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A delayed Gause-type predator—prey system without dominating instantaneous
negative feedbacks is investigated. It is proved that the system is uniformly
persistent under some appropriate conditions. By means of constructing a suitable
Lyapunov functional, sufficient conditions are derived for the local and global
asymptotic stability of the positive equilibrium of the system. © 2002 Elsevier
Science
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1. INTRODUCTION

An important and ubiquitous problem in predator—prey theory and
related topics in mathematical ecology concerns the long-term coexistence
(or persistence) of species. For Lotka—Volterra systems without time
delays, it is well known that the global stability of a positive steady state
holds when the intraspecific competition dominates the interspecific inter-
actions (i.e., the so-called community matrix is diagonally dominant) (see
Hofbauer and Sigmund [1] for a comprehensive discussion of such kinds of
results). This result was extended to the delayed Lotka—Volterra-type
systems by Kuang and Smith [2], where it was shown that if, for every
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species, the instantaneous intraspecific competition (i.e., instantaneous
negative feedback) dominates the total competition due to delayed in-
traspecific competition and interspecific competition, then the positive
steady state of the system remains globally asymptotically stable.

Most of the global stability or convergence results appearing so far for
delayed ecological systems require that the instantaneous negative feed-
backs dominate both delayed feedback and interspecific interactions. Such
a requirement is rarely met in real systems since feedbacks are generally
delayed. This leads to the standing question: Under what conditions will
the global stability of a nonnegative steady state of a delay differential
system persist when time delays involved in some part of the negative
feedbacks are small enough? Kuang [3] presented a partial answer to this
open question for Lotka—Voterra-type systems.

In the present paper, motivated by the work of Kuang [3] and Freedman
and Ruan [4] for retarded functional differential equations, we consider a
delayed Gause-type predator—prey system without dominating instanta-
neous negative feedbacks,

X =xl(t)(a] —ayx(t — 1) — anmx%xt)(t))
' (1.1)

xi(t—7,)
m+x,(t —7,)

— ayx,(t — 73))’

Xy =x2(t)(—a2 + ay

with initial conditions
x(t) = ¢i(t), te[-7,0], ¢(0)>0,i=12, (1.2)

where a;,a;; (i, j = 1,2) are positive constants. 7; (i = 1,2,3) are nonneg-
ative constants, 7 = max{r, 7,, 73}. ¢,(¢) (i = 1,2) are continuous bounded
functions on the interval [—7,0]. x,(¢), x,(¢) denote the densities of prey
and predator populations, respectively. We have assumed in (1.1) that
when the predator species is absent, the prey species x, is governed by the

well-known delay logistic equation

dx(1)
Cdt =x,(1)(a; —ayx (1 — 7)), (1.3)

where 7, > 0 denotes the delay in the negative feedback of the prey
species x;; here 7, may represent the duration of pregnancy. Thus (1.3)
states that the average rate of increase of species at time ¢ is dependent on
x,(t — 7,) (the density of species at time ¢t — 7,), because the increased
individuals at time ¢ have existed in the mothers’ body at time ¢ — 7,. On
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the other hand, the number of pregnancies depends on the surplus amount
of the resources provided by the environment at that time. If the resources
supplied by the environment are certain, then the number of pregnancies
will depend on the density of species at time ¢ — 7,. 7, is a constant delay
due to gestation; that is, mature adult predators can only contribute to the
production of predator biomass. In addition, we have included the term
—a,, x,(t — 75) in the dynamics of predator x, to incorporate the negative
feedback of predator crowding.

We adopt the following notations and concepts throughout this paper.

Let R2={x € R*:x, > 0, i = 1,2}. For ecological reasons, we consider
system (1.1), only in Int R?.

DEFINITION 1.1.  System (1.1) is said to be uniformly persistent if there
exists a compact region D C Int R? such that every solution x(¢) =
(x,(2), x,(2)) of system (1.1) with initial conditions (1.2) eventually enters
and remains in the region D.

The organization of this paper is as follows. In the next section, we
present permanence results for system (1.1). In the third section we derive
conditions for the local stability of the positive equilibrium of (1.1), and the
conditions depend on 7, and 75. Section 4 provides sufficient conditions
for the positive equilibrium of system (1.1) to be globally asymptotically
stable. Finally, a suitable example is given to illustrate the feasibility of the
conditions of our theorems.

2. UNIFORM PERSISTENCE

System (1.1) has a unique positive equilibrium if the following condition
is true:

(HD) 2may > a.

In the following, we always assume that such a positive equilibrium exists
and denote it by E*(x¥, x%).

The following lemmas are elementary and are concerned with the
qualitative nature of solutions of system (1.1).

LEMMA 2.1. Solutions of system (1.1) with initial conditions (1.2) are
defined on [0, + ) and remain positive for all t > 0.

LEMMA 2.2. Let x(t) = (x(¢), x,(¢t)) denote any positive solution of
system (1.1) with initial conditions (1.2). Suppose that system (1.1) satisfies
(H1) and the following:

(H2) aay — a,) > ma,ay,.
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Then there exists a T > 0 such that

x(t)y <M, (i=12)fort>T, (2.1)
where
]\/[1 - ieal"'l, M2 — (02] _ aZ)Ml —ma, elllaz—a)My—may]/(m+ M)t
ay a,(m + M)

The proofs of Lemmas 2.1 and 2.2 are similar to those of Lemmas 2.1
and 2.2 of [5]; we therefore omit them here.
The following result shows that system (1.1) is uniformly persistent.

THEOREM 2.1. Suppose that system (1.1) satisfies (H1)-(H2) and the
following:

(H3) ar <3
Then system (1.1) is uniformly persistent.

Proof. 1t is easy to verify that system (1.1) has two equilibria, E,(0,0)
and E(a,/a,;,0), on the boundary of R%. From the assumptions of the
theorem we know that the omega limit set of boundary of R? is the union
of the boundary equilibria E,, E,. We choose

p(xi(1), x5(1)) = x{" (1) x32(1),

where «; (i = 1,2) are undetermined positive constants. We have

_ M . x,(1)
l!I(X) - p(X) )

ay —ayx(t— 1) — a12m
1

x (1= 15)

+ e —
“ m+x,(t—7,)

—a, t ay — ayx,(t — 73))-

If we choose a; = 1 and «, so small such that a,a, — a,a, > 0, then ¢
is positive at E,. Under assumption (H2), it is easy to verify that ¢ is
positive at E,. Hence, there is a choice of a, to ensure > 0 at the
boundary equilibria. If the condition (H3) holds, it follows from paper [6]
that E, is globally asymptotically stable with respect to solutions initiating
in the x,; axis. It is easy to verify that E, is globally asymptotically stable in
the x, axis. Thus, by Theorem 3.12 of Freedman and Ruan [4], we see that
system (1.1) is uniformly persistent.
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3. LOCAL ASYMPTOTIC STABILITY

In this section, we discuss the local asymptotic stability of the positive
equilibrium E* of (1.1).
Linearizing system (1.1) at E*(x¥, x¥), we obtain

Nl(t) = A, Ni(t — 7;) + B;;Ny(t) + A, Ny(t)

. (3.1)
Nz(t) =A21Nl(t - 7'2) +A22N2(t - 73)’
where
apxy apxix;
Ay = —ayxf, Ap = — o+ By, = (m+—x)

1 1

ma, x5
Ay = ———=, Ay = —ayx;.

(m +x7)

It is known that the local uniform asymptotic stability of the positive
equilibrium E*(xf, x¥) of system (1.1) follows from that of the zero
solution of system (3.1) (see [8, Theorem 4.2, p. 26]).

THEOREM 3.1.  Suppose that system (1.1) satisfies (H1) and the following:

(H4) 2(A,, +By) — A, +A4, +A4,72A4, — 2B, + A}, —
Ay Aypyty <0,

(H5) 2A4,, —A,, + Ay — Ayy1(Ay — 2A4,,) + A Ay <0
Then the positive equilibrium E* of (1.1) is uniformly asymptotically stable.

Proof.  The first equation of (3.1) can be rewritten as

Ny(t) = (Ay, + By )Ny(t) + A Ny(t) _Auf Ny(u) du
= (A + By)Ni(t) + A, Ny(1)

t

— Ay - (A11N1(u —7,) + B, Ny(u) +A12N2(u))du. (3.2)

Define

Wi(t) = NE(1). (33)
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Then along the solution of (3.1), we have

%Wu(t) = 2N1(t){(A11 +Bn)N1(t) +A12N2(t)
_Auj;t_T (A11N1(” - 7)

+By Ny(u) + A, Ny(u)) du
=2( Ay + By)NZ(t) + 2A,N\(t)Ny(t) — 2A4,,N(t)
xftt_Tl(AuNl(u — 1) + By Ny(u) + A, Ny(u)) du.
Using the inequality a®> + b* > 2ab, we get

d
EWu(t) =< 2(1‘111 + B11)N12(t) _A12N12(t) _A12N22(t)

+A1171(A11 - By +A12)N12(t)
t
+ Ay - [A11N12(u —-Ty) — BnN12(u) +A12N22(”)] du.

(3.4)

Define W,(¢) as

t t
Wip(1) = Ay, ) /[A11N12(” — 1) — By Ni(u) +A12N22(”)] dudv.
_—_

(3.5)

It follows from (3.4) and (3.5) that

d
E(Wn(t) + Wiy(1))
= [2(A11 + Bn) —Ap + 1'11411(/111 - By +A12)]N12(t)

_A12N22(t) +A1171[A11N12(t - 7'1) - Bllle(t) +A12N22(t)]-
(3.6)

Let W,(¢) be defined by
Wi(t) = Wi(1) + Wi(1) + Wis(1), (3.7)
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in which

t
Wis(t) = Afmft_ N (u) du. (3.8)
Then we derive from (3.6)—(3.8) that

d
EWI(I) =< [2(A11 + Byy) — A + 1 4(Ay — By +A12)]N12(t)

_A12N22(t) +A1171[A11N12(t) _Banz(t) +A12sz(t)]
= [2(A11 + Bu) —Ap + 7'11411(2’411 - 2By, +A12)]N12(t)
_A12(1 _A1171)N22(t)- (3-9)

Similarly, the second equation of (3.1) can be rewritten as

. t .
Ny(1) = Ay Ny(t) + Ay Ni(t — 1) _Azzft N,(u) du
1
:AzzNz(t) +A21N1(t - 72)

t
— Ay - [AyNy(u — 7y) + Ay Ny(u — 75)] du. (3.10)

T3
We define
Wa(1) = N2 (1). (3.11)

Then along the solution of (3.1), we derive

%Wzl(l) = 2N2(l){A22N2(t) + Ay Ny(t — 75)

t
—Ay ) [A21N1(” — 7)) + Ay Ny(u — 73)] du}
- T3

=2A, N7 (1) + 24, Ny(t — 7,) Ny(t)
t
- 2A22N2(t)'/;7 [A21N1(u —7y) + ApNy(u — 73)] du.

(3.12)
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Using the inequality a® + b* > 2ab, we get

d
EWm(t) <2A5, N7 (1) + Ay NE(t — 1) + Ay Ny (1)

- TsAzz(Am - Azz)sz(t)

t
—Anf [Ay N2 (u — 1) — ApNZ(u — 73)] du. (3.13)

73

Define W,,(¢) as
t t
Wy(t) = _Azzf[ f[A21N12(” —7y) — Ay N7 (u — 73)] du dv
— T3 v

+ Ay [ NE(u) du. (3.14)
.

t

It follows from (3.13) and (3.14) that

d
E(WZI(t) + Wy(1))
< (24, + Ay — 73A5( Ay — Ap)| N7 (1)
+ Ay N2 (1) _A2273[A21N12(t —7y) — Ay N7 (t — T3)]~
(3.15)
Let W,(¢) be defined by
Wz(t) = W21(t) + W22(t) + W23(t), (3'16)
in which

t t
Way(t) = fAn@(AﬂK_ Afoﬁcm-—Anl_ Nf@ﬂdu) (3.17)

2 3

Then we derive from (3.15)—(3.17) that
d
EWz(l‘) <24, + Ay — 7345 ( Ay — Ap)|[NF (1) + Ay NP (1)

_A2273[A21N12(t) _A22N23(t)]
=24y + Ay — 7345 ( Ay — 2A5,)| N5 (1)
+ A, (1 —A2273)N12(t). (3.18)
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Let
W(t) = Wi(t) + Wy(1).

Then along the solution of (3.1), we have

d
EW(I) =< [2(A11 + Bn) _Alz + 7'11411(2/111 - 2Bn +A12)]N12(t)
_Alz(l _A1171)N22(t) +A21(1 _A2273)N12(t)
+[2A22 +A21 - 1'31‘122(1‘121 - 2A22)]N22(t)
= —a,NX(t) — asz(t), (3.19)
in which

a; = _[2(A11 +Bn) —Ap + Ay +A1171(2A11 — 2By, +Alz)
—A21A2273],
a, = — [2A22 —Ap + Ay + A AT _A227'3(A21 - 2A22)]-

Clearly, assumptions (H4)—(H5) imply that «, > 0, a, > 0. According to
the Lyapunov theorem (see [7, Theorem 5.1, p. 27]), we see that the zero
solution of (3.1) is uniformly asymptotically stable, and this completes the
proof.

Remark 1. From the proof of Theorem 3.1, it is easy to see that, under
assumption (H1), if 2(A,, + B;;) — A, + Ay; <0 and 2A4,, — A, + A,
< 0, then the positive equilibrium of the “instantaneous” (when 1, = 0,
i = 1,2,3) model (1.1) is locally uniformly asymptotically stable. If 2(A4,, +
B;))—A,+ Ay, <0and 24,, — A, + A, <0, then the local uniform
asymptotic stability of E* of delayed model (1.1) is preserved for suffi-
ciently small 7, and 7, satisfying (H4)—(H5).

4. GLOBAL ASYMPTOTIC STABILITY

In this section, we derive sufficient conditions which guarantee that the
positive equilibrium E*(x}, x3) of system (1.1) is globally asymptotically
stable. Our strategy in the proof of the global asymptotic stability of the
positive equilibrium E* of (1.1) is to construct suitable Lyapunov function-
als.
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THEOREM 4.1.  Suppose that system (1.1) satisfies (H1)—(H3). Then the
positive equilibrium E* of (1.1) is globally asymptotically stable provided that

H6) r;>0,i=1,2,
(H7)  ryyryy — a7y > 0,

where

ap x5 apx;
Iy =apy — m(m + x7) —ay M| ay; + —m(m T )
ap
Iy = ayn(l —a,M,T;), Ty = _;(1 +a Mt,),
- B G yaum
'y = " +x§"( ay M,t5),

in which M; is defined by (2.1).

Proof. Let x(¢) = (x,(¢), x,(t)) be any solution of (1.1) with initial
conditions (1.2). Define

u(t) = (ui(t),uy(t))

by
x; (1) .
u;(t) =In—; (i=1,2). (4.1)
Xi
It follows from (1.1) and (4.1) that
du, - ap, x5
a —ayxf(e" T — 1) - m+ (e" —1)
a, x¥xk
4 12X1 X3 (emi) — 1)
(m +x,)(m +x¥) (4.2)
du, May XF

— = u(t—7) _ 1
dt (m +x(t = 7))(m +xF (¢ )

—apxi (e —1).
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The first equation of (4.2) can be rewritten as

B wr(en — 1) = 2 e )
dt n m + x,
apxtxd du,(s
+ 27172 — ("™ — 1) +dnxikft eum)ﬁ
(m +x,)(m +xY) =7
a, X3
= —apxf(e —1) — ——— (e -1
(e = 1) = )
LV
n X1 X3 (em® — 1)
(m +x)(m +x7)
% (! u(s){ *( u(s—1y) 1) alzxi ( uy(s) 1)
+axf e’f —apxy (e —=1) = ——— (" —
nry 11X —

N ap X7 X3
(m +x,)(m +x¥)

(e — 1)} ds. (4.3)
Let
Viu(t) =|u1(t)|. (4.4)

Calculating the upper right derivative of V;,(¢) along the solution of (4.2),
we have from (4.3) and (4.4) that

122

DV (1) < —ayxfle® — 1] + e — 1]
k43K
ﬂ| ) _ |
m(m + x¥)
t - apX;
+ allef e g xfleCm™) — 1] + ——[e*2® — 1|
t—7
kK
ap,xfx
L{kkul(s‘) — 1|} ds. (4.5)
m(m + x7)

By Lemma 2.2, we know that there exists a 7 > 0, such that xfe“1) =
x,(t) < M, for t > T. Hence for t > T + 7, we have

ap, X3 ay, X3
DV (t) < —xfla;,, — ——————|le"® — 1] + le“2) — 1
m(m + x7¥) m
apXx;
+ “11M1/ {allx’l“le"l(s_”) — 1|+ ——]e"® — 1]
t—1

a,xFxd
124142 |eu1(s) _ 1|} (4 6)

m(m + x7)
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Define a Lyapunov functional V(¢) as

Vl(t) = Vu(t) + Vlz(t)> (4~7)
where
! t * | u(s— 1) a12x§ u,(s)
Vip(t) = “11M1f f ayxfle" ) — 1] + let2) — 1]
t—T770v
apxix;

— = e — 1|V dsd
m(m +x]")|e l} sav

+ afleMllet le“® — 1] ds. (4.8)

t—7y

Then we have from (4.6)—(4.8) that for t > T + =

D) = —xtlay - —22 gy [y ¢ S
) = = T ) R R Y P
app X3
X e — 1] + (1 +a, M7))le"" — 1|
= —ryxfle® — 1] — r,x¥le">® — 1. (4.9)

Next, let

a, x¥
V(1) =|uy(t)| + azzMz{L/t ft|€"‘(3772) — 1] dsdv

*
m +Xx7 Y77

t

t
+azzx>2"f f le*2t=m) — | dsdv}
t v

—rs
*
a, X ¢
Ll*f |eu1(s) _ 1| ds
m +x1 t—1,
*
anXy ot

? |€u](5) — 1l ds
m -~ Xy Ji—r,

+ a22M21'3{

+a22x§ft le"2®) — 1] ds}. (4.10)

t— 73
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Then it follows from (4.2) and (4.10) that for ¢t > T + 7

D+V2(t) < _azzxak(l - 022M273)|e”2(t) — 1|

%
N ay X (1 + ap My7y)le"® — 1|
p—— 2 M,Ts
= —ryxfle® — 1| — ry,x¥le>® — 1. (4.11)

According to assumptions (H6)-(H7), we know that C = (r,)),,, is an
M-matrix; hence there exist positive constants ¢; (i = 1,2) such that

ryCp + ryc, =hy >0, T1pCq + IppCy = hy > 0.
Now define a Lyapunov functional V(¢) as
V(t) = c V(1) + c,V5(1). (4.12)
Then we have from (4.9), (4.11), and (4.12) that for t > T + 7
DTV(t) < —hyxfle® — 1] — hyxk|e">® — 1|. (4.13)

Since system (1.1) is uniformly persistent, one can see that there exist
positive constants m, (k =1,2) and a T* > T + 7 such that x}e“«") =
x(t) >m, (k=1,2) for t > T*. Using the mean value theorem, one
obtains x§ e — 1] = x}Fe%Olu, ()] = m,|u, ()| (k = 1,2), where x}e’"
lies between x,(¢) and x}. Let 8 = min{m,h,, m,h,}. Then it follows from
(4.13) that for ¢t > T*

DV (t) < —8(uy(1)| +uy(t)]). (4.14)

Noting that V(¢) > min{c,, c,}(lu,(t)] + [u,(¢)]), we can conclude from the
Lyapunov Theorem and (4.14) that the zero solution of (4.2) is globally
asymptotically stable, and hence the positive equilibrium E*(x§, x%¥) of
(1.1) is globally asymptotically stable. This completes the proof.

Remark 2. 1t is interesting to discuss the effect of time delays on the
stability of the positive equilibrium of (1.1). We assume that the positive
equilibrium E* exists for system (1.1). By Theorems 3.1 and 4.1, we see
that time delay due to gestation is harmless for the local and global
stability of the positive equilibrium of system (1.1). Therefore, in the
following, we need only discuss the effect of time delays in the negative
feedback of each species on the stability of E*. For simplicity, we let
T,=7,=0,7,= 1.
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The characteristic equation for (3.1) takes the form
P(A) + Q(A)e =0,
in which
P(A) = MA — Ay — Byy) —Ap Ay,
Q(A) = —Ap(A — Ay — By).

It is easy to determine that

N N2
F(y) =[P(ip)| —10(»)|
=y'+ [(All + Bu)2 — A3 + 2A12A21]y2

2
+A%2A%1 _Agz(Au + Bu) .

If 2(A,, +B;;)) — A, +A,, <0 and 2A4,, — A, + A,; <0, then it is
easy to verify that F(y) = 0 has at least one positive root and each of
them is simple. By applying [7, Theorem 4.1, p. 83] of Kuang, we see that
there is a positive constant 7, (which can be evaluated explicitly), such that
for 7> 7,, E* becomes unstable. Similarly, if we let 7, = 7, =0, 7, = 7,
the same conclusion can be obtained. Therefore, the local and global
asymptotic stability of E* will impose restrictions on the length of time
delays 7, and 75. In other words, time delay in the negative feedback of
each species destabilizes E* for system (1.1).

Finally, we give a suitable example to illustrate the feasibility of the
conditions of Theorems 2.1, 3.1, and 4.1.

ExamMpLE. We consider the following system:

) 53 x,(1)
x(1) =x1(t)(3 - ?M(f - 7))~ 1 +x1(t))
(4.15)
) dx(t — 1)
X(t) =x,(t)| -1+ Tox(= ey pR—— —4x,(t — 73)).

System (4.15) has a unique positive equilibrium E*(3, ). Using Theorem

2.1, we know that system (4.15) is uniformly persistent provided that 7, < 3.
From Theorem 3.1, we see that the positive equilibrium E*(3, 15) is locally
asymptotically stable provided that 8957r, + 241, < 2610 and 1597, +

4475 < 30. From Theorem 4.1, we know that the positive equilibrium
E*(4, ) of (4.15) is globally asymptotically stable provided that 7, < 1,
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ry > 0,7, >0,and ryyry, — rpry > 0, where

ry = @(945 — 5671M,7,), rn = —(1+ 3$M7)),
ry = —5(1 + 4M,1;), ry = 4(1 — 4M,75),
27 3M, —
M, 3y PlBM= D/ + M5

i M, = —1 —
53° 2T 41+ M)

To conclude this paper, we state that it appears to be very difficult to

derive a relationship between (H4)-(H5) and (H6)-(H7), which may indi-
cate that our results leave room for improvement. We leave this for future
work.
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