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Abstract

We study the deterministic counterpart of a backward–forward stochastic differential utility, w
has recently been characterized as the solution to the Cauchy problem related to a PDE of de
parabolic type with a conservative first order term. We first establish a local existence res
strong solutions and a continuation principle, and we produce a counterexample showing
general, strong solutions fail to be globally smooth. Afterward, we deal with discontinuous en
solutions, and obtain the global well posedness of the Cauchy problem in this class. Eventua
select a sufficient condition of geometric type which guarantees the continuity of entropy so
for special initial data. As a byproduct, we establish the existence of an utility process whic
solution to a backward–forward stochastic differential equation, for a given class of final ut
which is relevant for financial applications.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In the present work, we investigate a basic model of anisotropic convection–diff
equation
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∂tu = ∂2
xxu+ ∂yf (u), (x, y) ∈ R

2, t > 0, (1.1)

with an initial condition att = 0,

u(·,0) = u0, onR
2. (1.2)

We shall make use of the standard assumptions:

(A1) f ∈W
1,∞
loc (R),

(A2) u0 ∈L∞(R2).

This kind of problems arises in the framework of stochastic models for the utility f
tion, which has been extensively developed since the work by Duffie and Epstein [9
instance, Antonelli et al. [1] proposed to describe the utility function by means of a
linear backward–forward stochastic differential equation. The first problem is to est
the existence of solutions; they proposed to use the four step scheme by Ma et al.
order to relate this problem to the study of a deterministic partial differential equatio
obtained a convection–diffusion equation onR

2 × (0, T ) of the following type:

∂tu = 1

2
σ 2∂2

xxu+µ∂xu+ ∂yf (u)− γy∂yu− βu+w, (1.3)

whereσ,µ,γ,β are fixed parameters,f is a convex function ofu (possibly depending
also byx, t), andw is a smooth function ofx, y, t . The source termw and the initial con-
dition u0 are either decreasing or increasing with respect toy, according to the particula
economic effect that should be captured.

Eventually, the existence of an utility process is obtained whenever the related C
problem admits a solution which is, at least, Lipschitz-continuous with respect to bx
andy. Unfortunately, this fact does not hold in general. For instance, ifw,β,γ,µ = 0,
f (u) = u2/2, andu0 only depends byy, the solutions to (1.3), (1.2) is of the for
u(x, y, t) = ũ(y, t), whereũ solves the Burger’s equation∂t ũ+ ũ∂yũ = 0. It is well known
that this problem does not admit, in general, continuous solutions for all timet > 0, in
spite of the smoothness of the initial datum. In the present paper we show that the
ence of the diffusion term is not sufficient to avoid this loss of continuity. In order to
heed to the main effect of the nonlinear term in conservative form, we study the simp
equation (1.1).

Let us now review the main related existing results. In [11] Escobedo et al. propo
notion of solutions, possibly discontinuous, inspired by the entropy solutions introd
for first order equations by Kruzhkov [16]. They defined an entropy solution to (1.1)
functionu ∈ C(0, T ;L1(R2))∩L∞((0, T )× R

2) such that

T∫
0

∫
R2

−|u− k|(∂tϕ − ∂2
xxϕ

)+ sgn(u− k)
(
f (u)− f (k)

)
∂yϕ �

T∫
0

∫
R2

sgn(u− k)k′′ϕ

for all smooth functionsk of x andϕ ∈ D(R2 × (0, T )), ϕ � 0. Next, they obtain the we
posedness of the Cauchy problem in the classL1 ∩L∞ for all times (see [11, Theorem 1]
However, this well posedness result is not significant for the financial applications:
the solution to the convection–diffusion equation is not sufficiently smooth to apply
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forward stochastic differential equation. Furthermore this notion of solution is too we
give a geometric description of the possible shocks, in the spirit of the classical res
Oleinik [20].

In [2], Antonelli and Pascucci used the viscosity solutions approach (see, fo
stance, [6]) to prove the local existence of solutions. Global existence was not obt
since the crucial quasi monotonicity property with respect tou does not hold for such
equation.

A completely different flavor inherits the interior regularity result obtained by C
et al. [5] in the particular casef (u) = u2/2. By making use of hypoelliptic operator
techniques, they established that any classical solution is indeed of classC∞ in every open
set where∂xu �= 0. Unfortunately, the assumption thatu is a priori of classC1 is essentia
in the proof of this result, so that it may not be applied to the entropy solutions, w
existence has been proved by Escobedo et al. [11], or to the solutions given in the p
paper.

The paper is organized as follows. In Section 2 we propose a strong notion for so
and, by a compactness procedure, we obtain in Theorem 2.6 local existence and
tinuation principle, stating that this smooth solution does exist until a discontinuity i
y-direction comes forth. We also produce a counterexample showing that discontin
may arise in finite time, even starting from smooth and compactly supported initial
This result goes into the opposite direction compared with the one in [5]: the assum
u0 smooth and∂xu �= 0 are not sufficient to prevent the appearance of discontinuities

In Section 3 we investigate a weaker notion of solution, possibly discontinuou
achieve global existence. The estimates obtained in Section 2 show that the solutio
duced in [11] have an additional regularity property, namely that∂xu ∈ L2(0, T ;L2

loc(R
2)).

On the other hand, assuming this regularity property enables to establish uniquenes
ing less entropy tests. This leads us to a notion of entropy solution which is substa
different from the one in [11], because we ask a priori that∂xu is locally square integrable
but we reduce the number of entropy tests. This is more in the spirit of the resu
Carrillo [4] for some different nonlinear degenerate problems. The well posedness
Cauchy problem in the classL∞ is established by Theorem 3.6, even though our ent
solutions coincide with the ones of [11] (when both exist), the uniqueness classes a
tinct. Besides, by taking advantage of the property∂xu ∈L2(0, T ;L2

loc(R
2)), Theorem 3.8

characterizes entropic shocks by virtue of a Rankine–Hugoniot–Oleinik type cond
inspired by the analogous result concerning scalar conservation laws. Eventually w
tain a sufficient condition of geometric type which guarantees the Lipschitz continu
solutions.

Finally, we give an application to utility theory in Section 4.

2. Local strong solutions and a continuation principle

Definition 2.1. A strong solutionto problem (1.1)–(1.2) in the time interval(0, T ) is
a distributional solution to (1.1),u ∈ L2(0, T ;L2(R2)) ∩ L∞(R2 × (0, T )), such that
∂2
xxu, ∂tu ∈ L2(0, T ;L2(R2)) and
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t→0

∫
R2

∣∣u(t) − u0
∣∣2dx dy = 0.

In order to obtain existence for such solutions, we approximate (1.1)–(1.2) with a
regular problem

∂tu = ∆εu+ ∂yfε(u), (x, y) ∈ R
2, t > 0, (2.1)

u(·,0) = u0,ε, onR
2, (2.2)

where∆ε is the linear uniformly elliptic operator

∆εu = ∂2
xxu+ ε∂2

yyu

andfε = f ∗χε, u0,ε = u0 ∗χε are the mollified functions off andu0, respectively. Next
we take thatu0 belongs to someHm and we pursue the compactness of{uε} by making
use of iterated energy estimates.

The standard theory of quasilinear parabolic equations guarantees that, for eac
ε > 0, problem (2.1)–(2.2) has a unique classical solutionuε . In addition it is not hard to
obtain the following uniform estimates.

Lemma 2.1. We assume thatf satisfies(A1) and thatu0 ∈ L2(R2) ∩ L∞(R2). Then,
for all T > 0, problem(2.1)–(2.2) admits a unique solutionuε ∈ L2(0, T ;H 1(R2)) ∩
L∞((0, T ) × R

2). Moreoveru ∈ L2(0, T ;H∞(R2)), ∂k
tk
uε is bounded and continuou

from (0, T ) to H∞(R2) for all integersk � 0, and the following uniform estimates hold:∥∥uε(t)∥∥p � ‖u0‖p for almost allt ∈ (0, T ), (2.3)

for all p ∈ [2,∞], and

T∫
0

∥∥∂xuε(t)∥∥2
2dt � ‖u0‖2

2. (2.4)

Proof. The existence and the smoothness ofuε , together with the uniform estimates (2.3
may be obtained by arguing as in [14, Section II.3]. Estimates of∂xuε immediately come
from the energy estimate. Indeed, by multiplying (2.1) byuε, integrating overR2 × (0, T )
and applying the Green’s formula, we obtain

1

2

∫
R2

(
uε(T )

)2
dx dy +

T∫
0

∫
R2

[
(∂xuε)

2 + (
√
ε∂yuε)

2]dx dy dt

� 1

2

∫
2

u2
0,ε dx dy −

T∫ ∫
2

fε(uε)∂yuε dx dy dt.
R 0 R
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However, the last term is equal to zero, since it may be written in the conservation fo

T∫
0

∫
R2

∂yF (uε) dx dy dt

with F(u) = ∫ u

0 fε(v) dv ∈ L1(R2 × (0, T )). ✷
Remark 2.2. The same arguments of the proof of estimate (2.4) give that{√ε∂yuε} is
bounded inL2(R2 × (0, T )).

A relevant consequence of the uniform estimate (2.4) is that the solution of the or
equation (1.1) is expected to be smooth with respect to the variablex, no matter wha
kind of topology is chosen to pass into the limit. Besides, such property does not d
from the globalL2-norm of the initial conditionu0. This may be seen by making use
a localization technique which goes up to De Giorgi [7]. Let us set, for allr > 0, Sr =
{(x, y): |x|< r}; theL2-norm of∂xuε in the stripSr may be estimated as follows.

Corollary 2.3. Under the same assumption of Lemma2.1, for all r > 0 we have

T∫
0

∫
Sr

|∂xuε|2dx dy dt �
∫
S2r

|u0,ε|2dx dy + 4

T∫
0

∫
S2r\Sr

|uε|2dx dy dt.

Proof. In order to attain a local energy estimate, we fixr > 0 and we take the cut-o
function

α(x) =



1 if |x| � r,

2r − |x| if r � |x| � 2r,

0 if |x| � 2r.

By multiplying (2.1) byuεα2 and by arguing as in the proof of (2.4) we obtain

T∫
0

∫
R2

(∂xuε)
2 dx dy dt � 1

2

∫
R2

u2
0,εα

2 dx dy − 2

T∫
0

∫
R2

uε∂xuεαα
′ dx dy dt,

and then the conclusion follows after estimating the last term on the right-hand si
means of the Cauchy–Schwartz inequality.✷

We introduce a functional space which is well fitting with the structure of Eq. (1.1)

X
m+1 = {

h ∈Hm(R2): ∂xh ∈Hm(R2)
}
,

which is a Banach space endowed with the norm

‖h;X
m+1‖ =

(
‖h‖2

m,2 +
∑

‖Dα∂xh‖2
2

)1/2

.

|α|=m
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m+1 by iterating the energy estimate (2.4

Since such procedure guarantees a gain of regularity only with respect to the variax,
the behavior with respect toy must rather be postulated. To this aim a crucial observa
is that, whenever∂yu0 ∈ L∞(R2), then∂yuε(t) is bounded inL∞(R2) for some positive
time t , uniformly with respect toε.

Lemma 2.4. Suppose thatf ∈ W
2,∞
loc (R) and thatu0 ∈ L2(R2) ∩ L∞(R2) with ∂yu0 ∈

L∞(R2). Then, for allN > ‖∂yu0‖∞, there is a positive timeTN such that‖∂yuε(· , t)‖∞
� N for all t ∈ (0, TN) andε > 0.

Proof. Let us take a cut-off functionβ ∈ C∞(R), β � 0,

β(r) =
{
r if |r| � 1,

0 if |r| � 2,

bounded with all its derivatives by a constantB; we setβN(r) = Nβ(r/N) for all N > 0.
An easy computation shows that|βN | � BN , |β ′

N | � B.
Next, let us denote byuε,N the global solution to the parabolic Cauchy problem∂tu −

∆εu = f ′
ε(u)βN(∂yu), with initial condition (2.2). Now,∂yuε,N solves the linear equatio

with bounded coefficients∂t v = ∆εv + f ′
ε(u)β

′
N(∂yu)∂yv + f ′′

ε (u)βN(∂yu)v, with initial
condition∂yuε,N(0) = ∂yu0,ε; then the maximum principle yields∥∥∂yuε,N(t)∥∥∞ � ‖∂yu0‖∞ exp

(
BN

∥∥f ′′(u0)
∥∥∞t

)
for all ε > 0. In particular,‖∂yuε,N(t)‖∞ � N on a suitable interval(0, TN), whereTN
does not depend onε. Finally,βN(∂yuε,N) = ∂yuε,N in (0, TN) and thenuε,N is indeed the
unique solution to (2.1)–(2.2) in(0, TN). ✷

Until ∂yuε stays bounded, it is not hard to obtain uniform bounds for higher order d
atives ofuε.

Proposition 2.5 (Uniform estimates inXm+1). We suppose that there existsm � 2 such
thatf andu0 satisfy

(Am1) f ∈ W
m+1,∞
loc (R),

(Am2) u0 ∈ L∞(R2)∩Hm(R2), ∂yu0 ∈L∞(R2).

Then, the solutionsuε of (2.1)–(2.2) satisfy the following regularity properties:

∂k
tk
uε ∈L2

loc

(
0,∞;Hm+1−2k(R2)

)∩ C
(
0,∞;Hm−2k(R2)

)
, 0 � k � m/2,

∂k
tk
uε ∈L2

loc

(
0, T ;L2(R2)

)
, 2k = m+ 1.

Furthermore for allN > ‖∂yu0‖∞ andTN > 0 which verifies the conclusion of Lemma2.4,
the following estimates hold:

TN∫ ∥∥uε(t);X
m+1

∥∥2
dt � C1, (2.5)
0
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sup
t∈(0,TN)

∥∥uε(t);Hm(R2)
∥∥� C2, (2.6)

TN∫
0

∥∥∂tuε(t);Hm−1(R2)
∥∥2

dt � C3, (2.7)

sup
t∈(0,TN)

∥∥∂tuε(t);Hm−2(R2)
∥∥�C4 (2.8)

for all ε > 0. Here, the constantsC1, . . . ,C4 only depend byN , by the norm ofu0 in Hm

and by the norm off in Wm+1,∞(−‖u0‖∞,‖u0‖∞).

Proof. The existence of a solution of (2.1)–(2.2) with the regularity properties state
the first part of the claim is standard (see, for instance, [18]). Estimates (2.5) and (2.6
be obtained by iterating the energy estimate used in the proof of Lemma 2.4 for a
derivatives ofu till order m and by making use of the fact that‖∂yuε(t)‖∞ � N for all
t ∈ [0, TN ]. In particular, the equality∂tu = ∆εu+ f ′(u)∂yu holds almost everywhere, s
that estimates (2.7) and (2.8) are a straightforward consequence of (2.5) and (2.6).✷

The existence of a strong solution is attained by means of a relative compactnes
in the spacesL2(0, T ;X

m+1) andC(0, T ;Hm) for the global solutionsuε of the problems
with viscosity (2.1)–(2.2).

Theorem 2.6 (Local existence and continuation principle).Under the same assum
tions (Am1) and (Am2) of the previous lemma, there exists a timeT > 0 such that
(1.1)–(1.2) has a strong solutionu ∈L2(0, T ;X

m+1(R2))∩L∞(0, T ;Hm(R2)), withu ∈
C(0, T ;Hm(R2)) and ∂tu ∈ L2(0, T ;Hm−1(R2)). Moreover, letT ∗ be the maximal time
of existence for a strong solution, thenT ∗ < ∞ if and only if limt↗T ∗ ‖∂yu(t)‖∞ = ∞.

Proof. First, we remember that, thanks to Lemma 2.4, there exists a timeT > 0 such that
{∂yuε(t)} is uniformly bounded inL∞(R2) for all t ∈ (0, T ). So, Proposition 2.5 leads
the conclusion by arguing as follows.

By virtue of (2.5) and (2.7),{uε} and{∂tuε} are equibounded inL2(0, T ;X
m+1) and in

L2(0, T ;Hm−1(R2)), respectively. Hence, becauseX
m+1 is compactly embedded inXm,

a general compactness result (see, for instance, [21]) states that{uε} is relatively com-
pact inL2(0, T ;X

m). So, there is an extracted sequence from{uε} converging strongly in
L2(0, T ;X

m) and weakly inL2(0, T ;X
m+1) to a functionu. Trivially u solves Eq. (1.1)

in the sense of distributions and consequently∂tu ∈ L2(0, T ;Hm−1(R2)).
Afterward, thanks to (2.6) and (2.8),{uε} and {∂tuε} are equibounded inL∞(0, T ;

Hm(R2)) and inL∞(0, T ;L2(R2)), respectively. So, another general compactness r
(which may also be found in [21]) guarantees that there is an extracted sequenc
{uε} converging strongly inL∞(0, T ;Hm−1(R2)) to a functionu ∈ C(0, T ;Hm−1(R2))∩
L∞(0, T ;Hm(R2)). In particular,u takes the initial datumu0 in the sense of Defini
tion 2.1. On the other hand, since∂tu ∈ L2(0, T ;Hm−1(R2)) from the first step, we hav
by a general interpolation result (see, for instance, [18]) thatu is bounded and continuou
from (0, T ) to Hm(R2).
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Finally, if by contradiction‖∂y(t)‖∞ is bounded fort � T ∗, Lemma 2.4 guarantee
that∂yuε are uniformly bounded inL∞(0, T1;R

2) for someT1 > T ∗. Therefore arguing
as above one can prove that there exists a strong solution untillT1 > T ∗, which contradicts
the maximality ofT ∗. ✷

We do not discuss directly here the problem of uniqueness for strong solutions.
ally, in the next section we shall prove the uniqueness for entropy solutions and we
notice that any strong solution is, in particular, an entropy solution. Hence, the un
ness for strong solutions is attained. By now, we prefer to further investigate the po
continuation of strong solutions.

2.1. A first order blow up result

Here we give a counterexample showing that, even starting from a smooth and
pactly supported initial datum, the strong solution fails to be continuous after a finite
This fact emphasizes the analogy between convection–diffusion equations and firs
conservation laws; so, in the next section we shall give a weaker notion of solution,
takes into account the presence of discontinuities.

By now, we consider the particular case whenf (u) = u2/2 is the flux function of Burg-
er’s equation and the initial data are of type

u0(x, y)= yv0(x, y), v0 ∈ C∞
0 (R2), v0 � 0. (2.9)

Let us set the “initial mass” and the “initial energy,” respectively, along the directiony = 0
as

F0 = 1

2

∫
R

(
v0(x,0)

)2
dx,

E0 = 1

3

∫
R

(
v0(x,0)

)3
dx − 1

2

∫
R

(
∂xv0(x,0)

)2
dx.

Provided thatE0 > 0, the solution has a shock in they-direction at a finite time. Further
more, since the blow up time is estimated from above by an explicit function ofF0 andE0,
for all fixed timeT > 0 there exists a smooth and compactly supported initial datum w
develops a discontinuity within the timeT .

Proposition 2.7. Let u be the strong solution of(1.1)–(1.2) with f (u) = u2/2 and u0
given by(2.9). If E0 > 0, thenu fails to be continuous within a finite time, namely we h
sup{‖∂yu(t)‖∞: t ∈ (0, T ∗)} = ∞ for T ∗ = 2F0/3E0.

Proof. We suppose by contradiction that‖∂yu(t)‖∞ < ∞ for all t ∈ (0, T ∗). Then Theo-
rem 2.6 guarantees that there existsT > T ∗ such that problem (1.1)–(1.2) has a solut
u ∈ C∞(R2 × (0, T )).

By setting a(x, t) = ∂yu(x,0, t), (x, t) �→ u(x,0, t) is the classical solution to th
linear parabolic equation∂t û = ∂2

xxû + aû with homogeneous initial condition. Henc
u(x,0, t) = 0 for all (x, t). It follows that there existsv ∈ C∞(R2 × (0, T )) such that
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u(x, y, t) = yv(x, y, t). In particular∂yu(x,0, t) = v(x,0, t), thus our assumption by con
tradiction implies that sup{‖v(·,0, t)‖∞: t ∈ (0, T ∗)} < ∞. In addition(x, t) �→ v(x,0, t)
is the classical solution to{

∂tw = ∂2
xxw +w2,

w(x,0) = v0(x,0).
(2.10)

Since v0 has compact support, standard comparison arguments give thatv(· ,0, ·) ∈
L∞(0, T ∗;Lp(R)) for all p ∈ [1,∞]. Eventually we reach a contradiction by showi
that‖v(· ,0, t)‖2 �

√
2F0/(1− t/T ∗), which is plainly implied by

∂t

√
F0

F(t)
� − 1

T ∗ , (2.11)

whereF(t) = (1/2)‖v(· ,0, t)‖2
2. The proof of (2.11) is quite technical and requests

auxiliary functions

E(t) = 1

3

∥∥v(· ,0, t)
∥∥3

3 − 1

2

∥∥∂xv(· ,0, t)
∥∥2

2, G(t) = 3

2

E(t)
F(t)3/2

.

In force of (2.10),F ′(t) � 3E(t), E ′(t) � 0, andE ′(t)F(t) � (1/2)F ′(t). In particular
G′(t) � 0, so thatG(t) � G(0) = 1/

√
F0T

∗. Finally we obtain (2.11) by computing

∂t

√
F0

F(t)
= −1

2

√
F0F ′(t)
F(t)3/2 = −

√
F0G(t)

F ′(t)
3E(t) � −

√
F0G(0) = − 1

T ∗ . ✷

We recall that the first blowup result for problem (2.10) is due to [12], while the
of energy norms to establish global nonexistence has been introduced by [15]. Th
of initial data (2.9) has been used in [10] to show that classical solutions for the uns
Prandtl’s equation do not exist for all times, in general. Concerning Eq. (1.1), the
is somewhat stronger, because by taking advantage of the continuation principle st
Theorem 2.6 we are able to establish an effective blowup of first order derivative.

3. Entropy approach

In view of the blowup result stated by Proposition 2.7, the class of strong solution
to be enlarged, avoiding to impose the continuity with respect toy, in order to obtain the
existence of solutions for all timet > 0. On the other hand a criterion of choice among d
tributional solutions is needed to guarantee uniqueness. Besides, the new notion of s
must be consistent with the classical one: to this end we still construct the entropy so
as the limit of the classical solutions of the regularized problems (2.1)–(2.2), but acco
to a weaker topology. In view of this fact and of the uniform estimates of∂xuε obtained in
Corollary 2.3, it seems natural to impose as the standing regularity of an entropy so
that∂xu(t) belongs toL2 (R2). This brings to the following definition.
loc
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Definition 3.1. A distributional solution to (1.1),u ∈ L∞(R2 × (0, T )), is an en-
tropy solutionfor the Cauchy problem (1.1)–(1.2) in the time interval(0, T ) if ∂xu ∈
L2(0, T ;L2

loc(R
2)),

ess lim
t→0

∫
K

∣∣u(t)− u0
∣∣dx dy = 0

for all compact subsetsK of R
2, and

T∫
0

∫
R2

−|u− k|∂tϕ + ∂x |u− k|∂xϕ + sgn(u− k)
(
f (u)− f (k)

)
∂yϕ � 0 (3.1)

for all real constantk and all smooth functionsϕ ∈ C1(R2 × (0, T )) with ϕ � 0 and with
compact support.

Remark 3.1. It is an easy exercise to show that any strong solution in the sense of D
tion 2.1 is indeed an entropy solution, according to Definition 3.1.

Definition 3.1 and [11, Definition in Section 1] cannot be directly compared. A
ally, the solutions in [11] are not solutions according to Definition 3.1, because th
not satisfy∂xu ∈ L2(0, T ;L2

loc(R
2)), so that they cannot be checked against the ent

criterion (3.1). On the other hand, solutions according to Definition 3.1 satisfy th
tropy criterion [11, (EC)] only for constantk, so that they do not fulfill [11, Definition in
Section 1]. Although, the constructed solutions happen to coincide when both exis
Corollary 3.7, later on).

Definition 3.1 seems more natural, because it asks for less entropy tests by tak
vantage of a regularity property,∂xu ∈ L2(0, T ;L2

loc(R
2)), which directly comes from th

viscosity procedure. Moreover, the information∂xu ∈ L2(0, T ;L2
loc(R

2)) enables to dis
cuss the shocks in Section 3.2.

Like in the case of scalar hyperbolic conservation laws, the entropic approac
vestigate the compactness of{uε} with respect to the topology ofW1,1

loc . Since the fina
equation (1.1) involves higher order derivatives with respect tox, it is requested that th
initial datum satisfies a narrowest regularity assumption with respect tox. We list here
some uniform estimates that may be obtained by arguing as in [11].

Lemma 3.2. We assume thatf satisfies(A1) and thatu0 ∈ L1(R2)∩L∞(R2) ∩ BV(R2).
Then∥∥uε(t)∥∥p � ‖u0‖p for almost allt ∈ (0, T ), (3.2)

for all p ∈ [1,∞] and the mass is preserved:∫
R2

uε(t) dx dy =
∫
R2

u0 dx dy. (3.3)

Moreover∂yuε is uniformly bounded inL∞(0, T ;L1(R2)) with∥∥∂yuε(t)∥∥ � T V u0. (3.4)
1
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If, in addition,∂xu0 ∈ BV(R2), then∥∥∂tuε(t)∥∥1 � C TV (u0)+ T V (∂xu0). (3.5)

This uniform estimates, together with the one obtained in Corollary 2.3, allow
obtain the existence of entropy solutions for smooth initial data by a well-understood
pactness technique.

Proposition 3.3 (Existence with smooth data).We suppose thatf satisfies(A1) and
that u0 ∈ L1(R2) ∩ L∞(R2) ∩ BV(R2), ∂xu0 ∈ BVx(R

2). Then for allT > 0 problem
(1.1)–(1.2) has an entropy solutionu ∈ L∞(R2× (0, T ))∩C(0, T ;L1(R2)). Such solution
is the limit inL1(R2 × (0, T )) and almost everywhere of the solutionsuε of the regularized
problems(2.1)–(2.2), up to an extracted sequence. In additionu verifies estimates(3.2)
and(3.3), ∂xu satisfies(2.4), and

T V
(
u(t)

)
� T V (u0), (3.6)∥∥u(t1)− u(t2)

∥∥
1 �

[
(M +C)T Vy(u0)+ T Vx(∂xu0)

]|t1 − t2|. (3.7)

Proof. The convergence of{uε} to a distributional solutionu ∈ C(0, T ;L1
loc(R

2)) satisfy-
ing (3.2), (3.3), and (3.6) has been proved in [11, Section 2]. Moreover (2.4) implie
∂xu ∈ L2(R2 × (0, T )). Lastly, one may check thatu satisfies the entropy criterion (3.
by approximatingu with the smooth functionsuε, by integrating by parts separately on t
two sets{uε > k} and{uε < k}, and by taking advantage of Remark 2.2 when passin
the limit. ✷

Indeed, the hypotheses aboutu0 of Proposition 3.3 are quite strong and may be remo
by an elementary procedure of approximation. To this end, a crucial result is the contr
property of entropy solutions inL1. So, we delay the discussion of this extension to n
paragraph.

3.1. Existence and uniqueness of entropy solutions

Our main result shall be the existence and uniqueness of an entropy solution of p
(1.1)–(1.2) for all initial datau0 belonging toL∞(R2). The scheme of the proof is th
usual one: we first obtain a contraction property inL1 for entropy solutions; as a firs
consequence, we obtain uniqueness of entropy solutions. Next, we use this prop
improve Proposition 3.3 obtaining the existence of entropy solution for any initial
verifying (A2), by approximating them with smooth ones.

We begin by stating a differential inequality for the difference of two solutions,
is obtained by (3.1) via the standard technique of doubling variables, which goes
Kruzhkov [16].
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Lemma 3.4. Letu,v be two entropy solutions of(1.1); then

T∫
0

∫
R2

−|u− v|∂tϕ + ∂x |u− v|∂xϕ + sgn(u− v)
(
f (u)− f (v)

)
∂yϕ � 0 (3.8)

for all smooth functionsϕ ∈ C1(R2 × (0, T )) with compact support.

A relevant consequence of the weak inequality (3.8) is the contraction property
by (3.9), that is the corner of the proof of uniqueness of solution according to any Kruz
type technique. For any givenT , r > 0, we setαr the classical solution of the backwa
heat equation


∂tα + ∂2

xxα = 0, (x, t) ∈ R × (0, T ),

α(x,T ) =
{

1, |x| � r,

0, |x| > r.

Proposition 3.5 (Uniqueness of entropy solutions).Let u,v be two entropy solutions o
(1.1) andM = max{‖f ′(u)‖∞,‖f ′(v)‖∞}. Then for allr, s, T > 0 we have

s∫
s

r∫
−r

|u− v|(T ) dx dy �
s+MT∫

−s−MT

∫
R

|u0 − v0|αr(x,0) dx dy. (3.9)

In particular, the Cauchy problem(1.1)–(1.2) has at most one entropy solution.

Proof. Inequality (3.9) follows by (3.8) by a careful choice of the test functionϕ. We
approximate the heavy side function by the smooth one

Hδ(s) =
s∫

−∞
χδ(τ ) dτ,

whereχδ stands for the standard one dimensional mollifier. Afterwards, we choose
different positive parametersτ > ρ > δ and we approximate the functionsI{|y|�s+M(T−t )}
andI[τ,T ] by means of

βδ(y, t) = 1−Hδ

(|y| − s −M(T − t)
)
,

θρτ (t) = Hρ(t − τ )−Hρ(t − T ).

Now, we are ready to write (3.8) usingϕ = αrβδθρτ as a test function: remembering th
∂tαr + ∂2

xxαr = 0 pointwise and that sgn(u− v)[f (u)−f (v)] � −M|u− v| almost every-
where we obtain

−
T∫

0

∫
R2

|u− v|αrβδθ ′
ρτ dx dy dt � 0.

Extracting the limit asδ,ρ, τ go to zero (in this order) yields the conclusion.✷
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The local estimate (3.9) is the well posedness of the Cauchy problem (1.1)–(1.2
the only assumption thatu0 ∈L∞, by an approximation argument.

Theorem 3.6 (Well posedness).We suppose thatf andu0 satisfy(A1) and (A2). Then,
for all T > 0 the Cauchy problem(1.1)–(1.2) has a unique entropy solutionu. In addition
u satisfies∥∥u(t)∥∥∞ � ‖u0‖∞, (3.10)

T∫
0

y0+ρ∫
y0−ρ

x0+r∫
x0−r

|∂xu|2dx dy dt � Cr(ρ +MT )‖u0‖2∞ (3.11)

for all (x0, y0) ∈ R
2, andr, s > 0.

Proof. Let M = ‖f ′(u0)‖∞. First, we cut the functionu0 in they direction by means of

us0 =
{
u0 if |y| � s +MT ,

0 elsewhere.

Next, we introduce an indexn to define a sequenceus0,n ∈ C1(R2) with compact suppor
contained in the stripR×[−s−2MT, s+2MT ] such that‖us0,n‖∞ � ‖u0‖∞ andus0,n →
us0 in L1(SR) for all R > 0. Becauseus0,n satisfies the assumptions of Proposition 3.3, th
exists an entropy solutionusn to (1.1) withusn(0) = us0,n. Now (3.9) guarantees that

ρ∫
−ρ

r∫
−r

∣∣usn − usm

∣∣(t) dx dy �
ρ+Mt∫

−ρ−Mt

∫
R

∣∣us0,n − us0,m

∣∣αr(x) dx dy
�
∥∥us0,n − us0,m;L1(SR)

∥∥+ 4
√
π‖u0‖∞e−(R−r)2

for all ρ, r,R > 0. Henceusn converges strongly inC(0, T ;L1
loc(R

2)) to a functionus ,
which in addition is bounded by‖u0‖∞. Furthermoreusn tends tous in Lp(0, T ;Lp

loc(R
2))

for all p ∈ [1,∞), andus(t) = 0 outside the stripR × [−s − 2MT, s + 2MT ].
In order to check thatus is indeed the entropy solution withus(0) = us0, it suffices to

check that∂xusn weakly converges to∂xus : it easily follows by Corollary 2.3.
Eventually estimate (3.9) guarantees thatus = us

′
onR×[−s, s] for all s′ > s; thus the

functionu obtained by gluing together theus turns out to satisfy∂xu ∈L2(0, T ;L2
loc(R

2))

and then it is the entropy solution of (1.1)–(1.2).
Next, estimate (3.10) is immediately implied by the construction procedure. In

to check (3.11), we may suppose without loss of generality that(x0, y0) = (0,0). By cost
ruction we have that

T∫
0

s∫
−s

r∫
−r

|∂xu|2dx dy dt �
T∫

0

∫
Sr

|∂xus |2dx dy dt.

Hence applying Corollary 2.3 tousn and extracting the limit asn→ ∞ gives the thesis. ✷
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We end this section by establishing the coincidence of the entropy solutions in [11
the ones in the present paper, in the common existence domain.

Corollary 3.7. Let u0 ∈ L∞(R2) ∩L1(R2). Then the entropy solution constructed in[11,
Theorem 1]is the solution according to Definition3.1.

Proof. In force of the uniform estimate established in Corollary 2.3, one easily obtain
the solutionu constructed in [11, Theorem 1] satisfies∂xu ∈ L2(0, T ;L2

loc(R
2)), indeed.

Next, integrating by parts the entropy criterion [11, (EC)] gives that (3.1) holds true fo
constantk. Thereforeu is a solution according to Definition 3.1, and the uniqueness re
by Proposition 3.9 gives the thesis.✷
3.2. Characterization of entropic shocks

We now deduce from the entropy criterion (3.1) a characterization of admissible d
tinuities. First of all, we define what is meant by “shock” for a function of three varia
(x, y, t), i.e., a discontinuity across a two dimensional surface. Since in general en
solutions only belong toL1

loc, we need to use the notion of approximate limit.
For all z0 = (x0, y0, t0) ∈ R

2 × (0,∞), η > 0, andv ∈ R
3 \ {0}, we introduce the nota

tions

Bη(z0) = {
z ∈ R

3: |z− z0| < η
}
,

B±
η (z0, v) = {

z ∈ Bη(z0): (z− z0) · v ≷ 0
}
.

Definition 3.2. Any function u has ashock at a pointz0 = (x0, y0, t0) in the direction
v ∈ R

3 \ {0} if there exist two real numbersu+ �= u− such that

lim
η→0

2

|Bη(z0)|
∫

B±
η (z0,v)

∣∣u(z)− u±∣∣= 0.

An entropy solution to (1.1) may not have arbitrary shocks. Actually, such disc
nuities may occur only in they-direction, besides the values ofu at the two sides of the
surface of discontinuity must satisfy the same restrictions as well as for scalar conse
laws.

Theorem 3.8 (Entropic shocks).Let u be an entropy solution to(1.1) and let us suppos
that it has a shock at the pointz0 = (x0, y0, t0) in the directionv. Then

v = (0, λ,1), (3.12)

f (u+)− f (u−) = −λ[u+ − u−], (3.13)

sgn(u+ − u−)
[
αf (u+)+ (1− α)f (u−) − f

(
αu+ + (1− α)u−)]� 0 (3.14)

for all α ∈ (0,1).
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Proof. We define the piecewise constant function

U(z) =
{
u+, z · v > 0,

u−, z · v < 0.

By definition of shock, the rescaled functionuη(z) = u(z0 + ηz) converges toU in
L1(B1(0)). Moreover there exists a constantC such that for allη < t0 we have

∥∥∂xuη;L2(B1(0)
)∥∥2 � 1

η

T∫
0

η∫
−η

η∫
−η

|∂xu|2dx dy dt � C‖u0‖2∞,

by (3.11). Hence, up to an extracted sequence,∂xuη weakly converges to somew ∈
L2(B1(0)). As a consequenceU has distributional derivative with respect tox equal tow.
SinceU is piecewise constant, we deduce thatw = 0 indeed. In particularU does not
depend byx andv is orthogonal to thex-axis.

Now U is an entropy solution to the scalar conservation law∂tU − ∂yf (U) = 0 on
the setΩ = {(y, t) ∈ R × (0, T ): |y − y0|2 + |t − t0|2 < 1/2}. Indeed,U satisfies the
entropy condition for scalar conservation laws because for all constantk and for all smooth
functionsψ ∈ C∞

0 (Ω), ξ ∈ C∞
0 (x0 − 1/2, x0 + 1/2), ψ,ξ � 0 we have

∫
R

( T∫
0

∫
R

[−|U − k|∂tψ + sgn(U − k)
(
f (U)− f (k)

)
∂yψ

]
dy dt

)
ξ(x) dx

= lim
η→0

T∫
0

∫
R2

[−|uη − k|∂t (ξψ) + sgn(uη − k)
(
f (uη) − f (k)

)
∂y(ξψ)

]
dx dy dt

� lim
η→0

T∫
0

∫
R2

|uη − k|∂2
xx(ξψ) dx dy dt.

Finally, the conclusion follows from the standard theory for entropy solutions of s
conservation laws (see, for instance, [14]).✷

Notice that conditions (3.13) and (3.14) are very similar (and play the same ro
the well-known Rankine–Hugoniot condition and Oleinik condition, respectively, for
order conservation laws.

If we knew a priori thatu is piecewise smooth, Theorem 3.8 would provide an e
characterization of entropy solutions. Roughly speaking, a function which is smooth a
everywhere, apart from some surfaces across which it may jump, is an entropy solu
and only if it solves (1.1) almost everywhere and it has admissible shocks (accord
Theorem 3.8) across the surfaces of discontinuity. To be more precise, let us first sta
we mean by “piecewise smooth.”

Definition 3.3. A function u ∈ L∞(R2 × (0, T )) with ∂xu ∈ L2(0, T ;L2
loc(R

2)) is piece-
wise smoothif there exist finitely many disjoint surfacesJn of classC1 such that
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(i) According to the two dimensional Hausdorff measure, almost every point outsid
surfacesJn has a neighborhood whereu and∂xu are Lipschitz continuous;

(ii) Every pointz0 inside the surfaceJn has a neighborhoodV such that
• Jn ∩ V has a local parametrization of type

Jn ∩ V = {(
x(t, s), y(t, s), t

) ∈ R
2 × (0, T ): (t, s) ∈ (an, bn)× (cn, dn)

};
• The restrictions ofu to the subsets

V ± = {
ζ ∈ V : ζ = z+ tνn(z), z ∈Jn ∩ V, t ≷ 0

}
are Lipschitz continuous.

Here,νn(z) is the normal vector toJn at the pointz.

Theorem 3.9 (Characterization of piecewise smooth entropy solutions).Letu ∈L∞(R2 ×
(0, T )), with ∂xu ∈ L2(0, T ;L2

loc(R
2)) be a piecewise smooth function. Thenu is an en-

tropy solution of(1.1) if and only if

(a) u satisfies Eq.(1.1) almost everywhere onR2 × (0, T ) \⋃nJn;
(b) Jn is part of a cylinder parallel to thex axis, i.e., any point inJn has a neighborhood

V such that

Jn ∩ V = {(
x,λn(t), t

)
: (t, x) ∈ (an, bn)× (cn, dn)

}
with λn ∈ C1(an, bn);

(c) u has an admissible shock across the surfaceJn, namely for all(x,λn(t), t) ∈ Jn u

has a shock in the direction(0, λ̇n(t),1) fulfilling condition(3.13) and(3.14).

Proof. By miming the arguments of [3, Theorem 4.2] and remembering Theorem 3.8
easily obtains thatu is a distributional solution if and only if items (a)–(c, 3.13) hold
remains to check thatu is an entropy solution if and only if (c) and (3.14) holds true.

But (c, 3.14) is necessary in force of Theorem 3.8. In order to check that it is suffi
i.e., that it guarantees thatu satisfies the entropy criterion (3.1), let us fixk ∈ R andϕ ∈
C∞

0 (R2 × (0, T ), ϕ � 0. By integrating by parts separately in the four sets obtaine
intersecting the two sides ofJn with {u > k} and{u < k}, and recalling (3.13), we obtain

T∫
0

∫
R2

[−|u− k|∂tϕ + ∂x |u− k|∂xϕ + sgn(u− k)
(
f (u)− f (k)

)
∂yϕ

]
dx dy dt

� −
bn∫

an

∫
{k∈I }

sgn(u+ − u−)
[
f (u+)+ f (u−)− 2f (k)+ λ̇(u+ − u− − 2k)

]

× ϕ
(
x,λn(t), t

)
dt,

whereI stands for the segment betweenu+ andu−. Finally, the term on the right-han
side is nonpositive thanks to (3.14).✷
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Theorem 3.9 allows to easily check if a piecewise smooth distributional solution
entropy solution or not. Therefore it provides as a byproduct examples of disconti
solutions showing that the partial diffusion in the directionx does not bring any smoothin
effect in the directiony, in the framework of entropy solutions. Indeed, the presence o
diffusion term∂2

xxu may not avoid the propagation of the discontinuities in they variable,
nor obstruct any movement of the eventual plane of discontinuity.

Example 3.10. Takef (u) = u2/2 and

u0(x, y)=
{−v0(x)+C, y � 0,

v0(x)+C, y > 0,

wherev0 is a smooth strictly positive function andC � 0. Now the solution to (1.1)–(1.2
is

u(x, y, t) =
{−v(x, t), y �Ct ,

v(x, t), y > Ct,

wherev is the solution of the heat equation with initial datumv0. Becausev is strictly
positive by strong maximum principle,u jumps across the plane{y = Ct} for all t .

3.3. A geometrical condition for regularity of entropy solutions

We now establish that the well-known Oleinik condition for first order conservation
guarantees continuity of solutions also for problem (1.1)–(1.2).

Proposition 3.11. Under the following assumptions:

(i) f ∈W
2,∞
loc (R) is uniformly convex,

(ii) u0 is nonincreasing with respect toy,

for all t > 0 the solutionu(t) of (1.1)–(1.2) is nonincreasing and Lipschitz continuo
respect toy, uniformly with respect tox.

Proof. We denote byuε the classical solution to the uniformly parabolic Cauchy prob
(2.1)–(2.2). Becauseuε converges pointwise almost everywhere tou, it is sufficient to
show that−1/ess inf(f ′′)t � ∂yuε � 0 for all ε. But ∂yuε is a classical solutions to∂tv =
∆εv + f ′

ε(uε)∂yv + f ′′
ε (uε)v

2, wheref ′′
ε � 0 in force of the convexity off . Hence the

conclusion follows by standard comparison arguments.✷
An easy consequence of Proposition 3.11, coupled with the continuation principle

in Theorem 2.6, is the indefinite continuation of strong solutions. Indeed, it also guar
some pointwise regularity of the strong solutionu.

Corollary 3.12. Under the same hypotheses of Proposition3.11, for all t > 0 and almost
everyy the solutionu of problem(1.1)–(1.2) is continuously differentiable with respe
to x. Moreover for allδ > 0, u is Lipschitz continuous as a function ofx, y and Holder
continuous with exponent1/2 as a function oft on R

2 × (δ, T ).
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Proof. We denote byY the set ofy ∈ R such thatu0(· , y) ∈ L∞(R) and∂yu(· , y, ·) ∈
L∞(R × (0, T )). Thanks to Proposition 3.11,R \ Y has zero measure. Moreover, for
y ∈ Y , vy(x, t) = u(x, y, t) solves the heat equation with sourcef ′(u(x, y, t))∂yu(x, y, t)
∈ L∞(R × (0, T )) and initial datumu0(· , y) ∈ L∞(R). By classical potential theor
(see, for instance, [8])vy is continuous and continuously differentiable respect tox,
and |∂xvy(x, t)| � O(δ,‖f ′(u0)‖∞,ess inf(f ′′(u0))) for all (x, t) ∈ R × (δ, T ). Hence,
u ∈ L∞(δ, T ,W1,∞(R2)). In addition, [17, Theorem 1] yields thatu is continuous also
with respect tot .

Now we may read (1.1) as a linear equation∂tu = ∂2
xxu + a∂yu, wherea(x, y, t) =

f ′(u(x, y, t)) is bounded and continuous. Lastly, approximatingu with the classical solu
tions of the linear and uniformly parabolic equation∂tv = ∆εv+ a∂yv, and applying to al
of them [13, Theorem 1], gives the Holder continuity ofu with respect tot . ✷

4. An application to utility theory

We conclude this paper by showing how the stated results may be applied to
theory, providing a new outcome that may not be obtained in the classical framewo
begin by recalling the standard notion of utility process taking into account the habit to
consumption. It is assigned as the solution to the backward stochastic differential eq

Vt = E
[ T∫

t

[
w(cτ , yτ , τ )− βVτ

]
dτ +wT (cT , yT )

∣∣Ft

]
, (4.1)

wherew,wT are deterministic functions standing for the instantaneous and for the
utility from consumption, respectively, andβ is an updating factor. The processesct (con-
sumption) andyt (habit level of consumption) are commonly assumed to be describe
forward stochastic differential equations of type

ct = c0 exp

( t∫
0

µdτ +
t∫

0

σ dWτ

)
, (4.2)

yt = y0 +
t∫

0

[
a(cτ , τ )− γyτ

]
dτ. (4.3)

A more detailed analysis of agents’ decisions under risk put into light that the habit fo
tion itself is influenced by the utility experienced in the past. Recently, Antonelli et a
proposed to describe the habit formation as

yt = y0 +
t∫

0

[
a(cτ ,Vτ , τ )− γyτ

]
dτ, (4.4)

where the deterministic functiona takes into account the effect of the past consump
and of the conditional expected utility levels that the agent experienced in the past
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the future consumption plan. It is usually increasing, i.e., high consumption and
experienced in the past positively affects the present habit. This pattern captures th
appointment effect” if the agent’s instantaneous and final utilitiesw,wT are decreasin
with respect toy: the higher the standard of living is, the lower the utility from consum
tion results. Instead, increasingw andwT model, with respect toy, model “anticipation
effect”: high expected utility in the past generates a positive expectation for the futur
the agent is inclined to appreciate the actual consumption rate.

Now, the recursive utility is defined as the solution of the nonlinear backward–for
stochastic equation (4.1)–(4.4). In the same paper, Antonelli et al. proposed to use t
step scheme by Ma et al. [19] in order to relate this problem to the study of a dete
istic partial differential equation. They assumed that there exists a deterministic fu
of three variablesu ∈ L∞(0, T ;W1,∞(R2)) such thatVt = u(logct , yt , T − t) and they
showed thatu solves an anisotropic convection–diffusion equation of type (1.3) for

f (x,u, t)=
u∫

0

a(ex, v, T − t) dv,

and that it satisfies the initial condition (1.2) foru0(x, y) = wT (e
x, y). Eventually, the

existence of an utility process is obtained whenever the Cauchy problem (1.3), (1.2)
a solutionu which is, at least, Lipschitz-continuous with respect to bothx andy.

Let us present one example where the existence of an utility function providing a
type of preferences order is achieved.

Example 4.1. Take the backward–forward utility (4.1)–(4.4) with

w(c, y, τ ) = w0(cτ )+ αyτ , a(c,V, τ )= δV .

The related differential equation is

∂tu = 1

2
σ 2∂2

xxu+µ∂xu+ (δu− γy)∂yu− βu+w(ex)+ αy.

The existence and uniqueness of the entropy solution is a straightforward extens
Theorem 3.3. Following the line of the proof of Proposition 3.11, we denote byuε the
classical solution of the regularized problem obtained by adding the termε∂2

yyu to the
equation. Thus,∂yuε is a classical solution to

∂t v = 1

2
σ 2∂2

xxv + ε∂2
yyv +µ∂xv + (δuε − γy)∂yv + δv2 − (β + γ )v + α

with initial conditionv(x, y,0)= ∂ywT (e
x, y). Now, in the case of disappointment effe

i.e., if bothα and∂ywT are nonpositive, comparison principle yields thatu(t) is nonin-
creasing and Lipschitz continuous with respect toy, so that Corollary 3.12 still holds an
u ∈ L∞(0, T ;W1,∞(R2)) for arbitraryT .

Besides, in the case of anticipation effect, i.e., if bothα and∂ywT are nonnegative, com
parison principle yields thatu(t) is nondecreasing and Lipschitz continuous with resp
to y if

4αδ � (β + γ )2 and ∂ywT � β + γ (
1+

√
1− 4αδ/(β + γ )2

)
.

2δ
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In this case Corollary 3.12 still holds andu ∈ L∞(0, T ;W1,∞(R2)) for arbitraryT . On
the contrary, if this condition is violated, the entropy solution may become discontin
after a finite time: it is always the case, for instance, ifw = 0. In any case, if there is n
contribution from final utility, i.e., ifwT = 0, and if α � (β + γ )2/4δ, the backward–
forward differential utility is well defined for any horizonT .

As pointed out in [1], this pattern reduces to the standard expected utility ifα = 0,
while it models disappointment effect ifα < 0, or anticipation effect ifα > 0. The two
consumption processes

c1
t = C1 and c2

t =




0, t � T
2 ,

C2, t > T
2 with prob.π ,

0, t > T
2 with prob. 1− π ,

are ordinally equivalent under the standard expected utility ifw(C1) = (π/2)w(C2). Now,
they are no longer equivalent ifα �= 0, in particular,c1

t is better thanc2
t in the case of

disappointment effect.
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