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Abstract

We study the deterministic counterpart of a backward—forward stochastic differential utility, which
has recently been characterized as the solution to the Cauchy problem related to a PDE of degenerate
parabolic type with a conservative first order term. We first establish a local existence result for
strong solutions and a continuation principle, and we produce a counterexample showing that, in
general, strong solutions fail to be globally smooth. Afterward, we deal with discontinuous entropy
solutions, and obtain the global well posedness of the Cauchy problem in this class. Eventually, we
select a sufficient condition of geometric type which guarantees the continuity of entropy solutions
for special initial data. As a byproduct, we establish the existence of an utility process which is a
solution to a backward—forward stochastic differential equation, for a given class of final utilities,
which is relevant for financial applications.
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1. Introduction

In the present work, we investigate a basic model of anisotropic convection—diffusion
equation
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du=>02u+d,f(u), (x,y)eR% 1>0, (1.1)
with an initial condition at = 0,
u(-,0)=up, onR2 (1.2)

We shall make use of the standard assumptions:

(A1) f e W& ®).
(A2) uge L*®(R?).

This kind of problems arises in the framework of stochastic models for the utility func-
tion, which has been extensively developed since the work by Duffie and Epstein [9]. For
instance, Antonelli et al. [1] proposed to describe the utility function by means of a non-
linear backward—forward stochastic differential equation. The first problem is to establish
the existence of solutions; they proposed to use the four step scheme by Ma et al. [19] in
order to relate this problem to the study of a deterministic partial differential equation and
obtained a convection—diffusion equation®f x (0, T') of the following type:

1
du = Eczafxu + et 4 3y f (u) — yydyu — Bu + w, (1.3)

whereo, u, v, B are fixed parameterg; is a convex function oft (possibly depending
also byx, t), andw is a smooth function aof, y, t. The source ternw and the initial con-

dition ug are either decreasing or increasing with respegt, taccording to the particular
economic effect that should be captured.

Eventually, the existence of an utility process is obtained whenever the related Cauchy
problem admits a solution which is, at least, Lipschitz-continuous with respect tocboth
and y. Unfortunately, this fact does not hold in general. For instance, i, y, u =0,
fw) =u?/2, andug only depends byy, the solutions to (1.3), (1.2) is of the form
u(x,y,t) =1iu(y, ), wherei solves the Burger's equatidi + itd,u = 0. It is well known
that this problem does not admit, in general, continuous solutions for all#tim@, in
spite of the smoothness of the initial datum. In the present paper we show that the pres-
ence of the diffusion term is not sufficient to avoid this loss of continuity. In order to take
heed to the main effect of the nonlinear term in conservative form, we study the simplified
equation (1.1).

Let us now review the main related existing results. In [11] Escobedo et al. proposed a
notion of solutions, possibly discontinuous, inspired by the entropy solutions introduced
for first order equations by Kruzhkov [16]. They defined an entropy solution to (1.1) as a
functionu € C(0, T; LY(R?)) N L>®((0, T) x R?) such that

T T
//—Iu — kI3 — 92,0) + SN — k) (f () — £ (K)) By < / / sgnu — k)k"¢
0 R2 0 R2
for all smooth functiong of x andg € D(R2 x (0, T)), ¢ > 0. Next, they obtain the well
posedness of the Cauchy problem in the class L for all times (see [11, Theorem 1]).

However, this well posedness result is not significant for the financial applications: since
the solution to the convection—diffusion equation is not sufficiently smooth to apply Ito’s
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lemma, there is no way to deduce the existence of a solution to the former backward—
forward stochastic differential equation. Furthermore this notion of solution is too weak to
give a geometric description of the possible shocks, in the spirit of the classical result by
Oleinik [20].

In [2], Antonelli and Pascucci used the viscosity solutions approach (see, for in-
stance, [6]) to prove the local existence of solutions. Global existence was not obtained,
since the crucial quasi monotonicity property with respeci tdoes not hold for such
equation.

A completely different flavor inherits the interior regularity result obtained by Citti
et al. [5] in the particular cas¢ (u) = u2/2. By making use of hypoelliptic operators’
techniques, they established that any classical solution is indeed ot&fassevery open
set where), u # 0. Unfortunately, the assumption thats a priori of classC! is essential
in the proof of this result, so that it may not be applied to the entropy solutions, which
existence has been proved by Escobedo et al. [11], or to the solutions given in the present
paper.

The paper is organized as follows. In Section 2 we propose a strong notion for solution
and, by a compactness procedure, we obtain in Theorem 2.6 local existence and a con-
tinuation principle, stating that this smooth solution does exist until a discontinuity in the
y-direction comes forth. We also produce a counterexample showing that discontinuities
may arise in finite time, even starting from smooth and compactly supported initial data.
This result goes into the opposite direction compared with the one in [5]: the assumptions
uo smooth and, u # 0 are not sufficient to prevent the appearance of discontinuities.

In Section 3 we investigate a weaker notion of solution, possibly discontinuous, to
achieve global existence. The estimates obtained in Section 2 show that the solutions pro-
duced in [11] have an additional regularity property, namely éhate L0, T'; L%C(RZ)).

On the other hand, assuming this regularity property enables to establish uniqueness by us-
ing less entropy tests. This leads us to a notion of entropy solution which is substantially
different from the one in [11], because we ask a priori thatis locally square integrable,

but we reduce the number of entropy tests. This is more in the spirit of the results by
Carrillo [4] for some different nonlinear degenerate problems. The well posedness of the
Cauchy problem in the clads™ is established by Theorem 3.6, even though our entropy
solutions coincide with the ones of [11] (when both exist), the uniqueness classes are dis-
tinct. Besides, by taking advantage of the propégty e L2(0, T; L2 (R?)), Theorem 3.8
characterizes entropic shocks by virtue of a Rankine—Hugoniot—Oleinik type condition,
inspired by the analogous result concerning scalar conservation laws. Eventually we ob-
tain a sufficient condition of geometric type which guarantees the Lipschitz continuity of
solutions.

Finally, we give an application to utility theory in Section 4.

2. Local strong solutions and a continuation principle
Definition 2.1. A strong solutionto problem (1.1)—(1.2) in the time intervéD, T') is

a distributional solution to (1.1} € L2(0, T; L?(R%)) N L®(R? x (0, T)), such that
82.u, du € L?(0, T; L?(R?)) and



514 A.L. Amadori, R. Natalini / J. Math. Anal. Appl. 284 (2003) 511-531

lim /|u(t) —uo[*dxdy =0.
t—0
RZ

In order to obtain existence for such solutions, we approximate (1.1)—(1.2) with a more
regular problem

du=A*u+dyfe(u), (x,y)eR? >0, (2.1)

u(-,0)=uge, ONR2 (2.2)
whereA? is the linear uniformly elliptic operator

Afu =02 u + ed3u

andf: = f * x., uo = uo * x. are the mollified functions of andug, respectively. Next,
we take thatig belongs to soméf™ and we pursue the compactnesg®f} by making
use of iterated energy estimates.

The standard theory of quasilinear parabolic equations guarantees that, for each fixed
¢ > 0, problem (2.1)—(2.2) has a unique classical solutipnin addition it is not hard to
obtain the following uniform estimates.

Lemma 2.1. We assume thaf satisfies(Al) and thatug € L2(R%) N L*°(R?). Then,
for all 7 > 0, problem(2.1)—(2.2) admits a unique solutiom, € L%(0, T; HX(R?)) N
L%((0, T) x R?). Moreoveru € L%(0, T; H*®(R?)), at"kug is bounded and continuous

from (0, T') to H*°(R?) for all integersk > 0, and the following uniform estimates hold
[[ue (1) ||p < |lugll, foralmostallr € (0, T), (2.3)

forall p €2, 0], and
T

/ e )]t < uoll2 (2.9)
0

Proof. The existence and the smoothness gftogether with the uniform estimates (2.3),
may be obtained by arguing as in [14, Section 11.3]. Estimatek ©of immediately come
from the energy estimate. Indeed, by multiplying (2.1)dhyintegrating oveiR? x (0, T)
and applying the Green'’s formula, we obtain

T
%/(ug(T))zdxdy+//[(8xu5)2+(\/58yu3)2] dxdydt
0

R2 R2

T
1
< E/uasdxdy—//fg(ug)fiyugdxdydt.
0O R

R2 2
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However, the last term is equal to zero, since it may be written in the conservation form

T
//SyF(ug)dxdy dt

0 R2

with F(u) = [y fo(v)dve LY®R? x (0,T)). O

Remark 2.2. The same arguments of the proof of estimate (2.4) give th@b,u.} is
bounded inL2(R? x (0, T)).

A relevant consequence of the uniform estimate (2.4) is that the solution of the original
equation (1.1) is expected to be smooth with respect to the varighte matter what
kind of topology is chosen to pass into the limit. Besides, such property does not depend
from the globalL2-norm of the initial condition«o. This may be seen by making use of
a localization technique which goes up to De Giorgi [7]. Let us set, for &ll0, S, =
{(x,y): |x| <r}; the L2-norm of 8, u, in the stripS, may be estimated as follows.

Coroallary 2.3. Under the same assumption of Lem#ia, for all » > 0 we have
T

T
//|axug|2dxdydt<f|u0,8|2dxdy+4/ / lug|?dx dydt.

0 Sr Szr 0 SZr\Sr

Proof. In order to attain a local energy estimate, we fix 0 and we take the cut-off
function

1 if | x| <r,
a(x)=14 2r —|x| ifr<|x|<2r,
0 if |x| > 2r.

By multiplying (2.1) byu.«? and by arguing as in the proof of (2.4) we obtain
T

T
1
//(axus)dedydté E/uag(xzdxdy—2//u68xu3aa/dxdydt,

0 R2 R2 0 R2
and then the conclusion follows after estimating the last term on the right-hand side by
means of the Cauchy—Schwartz inequalityz
We introduce a functional space which is well fitting with the structure of Eq. (1.1),
X = {h e H™(R?): 8:h € H™(R?)},
which is a Banach space endowed with the norm

1/2
||h;Xm+1||=<||h||,i,2+ > ||D°‘axh||%) :

la|=m
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Next we look for the compactness i} in X" *1 by iterating the energy estimate (2.4).
Since such procedure guarantees a gain of regularity only with respect to the variable
the behavior with respect to must rather be postulated. To this aim a crucial observation
is that, wheneved,ug € L% (R?), thenad,u,(¢) is bounded inL°(R?) for some positive
time ¢, uniformly with respect t@.

Lemma 2.4. Suppose thaff € W2 (R) and thatug € L2(R?) N L™ (R?) with dyuq €
L% (R?). Then, for allN > 19y ualloc, there is a positive tim&y such that|dyu, (-, 1) [|oo
< N forall r € (0, Ty) ande > 0.

Proof. Let us take a cut-off functiog € C*°(R), 8 > 0,
B(r) = roif |r] <1,
"o ifir=2
bounded with all its derivatives by a constahtwe setfy (r) = NB(r/N) forall N > 0.
An easy computation shows thi@ty| < BN, |8y | < B.

Next, let us denote by, y the global solution to the parabolic Cauchy problgm —
Afu = fl(u)Bn(dyu), with initial condition (2.2). Nowd,u, n solves the linear equation
with bounded coefficientd, v = A®v + f/(u)B) (3yu)dyv + f' () By (dyu)v, with initial
conditiondyu, v (0) = d,uq.¢; then the maximum principle yields

[ayue.n ()|, < 18yuolloc €XP(BN|| £ (u0)|| 1)

for all £ > 0. In particular,||dyu. n () |looc < N 0n a suitable intervalO, Ty), whereTy
does not depend an Finally, By (9yue n) = dyue v In (0, Ty) and thenu, y is indeed the
unigque solution to (2.1)—(2.2) i(0, Ty). O

Until 3, u, stays bounded, itis not hard to obtain uniform bounds for higher order deriv-
atives ofu,.

Proposition 2.5 (Uniform estimates irk”+1). We suppose that there exists> 2 such
that f andug satisfy

(A1) f e Wittt mR),

(o]
(A™2) ug € L*(R?) N H™(R?), dyup € L*®(R?).

Then, the solutions, of (2.1)—(2.2) satisfy the following regularity properties
3 ue € L3 (0, 00; H™ T2 (R?)) N C(0, 00 H"#(R?)), 0<k<m/2,

O ue e L3 (0.T; L% (R?), 2k=m+1.
Furthermore for allN > |9, uollcc andTx > 0which verifies the conclusion of Lemi24,
the following estimates hold
Ty
/Hus(t); X2 dr < €1, (2.5)
0
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sup [ue(t); H™(R?)|| < Ca, (2.6)
te(0,Ty)

Ty
/ e (6): H™ 1 (R?)|2dr < Ca, 2.7)
0

sup [[8ius(t); H"2(R?)| < Ca (2.8)
te(0,Ty)

for all £ > 0. Here, the constant§y, ..., C4 only depend bw, by the norm ofig in H™
and by the norm of in W12 (—|lug|lse. llt0lls0)-

Proof. The existence of a solution of (2.1)—(2.2) with the regularity properties stated by
the first part of the claim is standard (see, for instance, [18]). Estimates (2.5) and (2.6) may
be obtained by iterating the energy estimate used in the proof of Lemma 2.4 for all the
derivatives ofu till order m and by making use of the fact thjd,u.(t)|c < N for all

t € [0, Ty]. In particular, the equality,u = A.u + f'(u)d,u holds almost everywhere, so

that estimates (2.7) and (2.8) are a straightforward consequence of (2.5) and (2.6).

The existence of a strong solution is attained by means of a relative compactness result
in the space£.2(0, T; X" 1) andC(0, T; H™) for the global solutions, of the problems
with viscosity (2.1)—(2.2).

Theorem 2.6 (Local existence and continuation principléJnder the same assump-
tions (A™1) and (A™2) of the previous lemma, there exists a tirfie>= 0 such that
(1.1)—(1.2) has a strong solution € L2(0, T; X"t1(R2)) N L>°(0, T'; H™(R?)), withu €
C(0, T; H™(R?)) and d,u € L2(0, T; H™1(R?)). Moreover, letT* be the maximal time
of existence for a strong solution, th&r < oo if and only iflim; »7« [|3yu(?)|c = 00.

Proof. First, we remember that, thanks to Lemma 2.4, there exists aftim® such that
{0yus (1)} is uniformly bounded i (R?) for all r € (0, T). So, Proposition 2.5 leads to
the conclusion by arguing as follows.

By virtue of (2.5) and (2.7)u.} and{d;u.} are equibounded in?(0, 7; X"+1) and in

L2(0, T; H™1(R?)), respectively. Hence, becau¥#*! is compactly embedded iK™,
a general compactness result (see, for instance, [21]) statefuthds relatively com-
pactinL2(0, T; X™). So, there is an extracted sequence ffap} converging strongly in
L%(0, T; X™) and weakly inL2(0, T; X”*1) to a functionu. Trivially u solves Eq. (1.1)
in the sense of distributions and consequeblye L2(0, T; H"~1(R?)).

Afterward, thanks to (2.6) and (2.8)x.} and {d;u.} are equibounded i *°(0, T’;
H™(R?)) and inL>®(0, T; L?(R?)), respectively. So, another general compactness result
(which may also be found in [21]) guarantees that there is an extracted sequence from
{us} converging strongly ir.> (0, T; H"~1(R?)) to a functionu € C(0, T; H" 1(R?)) N
L>®(0, T; H™(R?)). In particular,u takes the initial datumg in the sense of Defini-
tion 2.1. On the other hand, sindg: € L2(0, T; H™~1(R?)) from the first step, we have
by a general interpolation result (see, for instance, [18])ahatbounded and continuous
from (0, 7) to H™(R?).
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Finally, if by contradiction||d,(#)|l is bounded for < T*, Lemma 2.4 guarantees
thatd,u, are uniformly bounded i.*° (0, T1; R?) for someTy > T*. Therefore arguing
as above one can prove that there exists a strong solutionTn#lIT*, which contradicts
the maximality ofT*. O

We do not discuss directly here the problem of uniqueness for strong solutions. Actu-
ally, in the next section we shall prove the uniqueness for entropy solutions and we shall
notice that any strong solution is, in particular, an entropy solution. Hence, the unique-
ness for strong solutions is attained. By now, we prefer to further investigate the possible
continuation of strong solutions.

2.1. Afirst order blow up result

Here we give a counterexample showing that, even starting from a smooth and com-
pactly supported initial datum, the strong solution fails to be continuous after a finite time.
This fact emphasizes the analogy between convection—diffusion equations and first order
conservation laws; so, in the next section we shall give a weaker notion of solution, which
takes into account the presence of discontinuities.

By now, we consider the particular case whém) = u2/2 is the flux function of Burg-
er's equation and the initial data are of type

uo(x, y) = yvo(x,y), voe€ CS(R?), v > 0. (2.9)

Let us set the “initial mass” and the “initial energy,” respectively, along the diregtierd
as

Fo= }/(vo(x,O))zdx,

2
R
1 3 1 2
Eo= 5/(U0()€,0)) dx — E/(Eixvo(x,O)) dx.
R R

Provided thaty > 0, the solution has a shock in tledirection at a finite time. Further-
more, since the blow up time is estimated from above by an explicit functidia @hd&o,

for all fixed timeT > O there exists a smooth and compactly supported initial datum which
develops a discontinuity within the tinie.

Proposition 2.7. Let u be the strong solution of1.1)—(1.2) with f(x) = u?/2 and ug
given by(2.9). If & > 0, thenu fails to be continuous within a finite time, namely we have
sup[|dyu(t) loo: € (0, T*)} = oo for T* = 2Fo/3E.

Proof. We suppose by contradiction thii,u ()|l < oo for all r € (0, T*). Then Theo-
rem 2.6 guarantees that there exists- T* such that problem (1.1)—(1.2) has a solution
ueC®R?x (0,7)).

By settinga(x, ) = dyu(x,0,1), (x,t) = u(x,0,1) is the classical solution to the
linear parabolic equatiof, i = 32,4 + aii with homogeneous initial condition. Hence,
u(x,0,t) =0 for all (x,1). It follows that there exist® € C*°(R? x (0, T)) such that
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u(x,y, t)=yv(x,y,t).Inparticulard,u(x, 0, t) = v(x, 0, 1), thus our assumption by con-
tradiction implies that sufiv(-, 0, 1)|leo: ¢ € (0, T*)} < co. In addition(x, t) — v(x, 0, 1)
is the classical solution to

— 92 2
{B,w_axxw+w , (2.10)

w(x, 0) =vo(x, 0).
Since vgp has compact support, standard comparison arguments givevthdt, -) <

L0, T*; LP(R)) for all p € [1, co]. Eventually we reach a contradiction by showing
that|lv(-,0,1)|l2 = V2Fo/(1 —t/T*), which is plainly implied by

1
o | T L (2.11)
F(t) T*

where F(t) = (1/2)|v(-, 0, t)||§. The proof of (2.11) is quite technical and requests the
auxiliary functions
3 &)

1 3 1 2
g(t) = §||v(',0, t)||3— EHaxU(',O, I)HZ’ g(t) = EW

In force of (2.10),F'(¢) = 3£(r), £'(t) > 0, and&' () F(t) = (1/2)F'(¢). In particular
G'(t) >0, sothaiG(t) > G(0) = 1//FoT*. Finally we obtain (2.11) by computing

F 1/ FoF F 1
af,/f(‘t’)= o (t)z—J?og(r)—(”<—J?og(O)=—F. =

2 F(1)32 3E(r)

We recall that the first blowup result for problem (2.10) is due to [12], while the use
of energy norms to establish global nonexistence has been introduced by [15]. The class
of initial data (2.9) has been used in [10] to show that classical solutions for the unsteady
Prandtl’s equation do not exist for all times, in general. Concerning Eqg. (1.1), the result
is somewhat stronger, because by taking advantage of the continuation principle stated by
Theorem 2.6 we are able to establish an effective blowup of first order derivative.

3. Entropy approach

In view of the blowup result stated by Proposition 2.7, the class of strong solutions has
to be enlarged, avoiding to impose the continuity with respegt fa order to obtain the
existence of solutions for all time> 0. On the other hand a criterion of choice among dis-
tributional solutions is needed to guarantee uniqueness. Besides, the new notion of solution
must be consistent with the classical one: to this end we still construct the entropy solution
as the limit of the classical solutions of the regularized problems (2.1)—(2.2), but according
to a weaker topology. In view of this fact and of the uniform estimatek of obtained in
Corollary 2.3, it seems natural to impose as the standing regularity of an entropy solution

thatd,u(t) belongs taL2 .(R?). This brings to the following definition.
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Definition 3.1. A distributional solution to (1.1)u € L®[R?2 x (0,7T)), is an en-
tropy solutionfor the Cauchy problem (1.1)—(1.2) in the time interv@) T') if d,u €
L%(0, T; L, (R?)),
esslim| |u(t) —uo|dxdy=0
t—0
K
for all compact subset& of R?, and

T
//—m K[y + O 1t — K[oy + ST — ) (£ () — F(K)) 3y < O (3.1)
0 R2

for all real constant and all smooth functiong € C1(R? x (0, T)) with ¢ > 0 and with
compact support.

Remark 3.1. It is an easy exercise to show that any strong solution in the sense of Defini-
tion 2.1 is indeed an entropy solution, according to Definition 3.1.

Definition 3.1 and [11, Definition in Section 1] cannot be directly compared. Actu-
ally, the solutions in [11] are not solutions according to Definition 3.1, because they do
not satisfyd,u € L2(0, T; L2 .(R?)), so that they cannot be checked against the entropy
criterion (3.1). On the other hand, solutions according to Definition 3.1 satisfy the en-
tropy criterion [11, (EC)] only for constari, so that they do not fulfill [11, Definition in
Section 1]. Although, the constructed solutions happen to coincide when both exist (see
Corollary 3.7, later on).

Definition 3.1 seems more natural, because it asks for less entropy tests by taking ad-
vantage of a regularity propertyu € L2(0, T; L2 (R?)), which directly comes from the
viscosity procedure. Moreover, the informatidyu € L2(0, T; L2 _(R?)) enables to dis-

loc
cuss the shocks in Section 3.2.

Like in the case of scalar hyperbolic conservation laws, the entropic approach in-
vestigate the compactness {of.} with respect to the topology owlécl Since the final
equation (1.1) involves higher order derivatives with respeat, tib is requested that the
initial datum satisfies a narrowest regularity assumption with respect We list here
some uniform estimates that may be obtained by arguing as in [11].

Lemma 3.2. We assume that satisfieA1) and thatug € L1(R2) N L (R?) N BV(R?).
Then

[[ue (1) ||p < lluoll, foralmostallz € (0, T), (3.2)
forall p € [1, o] and the mass is preserved

/ug(t)dxdyzfuodxdy. (3.3)

R2 R2

Moreoverd,u, is uniformly bounded ir.>° (0, T; L1(R?)) with
|0yue(®) |, < TVuo. (3.4)
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If, in addition, 8, uo € BV(R?), then

|rus ()|, < C TV (uo) + TV (dxuo). (3.5)

This uniform estimates, together with the one obtained in Corollary 2.3, allow us to
obtain the existence of entropy solutions for smooth initial data by a well-understood com-
pactness technique.

Proposition 3.3 (Existence with smooth data)Ve suppose thaf satisfies(Al) and
that up € LY(R?) N L>®(R?) N BV(R?), d,up € BV, (R?). Then for all7 > 0 problem
(1.1)—(1.2) has an entropy solutiom € L>(R? x (0, T)) NC(0, T; L*(R?)). Such solution
is the limitin L1(R? x (0, T')) and almost everywhere of the solutionsof the regularized
problems(2.1)—(2.2), up to an extracted sequence. In additiowerifies estimates3.2)
and(3.3), 9, u satisfieg2.4), and

TV(u®) <TV(uo), (3.6)

Jutr) —u2)|; < [(M + C)T Vy(uo) + T Vi (du0) |11 — t2]. 3.7)

Proof. The convergence dfz.} to a distributional solutiom € C(0, T; L} (R?)) satisfy-

ing (3.2), (3.3), and (3.6) has been proved in [11, Section 2]. Moreover (2.4) implies that
d,u € L2(R? x (0, T)). Lastly, one may check that satisfies the entropy criterion (3.1)

by approximating: with the smooth functions,, by integrating by parts separately on the
two sets{u, > k} and{u. < k}, and by taking advantage of Remark 2.2 when passing to

the limit. O

Indeed, the hypotheses abaygtof Proposition 3.3 are quite strong and may be removed
by an elementary procedure of approximation. To this end, a crucial result is the contraction
property of entropy solutions ih!. So, we delay the discussion of this extension to next
paragraph.

3.1. Existence and uniqueness of entropy solutions

Our main result shall be the existence and unigueness of an entropy solution of problem
(1.1)—(1.2) for all initial data«g belonging toL>°(R?). The scheme of the proof is the
usual one: we first obtain a contraction propertyZih for entropy solutions; as a first
consequence, we obtain uniqueness of entropy solutions. Next, we use this property to
improve Proposition 3.3 obtaining the existence of entropy solution for any initial data
verifying (A2), by approximating them with smooth ones.

We begin by stating a differential inequality for the difference of two solutions, that
is obtained by (3.1) via the standard technique of doubling variables, which goes up to
Kruzhkov [16].
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Lemma 3.4. Letu, v be two entropy solutions @i.1); then

T
//—m 0l 4 Bl — vl + SN — ) () — F@)ae <O (3.8)

0 RrR2

for all smooth functiong € C1(R? x (0, T')) with compact support.

A relevant consequence of the weak inequality (3.8) is the contraction property stated
by (3.9), that is the corner of the proof of uniqueness of solution according to any Kruzhkov
type technique. For any givenh, r > 0, we setw, the classical solution of the backward
heat equation

o + 8§xa =0, (x,H)eRx(0,T),

. T) 1, xI<r,
o= 0, |x|>r.

Proposition 3.5 (Unigueness of entropy solutiond)et u, v be two entropy solutions of
(1.1) andM = maX| f'(u)llco, | f (V) |lso}. Then for allr, s, T > 0 we have

s r s+MT
//|u—v|(T)dxdy< / /|uo—vo|ar(x,0)dxdy. (3.9)
s —r —s—MT R

In particular, the Cauchy probler¢il.1)—(1.2) has at most one entropy solution.

Proof. Inequality (3.9) follows by (3.8) by a careful choice of the test funciorVe
approximate the heavy side function by the smooth one

N
Hs(s) = / xs(r)dr,
—00
where xs stands for the standard one dimensional mollifier. Afterwards, we choose three
different positive parametets> p > § and we approximate the functiof@,|<s+um -
and/j;,r) by means of
Bs(v, 1) =1— Hs(lyl —s — M(T — 1)),
Ope () =H,(t —7)— H,(t = T).
Now, we are ready to write (3.8) using= «, 856, as a test function: remembering that

oroy + aﬁxa, = 0 pointwise and that sgn — v)[ f (u) — f (v)] > —M|u — v| almost every-
where we obtain

T
_//|u—v|arﬁ59;rdxdydt<0.
0 Rr2

Extracting the limit as, p, t go to zero (in this order) yields the conclusior
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The local estimate (3.9) is the well posedness of the Cauchy problem (1.1)—(1.2) with
the only assumption thaty € L°°, by an approximation argument.

Theorem 3.6 (Well posedness)Ve suppose thaf andug satisfy(Al) and (A2). Then,
forall T > 0the Cauchy problenil.1)—(1.2) has a unique entropy solutian In addition
u satisfies

Ju®| o < lluolloo, (3.10)
T yo+p xo+r

/ |8cu|?>dx dydt < Cr(p+ MT)l|uoll?, (3.11)
0 yo—p xo—r

for all (xo, yo) € R2, andr,s > 0.

Proof. Let M = || f'(uo)|lo- First, we cut the functiong in the y direction by means of

s {uo if |y|<s+MT,
Un =

0 0 elsewhere.
Next, we introduce an index to define a sequencs) , € CL(R?) with compact support
contained in the strifR x [—s —2M T, s +2MT] such thaluuf)ﬂ lloo < lluolloo anduf)’n —

ugin LY(Sg) forall R > 0. Becausey , satisfies the assumptions of Proposition 3.3, there
exists an entropy solutiag, to (1.1) withu$ (0) = ”B,n' Now (3.9) guarantees that

pr p+Mt
//|ufl—ufn|(t)dxdy< / /|uf)’n—uf)’m|ar(x)dxdy
—p—r —p—Mt R

< [0 = 0t LS| + 49/ uollace™ K

for all p,r, R > 0. Henceus converges strongly i€(0, T; L} (R?)) to a functionu?,
which in addition is bounded bjtol|~. Furthermorex;, tends tau® in L7 (0, T; Lfc’)c(Rz))
forall p € [1, 00), andu® (¢) = O outside the strifR x [—s —2MT,s +2MT].

In order to check that* is indeed the entropy solution with' (0) = ug, it suffices to
check tha®v,u;, weakly converges t,u°: it easily follows by Corollary 2.3.

Eventually estimate (3.9) guarantees that u*’ onR x [—s, s] for all s’ > s; thus the
functionu obtained by gluing together the turns out to satisfp,u € L2(0, T; L2 (R?))
and then it is the entropy solution of (1.1)—(1.2).

Next, estimate (3.10) is immediately implied by the construction procedure. In order
to check (3.11), we may suppose without loss of generality(thatyo) = (0, 0). By cost
ruction we have that

T s r T
///|axu|2dxdydt<ff|axuf|2dxdydr.
0 S,

—s —r 0

Hence applying Corollary 2.3 t), and extracting the limit as — oo gives the thesis. O
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We end this section by establishing the coincidence of the entropy solutions in [11] and
the ones in the present paper, in the common existence domain.

Corollary 3.7. Letug € L (R?) N L1(R?). Then the entropy solution constructed i,
Theorem 1js the solution according to DefinitioBi 1.

Proof. In force of the uniform estimate established in Corollary 2.3, one easily obtains that
the solutionu constructed in [11, Theorem 1] satisfiés: € L2(0, T; L2 .(R?)), indeed.
Next, integrating by parts the entropy criterion [11, (EC)] gives that (3.1) holds true for any
constank. Therefore: is a solution according to Definition 3.1, and the uniqueness result

by Proposition 3.9 gives the thesisO
3.2. Characterization of entropic shocks

We now deduce from the entropy criterion (3.1) a characterization of admissible discon-
tinuities. First of all, we define what is meant by “shock” for a function of three variables
(x,y,1), i.e., a discontinuity across a two dimensional surface. Since in general entropy
solutions only belong tdilloc, we need to use the notion of approximate limit.

For all zg = (x0, yo, fo) € R? x (0, 00), n > 0, andv € R3\ {0}, we introduce the nota-

tions

By(z0) = {z € R%: |z — 20| <},

B (z0,v) = {z € By(z0): (z —z0)-v = 0}.

Definition 3.2. Any functionu has ashock at a pointzg = (xg, yo, f0) in the direction
v € R3\ {0} if there exist two real numbers" £ u~ such that

2
li —ut|=0.
120 1B, (z0)] / Ju@) — |

Bif (z0,v)

An entropy solution to (1.1) may not have arbitrary shocks. Actually, such disconti-
nuities may occur only in the-direction, besides the values ofat the two sides of the
surface of discontinuity must satisfy the same restrictions as well as for scalar conservation
laws.

Theorem 3.8 (Entropic shocks)Letu be an entropy solution t@¢l.1) and let us suppose
that it has a shock at the poing = (xo, yo, to) in the directionv. Then

v=(0,A, 1), (3.12)
fwh = f)=—=aut —u"], (3.13)
sgnu™ — zf)[af(uJ“) +A1—-a)fu")— f(oufr +1- a)zf)] >0 (3.14)

forall @ € (0, 1).
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Proof. We define the piecewise constant function

ut, z-v>0,

U(Z)={

u-, z-v<0O.

By definition of shock, the rescaled function,(z) = u(zo + nz) converges toU in
L1(B1(0)). Moreover there exists a constansuch that for all) < 7o we have

[8xuy; L2(B1(0)) | ///m ul?dxdydt < Clluo|/?,

—-n-n
by (3.11). Hence, up to an extracted sequeriga, weakly converges to some €
L?(B1(0)). As a consequendé has distributional derivative with respectitaequal tow.
SinceU is piecewise constant, we deduce that= 0 indeed. In particulal/ does not
depend by andv is orthogonal to the-axis.

Now U is an entropy solution to the scalar conservation ¥/ — 9, f(U) = 0 on
the set2 = {(y,1) e R x (0, T): |y — yol? + |t — 102 < 1/2}. Indeed,U satisfies the
entropy condition for scalar conservation laws because for all coristard for all smooth
functionsyr € C3°(£2), & € Cy°(xo — 1/2,x0+ 1/2), ¥, & > 0 we have

T
/(//[—IU — kldiy 4 sgnU — k) (f(U) — f(k))ayw]dydt>g(x)dx

R

_ lim / / [y — kI3 (EV) + 5Tty — K) (£ (uy) — £K))y (EV)] dx dy dr

n—0
0 R2

T

< lim //|un—k|a§x(g¢)dxdydt.
n—0
0 R2
Finally, the conclusion follows from the standard theory for entropy solutions of scalar
conservation laws (see, for instance, [14]}1

Notice that conditions (3.13) and (3.14) are very similar (and play the same role) of
the well-known Rankine—Hugoniot condition and Oleinik condition, respectively, for first
order conservation laws.

If we knew a priori thatu is piecewise smooth, Theorem 3.8 would provide an easy
characterization of entropy solutions. Roughly speaking, a function which is smooth almost
everywhere, apart from some surfaces across which it may jump, is an entropy solution if
and only if it solves (1.1) almost everywhere and it has admissible shocks (according to
Theorem 3.8) across the surfaces of discontinuity. To be more precise, let us first state what
we mean by “piecewise smooth.”

Definition 3.3. A functionu € L*(R? x (0, 7)) with d,u € L?(0, T; L2 .(R?)) is piece-
wise smootlif there exist finitely many disjoint surfacegs, of cIassC1 such that
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(i) According to the two dimensional Hausdorff measure, almost every point outside the
surfaces”, has a neighborhood whesieandd, u are Lipschitz continuous;

(i) Every pointzg inside the surfacg/, has a neighborhood such that
e J, NV has alocal parametrization of type

In OV = {(x(t’ 5), y(t,5), t) € RZ x (0, T): (t,s) € (an, by) x (cp, dn)}:
e The restrictions of: to the subsets
VE={teVii=2+1m@), 25NV, 120}

are Lipschitz continuous.
Here,v,(z) is the normal vector tg/, at the point;.

Theorem 3.9 (Characterization of piecewise smooth entropy solutidresiu € L> (R? x
(0, 7)), with d,u € L%(0, T; L2 (R?)) be a piecewise smooth function. Theis an en-
tropy solution of(1.1) if and only if

(a) u satisfies Eq(1.1) almost everywhere aR? x (0, T) \ U, T
(b) J, is part of a cylinder parallel to the axis, i.e., any point i/, has a neighborhood
V such that

TNV = {(xa An (1), t): (t, x) € (an, bn) x (cn, dn)}

with A, € Cl(ana by);
(c) u has an admissible shock across the surfagenamely for all(x, A,(#),1) € T, u
has a shock in the directiof®, A, (¢), 1) fulfilling condition (3.13) and (3.14).

Proof. By miming the arguments of [3, Theorem 4.2] and remembering Theorem 3.8, one
easily obtains that is a distributional solution if and only if items (a)—(c, 3.13) hold. It
remains to check that is an entropy solution if and only if (¢) and (3.14) holds true.

But (c, 3.14) is necessary in force of Theorem 3.8. In order to check that it is sufficient,
i.e., that it guarantees thatsatisfies the entropy criterion (3.1), let us fix R andg €
Cgo(IR2 x (0, T), ¢ > 0. By integrating by parts separately in the four sets obtained by
intersecting the two sides ¢f, with {# > k} and{u < k}, and recalling (3.13), we obtain

T
[ [Tt Koo+ 8l — kg + gt = (7w~ £0)oy]dxdyar
0 RrR2
by
<= [ [ saut = [ra + ra) - 200+ it - - 20]
an {kel}
x @(x, A (1), 1)dt,

wherel stands for the segment betwegh andx~. Finally, the term on the right-hand
side is nonpositive thanks to (3.14)0
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Theorem 3.9 allows to easily check if a piecewise smooth distributional solution is an
entropy solution or not. Therefore it provides as a byproduct examples of discontinuous
solutions showing that the partial diffusion in the directiodoes not bring any smoothing
effect in the directiory, in the framework of entropy solutions. Indeed, the presence of the
diffusion termaf u may not avoid the propagation of the discontinuities inthariable,

X

nor obstruct any movement of the eventual plane of discontinuity.

Example 3.10. Take f (1) = u?/2 and
—vo(x)+C, y<O0,
vo(x)+C, y>0,

whereuvg is a smooth strictly positive function ar@> 0. Now the solution to (1.1)—(1.2)
is

uo(x,y) = {

—v(x,1), y<Ct,
u(x,y, )=
v(x,t), y > Ct,

wherev is the solution of the heat equation with initial datug Becausev is strictly
positive by strong maximum principle,jumps across the plafie = Ct} for all z.

3.3. A geometrical condition for regularity of entropy solutions

We now establish that the well-known Oleinik condition for first order conservation law
guarantees continuity of solutions also for problem (1.1)—(1.2).

Proposition 3.11. Under the following assumptions

(i) fe sz)’c"o (R) is uniformly convex,
(ii) uo is nonincreasing with respect tg

for all + > 0 the solutionu(r) of (1.1)—(1.2) is nonincreasing and Lipschitz continuous
respect toy, uniformly with respect ta.

Proof. We denote by, the classical solution to the uniformly parabolic Cauchy problem
(2.1)-(2.2). Because. converges pointwise almost everywhereutoit is sufficient to
show that—1/essinf /")t < dyu, < O for all e. But d,u; is a classical solutions @ v =

Afv + fl(ug)dyv + f(u)v?, where £/ > 0 in force of the convexity off. Hence the
conclusion follows by standard comparison arguments.

An easy consequence of Proposition 3.11, coupled with the continuation principle stated
in Theorem 2.6, is the indefinite continuation of strong solutions. Indeed, it also guarantees
some pointwise regularity of the strong solution

Coroallary 3.12. Under the same hypotheses of Propositiohl, for all # > 0 and almost
everyy the solutionu of problem(1.1)—(1.2) is continuously differentiable with respect
to x. Moreover for all§ > 0, u is Lipschitz continuous as a function of y and Holder
continuous with exponety?2 as a function of onR? x (8, T).
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Proof. We denote byy the set ofy € R such thatug(-, y) € L*°(R) andd,u(-,y,-) €
L*®(R x (0, T)). Thanks to Proposition 3.1R \ Y has zero measure. Moreover, for all
yeY,vV(x, 1) =u(x,y,t) solves the heat equation with sour€&u(x, y, 1))d,u(x, y,t)

€ L®°(R x (0, 7)) and initial datumug(-, y) € L*(R). By classical potential theory
(see, for instance, [8])” is continuous and continuously differentiable respect to
and |3, v7 (x,1)| < O, || f/(u0) oo, €SSINt f”(up))) for all (x,7) € R x (8, T). Hence,

u € L®(S, T, W-°(R?)). In addition, [17, Theorem 1] yields thatis continuous also
with respect ta.

Now we may read (1.1) as a linear equatign = 32 u + ad,u, wherea(x, y,t) =
f'(u(x, y, 1)) is bounded and continuous. Lastly, approximaiingith the classical solu-
tions of the linear and uniformly parabolic equati®n = A®v +ad,v, and applying to all
of them [13, Theorem 1], gives the Holder continuityuofvith respectta. O

4. An application to utility theory

We conclude this paper by showing how the stated results may be applied to utility
theory, providing a new outcome that may not be obtained in the classical framework. We
begin by recalling the standard notion of utility process taking into account the habit toward
consumption. It is assigned as the solution to the backward stochastic differential equation

T
V= 5[/[w(cr, yr.7) — BVi]dt + wr(er, )’T)‘]:tj|a (4.1)
t
wherew, wr are deterministic functions standing for the instantaneous and for the final
utility from consumption, respectively, artlis an updating factor. The processggcon-

sumption) andy; (habit level of consumption) are commonly assumed to be described by
forward stochastic differential equations of type

t t

ct=coexp</,u,dr+/crdWr>, (4.2)

0 0
t

Ve =yo+/[a(cr,r) — yy:]dz. (4.3)
0

A more detailed analysis of agents’ decisions under risk put into light that the habit forma-
tion itself is influenced by the utility experienced in the past. Recently, Antonelli et al. [1]
proposed to describe the habit formation as

13
Ve =yo+/[a(cr, Ve, T) — yy:]dr, (4.4)
0

where the deterministic functiam takes into account the effect of the past consumption
and of the conditional expected utility levels that the agent experienced in the past about
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the future consumption plan. It is usually increasing, i.e., high consumption and utility
experienced in the past positively affects the present habit. This pattern captures the “dis-
appointment effect” if the agent’s instantaneous and final utiliies); are decreasing

with respect toy: the higher the standard of living is, the lower the utility from consump-
tion results. Instead, increasing andwzy model, with respect to, model “anticipation
effect”: high expected utility in the past generates a positive expectation for the future and
the agent is inclined to appreciate the actual consumption rate.

Now, the recursive utility is defined as the solution of the nonlinear backward—forward
stochastic equation (4.1)—(4.4). In the same paper, Antonelli et al. proposed to use the four
step scheme by Ma et al. [19] in order to relate this problem to the study of a determin-
istic partial differential equation. They assumed that there exists a deterministic function
of three variables € L°°(0, T; W1 (R?)) such thatV, = u(loge;, y;, T — t) and they
showed that: solves an anisotropic convection—diffusion equation of type (1.3) for

u

f(x,u,t):/a(ex,v, T —1t)dv,
0

and that it satisfies the initial condition (1.2) feg(x, y) = wr(e*, y). Eventually, the
existence of an utility process is obtained whenever the Cauchy problem (1.3), (1.2) admits
a solutionu which is, at least, Lipschitz-continuous with respect to botndy.

Let us present one example where the existence of an utility function providing a new
type of preferences order is achieved.

Example 4.1. Take the backward—forward utility (4.1)—(4.4) with
w(Ca y,f)=w0(cr)+olyr, a(C, V’T):(SV'

The related differential equation is

1
du = Eazafxu + et 4 (Su — yy)dyu — Bu 4+ w(e®) + ay.

The existence and uniqueness of the entropy solution is a straightforward extension of
Theorem 3.3. Following the line of the proof of Proposition 3.11, we denote.bthe
classical solution of the regularized problem obtained by adding the &éﬁm to the
equation. Thusy,u, is a classical solution to

1
v = Eazafxv + 02,0+ pdev + Bue — yy)dyv + 807 — (B+y)v+a

with initial conditionv(x, y, 0) = 9,wr (e, y). Now, in the case of disappointment effect,
i.e., if bothe andd,wr are nonpositive, comparison principle yields that) is nonin-
creasing and Lipschitz continuous with respect tgo that Corollary 3.12 still holds and
u € L®(0, T; WL°(R2)) for arbitraryT .

Besides, in the case of anticipation effect, i.e., if bw#nda, wr are nonnegative, com-
parison principle yields thai(z) is nondecreasing and Lipschitz continuous with respect
to y if

B+y

> (1+\/1—4a8/(,3+y)2).

4a8 < (B+y)? and dywr <
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In this case Corollary 3.12 still holds amde L>°(0, T; W1 (R?)) for arbitrary 7. On
the contrary, if this condition is violated, the entropy solution may become discontinuous
after a finite time: it is always the case, for instanceyif 0. In any case, if there is no
contribution from final utility, i.e., ifwr = 0, and ifa < (8 + y)2/43, the backward—
forward differential utility is well defined for any horizaf.

As pointed out in [1], this pattern reduces to the standard expected utikity=iD,
while it models disappointment effect df < O, or anticipation effect itx > 0. The two
consumption processes

0, <1,
t=C1 and ?=1Cp 1> L withprob.x,
0, > % withprob. 1- 7,

are ordinally equivalent under the standard expected utilii) 1) = (7w /2)w(C2). Now,
they are no longer equivalent éf # 0, in particular,c,1 is better tharr,2 in the case of
disappointment effect.
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