n� � � �u x � u y � � dyŽ . Ž .H� ž /�� Ž . �u y �s

y 
 xpŽ x .
L� Ž� . 
n� �	 u y � � dyŽ .H ž /�� Ž . �u y ��

y 
 xpŽ y .
2 L� Ž� . 
n� �� s 	 s u y � � dy . 24Ž . Ž .H ž /�� �y
x ��

Ž .From 24 it follows that

� � pŽ x .
L� Ž� .u x dxŽ .H �
�

y 
 xpŽ y .
2 L� Ž� . 
n� � � �� s � 	 s u y � � dy dxŽ .H H ž /ž /�� �� y
x ��

y 
 x

2 L� Ž� . 
n� � � �� s � 	 s � � dx u y dyŽ .H H ž /ž /ž n �� R

Ž .p y
2 L� Ž� .� �� s � 	 s u y dy .Ž .H
�
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Ž . � �Let � � 0 be given. Choosing s � 0, 1 such that s � � � , then

� � pŽ x .
L� Ž� . 
2 L� Ž� . � � pŽ x .u x dx � � 	 s u x dx .Ž . Ž .H H�
� �

and hence

pŽ x .
L� Ž� . pŽ x .� � � �lim u x dx � � 	 u x dx . 25Ž . Ž . Ž .H H�
��0 � �

By the arbitrariness of � � 0 we obtain

pŽ x .
L� Ž� . pŽ x .� � � �lim u x dx � u x dx . 26Ž . Ž . Ž .H H�
��0 � �

Ž . Ž .By 23 , 26 , and Fatou’s lemma we have

� � pŽ x .
L� Ž� . � � pŽ x .lim u x dx � u x dx . 27Ž . Ž . Ž .H H�
��0 � �

Ž .By 23 and the Holder inequality we can deduce that for x � �,¨
y 
 x


n� � � �u x � u y � � dyŽ . Ž .H� ž /�� �y
x ��


 1�p
�
1�p p �y 
 x
p 
n� �� u y dy � � dyŽ .H H ž /ž / ž /n �� R

1�p
�

p �
n n� �� c � � z � dzŽ .H1 ž /nR

1�p
�


 p �
nŽ1
1� p �. � �� c � � z dzŽ .H1 ž /nR

� c c �
n � p

, 28Ž .1 2


 
 Ž � Ž . � p

.1� p


where 1�p 	 1�p � � 1, c � H u y dy , and c �1 � 2
Ž � Ž . � p
� .1� p
�

nH � z dz .R
Ž .From 28 it follows that for x � �,

Ž . 
L� �L� Ž� . 
� Ž� .LnŽ1� p .� �u x � c c � � � � .Ž . Ž . Ž .� 1 2

1 
n L � pŽ . Ž .It is easy to see that � � � � 1 as � � 0, and thereforee

� � pŽ x . � � pŽ x .
L� Ž� . � � L� Ž� .u x dx � u x u x dxŽ . Ž . Ž .H H� � �
� �

� � pŽ x .
L� Ž� .� � � u x dx . 29Ž . Ž . Ž .H �
�
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Ž . Ž .From 29 and 27 it follows that

pŽ x . pŽ x .� � � �lim u x dx � u x dx . 30Ž . Ž . Ž .H H�
��0 � �

Ž . Ž .By 30 , 23 , and Fatou’s lemma we obtain

� � pŽ x . � � pŽ x .lim u x dx � u x dx . 31Ž . Ž . Ž .H H�
��0 � �

Ž . Ž .From 31 and 23 we get

� � pŽ x .lim u x 
 u x dx � 0. 32Ž . Ž . Ž .H �
��0 �

Ž .From 23 it is easy to see that

D u � D u , 33Ž . Ž .i � i �

where D � ��� x , i � 1, 2, . . . , n.i i
Using arguments similar to those above, we can prove that

� � pŽ x .lim D u x 
 D u x dx � 0, i � 1, 2, . . . , n. 34Ž . Ž . Ž .H i � i
��0 �

�Ž . 1, pŽ x .Ž .Thus we have proved that C � is dense in W � . Using induction
for m, we can complete the proof.

. .The proof of 2 is similar to 1 , and we omit it.

Ž . Ž .THEOREM 2.7. Let p x � C � . Then we can take

� �� � 
 � pŽ x .u � � uÝm , pŽ x . L Ž� .

�m

˚ m , pŽ x .
m , pŽ x .Ž Ž . � � .as an equi�alence norm in the space W � , 	 ; i.e., there is aW

positi�e constant C such that


 � ˚ m , pŽ x .
pŽ x .� � � � � �� u � C u , �0 � 
 � m , u � W � .Ž .L Ž� . m , pŽ x .

Proof. For simplicity we only give the proof for m � 1. It is easy to see
� � pŽ x . n �Ž u .� pŽ x .that Du is equivalent to Ý � �� x .L Ž� . L Ž� .i�1 i

	 Ž . Ž . Ž .As p � �, we can find p x � C � i � 1, 2, . . . , s such thati

p x � p x � p x � p x � 			 � p x � 1 35Ž . Ž . Ž . Ž . Ž . Ž .0 1 2 s

and

p x � p� x , i � 0, 1, . . . , s 
 1, 36Ž . Ž . Ž .i i
1



FAN AND ZHAO444

Ž .np xŽ .where p* x � . By Theorem 3.3 there are continuous imbed-Ž .n 
 p x

dings,

W 1, pi	1Ž x . � � L piŽ x . � , i � 0, 1, . . . , s 
 1,Ž . Ž .

so we can get, subsequently,

� � pŽ x . � � p Ž x . � � p Ž x .u � C Du 	 u1 1Ž .L Ž� . L Ž� . L Ž� .0

� � � pŽ x . � � p Ž x .� C Du 	 C u 1L Ž� . L Ž� .0 0

� � p Ž x . � � p Ž x . � � p Ž x .u � C Du 	 u1 2 2Ž .L Ž� . L Ž� . L Ž� .1

� � � pŽ x . � � p Ž x .� C Du 	 C u 2L Ž� . L Ž� .1 1

						

� � p Ž x . � � p Ž x . � � p Ž x .u � C Du 	 us
 1 s sŽ .L Ž� . L Ž� . L Ž� .s
1

� � � pŽ x . � � p Ž x .� C Du 	 C u sL Ž� . L Ž� .s
1 s
1

� � p Ž x . � � 1 � � 1
� � � pŽ x .u � u � C Du � C Du .sL Ž� . L Ž� . L Ž� . L Ž� .s s

1, 1Ž .The last equality above is represented by the fact u � W � . Combin-0
ing these inequalities, we complete the proof.

˚ m , pŽ x . m , pŽ x .Ž . Ž .Remark 2.8. In Theorem 2.6, replace W � by W � . The0
conclusion is obviously true.

Ž . � �Remark 2.9. Condition F�Z is given by Fan and Zhikov 20 . It is easy
Ž . 0, 
 Ž . Ž . Ž .to see that if p x � C � then p x satisfies condition F�Z .

m , pŽ x .Ž . m , pŽ .We now point out a difference between W � and W � . This0 0
m , pŽ x .Ž .difference shows that in W � , the variational problems become very0

complicated. Let

� � pŽ x .H Du dx�
� � inf . 37Ž .pŽ x .1, pŽ x . � �Ž . H u dx0	u�W �0 �

Ž . Ž .It is well known that when p x is a constant p, � defined above is the
Ž � � p
2 .first eigenvalue of p-Laplace operator 
� � 
div Du Du . It mustp

Ž .be a positive number. But for general p x , this is not true; � may take 0.

Ž . 1EXAMPLE. Let � � 
2, 2 � R . Define

� �3 if 0 � x � 1;
p x �Ž . ½ � � � �4 
 x if 1 � x � 2.
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Then we have

� � pŽ x .H Du dx�
� � inf � 0.pŽ x .1, pŽ x . � �Ž . H u dx0	u�W �0 �

Proof. Let

� �1 if 0 � x � 1;
u x �Ž . ½ � � � �2 
 x if 1 � x � 2.

Ž . 1, pŽ x .Ž .Then u x � W � . Let us prove that for a � 0, there holds0

� � pŽ x .H au� x dxŽ .�
lim � 0. 38Ž .pŽ x .� �a�� H au dx�

In fact, we have

1 2 4
xpŽ x .� �au� x dx � 2 0 dx 	 a 	 1 dxŽ . Ž .H H Hž /
� 0 1

2 a2
2 4
x� 2 a dx � a 
 1Ž .H log a1

and

1pŽ x . 3 3� �au dx � 2 a dx � 2 a .H H
� 0

The conclusion is dropped.

At last we present an elementary result of the difference quotients in
1, pŽ x .Ž .W � .

Ž . 1, pŽ x .Ž .THEOREM 2.10. Let �� �� �, h � dist ��, � � , if u � W � ,
Ž . � Ž . Ž . i Ž . pŽ x .Ž .where p x � L � satisfies condition F�Z . Then � u x � L ��	 h

and we ha�e

. � i Ž . � pŽ x . � Ž . � pŽ x .1 H � u x dx � H D u x dx;�� h � i

. i Ž . Ž . pŽ x .Ž .2 � u x con�erges strongly to D u x in L �� , whereh i

1
i� u x � u x 	 he 
 u xŽ . Ž . Ž .Ž .h ih

Ž . Ž .is the ith quotient of u x e denotes the unit �ector of the x axis ,i i
Ž . Ž . Ž .D u x � ��� x u x .i i

The proof of Theorem 2.10 is easy and we omit it.
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