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Abstract

Making use of heat kernel, we prove stabilities of the Jensen and Jensen–Pexider equati
space of generalized functions like the spaces of tempered distributions and Fourier hyperfun
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In 1941 D.H. Hyers showed a stability theorem for the Cauchy equation which w
motivated by S.M. Ulam [19]:

Theorem 1.1 [10]. Let f :E1 → E2 with E1,E2 Banach spaces, be ε-additive, that is,
f satisfies∥∥f (x + y) − f (x) − f (y)

∥∥ � ε
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for all x, y ∈ E1. Then there exists a unique function L :E1 → E2 such that

L(x + y) = L(x) + L(y)

and ∥∥f (x) − L(x)
∥∥ � ε

for all x, y ∈ E1.

The above stability theorem was firstly generalized by T.M. Rassias [16] in 1978. Si
then, stability theorems of many other functional equations have been proposed by m
authors in [3,8,11–13,15,16,18].

In this paper we consider the stabilities of the Jensen equation∥∥∥∥2f

(
x + y

2

)
− f (x) − f (y)

∥∥∥∥
L∞

� ε (1.1)

and Jensen–Pexider equation∥∥∥∥2f

(
x + y

2

)
− g(x) − h(y)

∥∥∥∥
L∞

� ε (1.2)

in spaces of generalized functions such as tempered distributions or Fourier hyperfun
tions. Note that inequalities (1.1) and (1.2) themselves make no sense in the sp
generalized functions.

As in [1–3,6,7], making use of the pullbacks of generalized functions we reform
the inequality (1.1) and (1.2) to the space of generalized functions as follows:

Let A,P1 andP2 be the functions

A(x,y) = x + y, P1(x, y) = x, and P2(x, y) = y, x, y ∈ R
n.

Then the inequalities (1.1) and (1.2) can be naturally extended as

‖2u ◦ A/2− u ◦ P1 − u ◦ P2‖ � ε, (1.3)

‖2u ◦ A/2− v ◦ P1 − w ◦ P2‖ � ε, (1.4)

whereu◦A/2,u◦P1, andu◦P2 are the pullbacks ofu byA/2,P1, andP2, respectively,
and‖v‖ � ε means that|〈v,ϕ〉| � ε‖ϕ‖L1 for all test functionsϕ.

As results, we prove that every solutionu of the inequality (1.3) can be written unique
in the form

u = a · x + c + h(x), a ∈ C
n, c ∈ C,

whereh(x) is a bounded measurable function with‖h‖L∞ � 3
2ε.

Also, every solutionu, v, andw of the inequality (1.4) can be written uniquely in t
form

u = a · x + c + h1(x), v = a · x + c1 + h2(x), w = a · x + c2 + h3(x),

where a ∈ C
n, c, c1, and c2 are some complex numbers andh1(x), h2(x), and

h3(x) are bounded measurable functions satisfying‖h1(x)‖L∞ � 3
2ε, ‖h2(x)‖L∞ � 4ε,

‖h3(x)‖L∞ � 4ε.
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2. Distributions and hyperfunctions

We introduce some space of generalized functions such as the spaceS ′ of tempered
distributions and the spaceF ′ of Fourier hyperfunctions which is a natural generalizat
of S ′. Here we use the multi-index notation,|α| = α1 + · · · + αn, α! = α1! · · ·αn!, xα =
x

α1
1 · · ·xαn

n and∂α = ∂
α1
1 · · ·∂αn

n , for x = (x1, . . . , xn) ∈ Rn, α = (α1, . . . , αn) ∈ N
n
0, where

N0 is the set of non-negative integers and∂j = ∂/∂xj .

Definition 2.1 [4,17]. We denote byS or S(Rn) the Schwartz space of all infinitely diffe
entiable functionsϕ in Rn satisfying

‖ϕ‖α,β = sup
x

∣∣xα∂βϕ(x)
∣∣ < ∞ (2.1)

for all α,β ∈ N
n
0, equipped with the topology defined by the seminorms‖ · ‖α,β . The ele-

ments ofS are called rapidly decreasing functions and the elements of the dual spacS ′
are called tempered distributions.

Imposing growth conditions on‖ · ‖α,β in (2.1) Sato and Kawai introduced the spaceF
of test functions for the Fourier hyperfunctions as follows:

Definition 2.2 [5]. We denote byF or F(Rn) the Sato space of all infinitely differentiab
functionϕ in R

n such that

‖ϕ‖h,k = sup
x∈Rn, α∈N

n
0

|∂αϕ(x)|expk|x|
h|α|α! < ∞ (2.2)

for someh, k > 0. We say thatϕj → 0 asj → ∞ if ‖ϕj‖h,k → 0 asj → ∞ for someh,
k > 0, and denote byF ′ the strong dual ofF and call its elements Fourier hyperfunctio

It can be verified that (2.2) is equivalent to

‖ϕ‖α,β = sup
x

∣∣xα∂βϕ(x)
∣∣ � CA|α|B |β|α!β!

for some positive constantA, B, andC depending only onϕ. It is easy to see the followin
topological inclusion:

F ↪→ S, S ′ ↪→ F ′.

From now on a test function means an element in the Schwartz spaceS or the Sato spac
F and a generalized function means a tempered distribution or a Fourier hyperfunc

We employ then-dimensional heat kernel, this is, the fundamental solutionE(x, t) of
the heat operator∂t − ∆x in R

n
x × R

+
t given by

Et(x) = E(x, t) =
{

(4πt)−n/2 exp
(−|x|2/4t

)
, t > 0,

0, t � 0.

The semigroup property

(Es ∗ Et)(x) = Es+t (x) (2.3)
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Since for eacht > 0, E(·, t) belongs to the Sato spaceF and the Schwartz spaceS, the

convolution

Gu(x, t) = (u ∗ E)(x, t) = uy

(
E(x − y, t)

)
, x ∈ R

n, t > 0

is well defined for each generalized functionu, which is called the Gauss transform ofu.
As a matter of fact it is shown in [14] that the Gauss transformGu(x, t) of u is aC∞

solution of the heat equation andGu(x, t) converges tou ast → 0+ in the following sense
of generalized functions: for all test functionϕ,

〈
Gu(·, t), ϕ〉 =

∫
Gu(x, t)ϕ(x) dx → 〈u,ϕ〉 ast → 0+.

3. Main theorems

In this section we consider the stabilities of Jensen equation (1.3) and Jensen–P
equation (1.4). We refer to [9, Chapter VI], for pullbacks of generalized functions.
matter of fact, the pullbacksu ◦ A

2 , u ◦ P1 andu ◦ P2 involved in (1.3) and (1.4) can b
written in a more transparent way as follows:

〈
u ◦ A/2, ϕ(x, y)

〉 =
〈
ux,2n

∫
ϕ(2x − y, y) dy

〉
,

〈
u ◦ P1, ϕ(x, y)

〉 =
〈
ux,

∫
ϕ(x, y) dy

〉
,

〈
u ◦ P2, ϕ(x, y)

〉 =
〈
uy,

∫
ϕ(x, y) dx

〉

for all test functionsϕ(x, y) defined onR2n. It will be verified that by convolving
Et(x)Es(y) in each side of the inequalities (1.3) and (1.4) we have the following ineq
ties for smooth functions∥∥∥∥2f

(
x + y

2
,
t + s

4

)
− f (x, t) − f (y, s)

∥∥∥∥
L∞

� ε, (3.1)

∥∥∥∥2f

(
x + y

2
,
t + s

4

)
− g(x, t) − h(y, s)

∥∥∥∥
L∞

� ε (3.2)

for x, y ∈ Rn, t , s > 0. From now on we call a functionL defined on a group is calledan
additive function if it satisfies the Cauchy equation

L(x + y) = L(x) + L(y).

We first consider the inequalities (3.1) and (3.2).

Lemma 3.1. Let f :Rn × (0,∞) → C be a continuous function satisfying the inequality∥∥∥∥2f

(
x + y

,
t + s

)
− f (x, t) − f (y, s)

∥∥∥∥ � ε.

2 4 L∞
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at
Then there exist a unique additive function L(x) defined on Rn and a constant c such that
∥∥f (x, t) − L(x) − c

∥∥
L∞ � 3

2
ε.

Proof. Let F(x, t) = 2f (x/2, t/4). Then we have∥∥F(x + y, t + s) − f (x, t) − f (y, s)
∥∥

L∞ � ε. (3.3)

Puttingy = 0 in (3.3), it is easy to see thatc := lim sups→0+ f (0, s) exists. Thus putting
y = 0 and lettings → 0+ in (3.3) we obtain that∥∥F(x, t) − f (x, t) − c

∥∥
L∞ � ε. (3.4)

Now it follows from (3.3) and (3.4) that∥∥F(x + y, t + s) − F(x, t) − F(y, s) + 2c
∥∥

L∞ � 3ε. (3.5)

Thus it follows from Theorem 1.1, there exists a unique mappingL(x, t) satisfying

L(x + y, t + s) − L(x, t) − L(y, s) = 0, (3.6)∥∥F(x, t) − L(x, t) − 2c
∥∥

L∞ � 3ε. (3.7)

Replacingx, t in (3.7) by 2x, 4t and dividing by 2 in the result we have in view of (3.6)

∥∥f (x, t) − L(x,2t) − c
∥∥

L∞ � 3

2
ε. (3.8)

Applying the triangle inequalities in the inequalities (3.4), (3.7), and (3.8) it follows th

∥∥L(x,2t) − L(x, t)
∥∥

L∞ � 11

2
ε. (3.9)

Puttingx = 0 in (3.9) and using additive property ofL(0, t) we have
∥∥L(0, t)

∥∥
L∞ � 11

2
ε

and hence

L(0, t) = 0 for all t > 0.

Puttingy = 0 in (3.6) we haveL(x, t + s) = L(x, t) for all x ∈ Rn, t , s > 0 and hence
L(x, t) is independent oft > 0. Thus we obtain the result from Eq. (3.7).�
Lemma 3.2. Let f , g, h :Rn × (0,∞) → C be continuous functions satisfying the inequal-
ity ∥∥∥∥2f

(
x + y

2
,
t + s

4

)
− g(x, t) − h(y, s)

∥∥∥∥
L∞

� ε.

Then there exist a unique additive function L(x, t) and constants c, c1, and c2 such that

∥∥f (x, t) − L(x,2t) − c
∥∥

L∞ � 3

2
ε,

∥∥g(x, t) − L(x, t) − c1
∥∥

L∞ � 4ε,∥∥h(x, t) − L(x, t) − c2
∥∥

L∞ � 4ε,

where c = 1(c1 + c2).
2
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Proof. Letting F(x, t) = 2f (x/2, t/4) we have the following inequality for the Pexid
equation

∥∥F(x + y, t + s) − g(x, t) − h(y, s)
∥∥

L∞ � ε. (3.10)

Let x = y = 0 in (3.10). Then it follows from the continuity of the functionsF that there
exist sequencestn, n = 1,2, . . . , andsn, n = 1,2, . . . , of positive numbers which tend to
asn → ∞ such that

c1 := lim
n→∞ g(0, tn), c2 := lim

n→∞ h(0, sn)

exist. Lettingy = 0 ands = sn → 0+ in (3.10) we have
∥∥F(x, t) − g(x, t) − c2

∥∥
L∞ � ε. (3.11)

Similarly, we have
∥∥F(x, t) − h(x, t) − c1

∥∥
L∞ � ε. (3.12)

Thus it follows from (3.10), (3.11), and (3.12) that∥∥F(x + y, t + s) − F(x, t) − F(y, s) + c1 + c2
∥∥

L∞ � 3ε.

Thus there exists a unique functionL(x, t) such that

L(x + y, t + s) − L(x, t) − L(y, s) = 0, (3.13)∥∥F(x, t) − L(x, t) − c1 − c2
∥∥

L∞ � 3ε. (3.14)

From (3.11), (3.12), and (3.14) we have
∥∥g(x, t) − L(x, t) − c1

∥∥
L∞ � 4ε, (3.15)∥∥h(x, t) − L(x, t) − c2

∥∥
L∞ � 4ε. (3.16)

Replacingx, t by 2x,4t in (3.14) and dividing by 2 we have

∥∥f (x, t) − L(x,2t) − c
∥∥

L∞ � 3

2
ε, (3.17)

wherec = 1
2(c1 + c2). This completes the proof.�

We now state and prove the stabilities of the Jensen equation and the Jensen–
equation in the spaces of tempered distributions and Fourier hyperfunctions.

Theorem 3.3. Let u be a tempered distribution or a Fourier hyperfunction satisfying

‖2u ◦ A/2− u ◦ P1 − u ◦ P2‖ � ε. (3.18)

Then u can be written uniquely in the form

u = a · x + c + h(x), a ∈ C
n, c ∈ C,

where h(x) is a bounded measurable function such that ‖h‖L∞ � 3ε.
2
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Proof. Convolving in the each side of (3.18) the tensor productEt(x)Es(y) of n-dimen-
sional heat kernels, we have in view of (2.3)

[
(2u ◦ A/2− u ◦ P1 − u ◦ P2) ∗ (

Et(x)Es(y)
)]

(ξ, η)

= [
(2u ◦ A/2) ∗ (

Et(x)Es(y)
)]

(ξ, η) − [
(u ◦ P1) ∗ (

Et(x)Es(y)
)]

(ξ, η)

− [
(u ◦ P2) ∗ (

Et(x)Es(y)
)]

(ξ, η)

:= I − II − III,

I = 〈
2u ◦ A/2,Et(ξ − x)Es(η − y)

〉 = 2n+1
〈
ux,

∫
Et(ξ − 2x + y)Es(η − y) dy

〉

= 2n+1〈ux, (Et ∗ Es)(ξ + η − 2x)
〉 = 2n+1〈ux,Et+s(ξ + η − 2x)

〉

= 2n+1
〈
ux,2−nE(t+s)/4

(
ξ + η

2
− x

)〉
= 2(u ∗ E)

(
ξ + η

2
,
t + s

4

)
.

Similarly, we have

II = Gu(ξ, t), III = Gu(η, s).

Thus the inequality (3.18) is converted to∥∥∥∥2Gu

(
x + y

2
,
t + s

4

)
− Gu(x, t) − Gu(y, s)

∥∥∥∥
L∞

� ε.

By Lemma 3.1 there exist a unique additive functionL(x) and constantc such that

∥∥Gu(x, t) − L(x) − c
∥∥

L∞ � 3

2
ε. (3.19)

Since the Gauss transformGu is a smooth function, andL(x, t) is obtained by the uniform
limit of the sequence 2−nGu(2nx,2nt) as seen in the proof of Theorem 1.1L must be
a continuous function andL(x) = a · x for somea ∈ Cn. By letting t → 0+ in (3.19), it
follows that

‖u − a · x − c‖ � 3

2
ε. (3.20)

Now the inequality (3.20) implies thath(x) := u − a · x − c belongs to(L1)′ = L∞.
Thus all the solutionsu can be written uniquely in the formu = a · x + c + h(x), where
‖h‖L∞ � 3

2ε. This completes the proof.�
Theorem 3.4. Let u, v and w be tempered distributions or Fourier hyperfunctions satisfy-
ing

‖2u ◦ A/2− v ◦ P1 − w ◦ P2‖ � ε. (3.21)

Then u, v and w can be written uniquely in the form

u = a · x + c + h1(x), v = a · x + c1 + h2(x), w = a · x + c2 + h3(x),

where a ∈ Cn, c, c1, c2 ∈ C with c = 1
2(c1 + c2) and h1(x), h2(x), and h3(x) are bounded

measurable functions such that ‖h1(x)‖L∞ � 3ε, ‖h2(x)‖L∞ � 4ε, ‖h3(x)‖L∞ � 4ε.
2
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Proof. As in the proof of Theorem 3.3, by convolving in (3.21) the tensor prod
Et(x)Es(y) of heat kernels, the inequality (3.21) is converted to∥∥∥∥2Gu

(
x + y

2
,
t + s

4

)
− Gv(x, t) − Gw(y, s)

∥∥∥∥
L∞

� ε.

By Lemma 3.2 there exists an additive functionL(x, t) such that∥∥Gu(x, t) − L(x,2t) − c
∥∥

L∞ � 3ε, (3.22)∥∥Gv(x, t) − L(x, t) − c1
∥∥

L∞ � 4ε, (3.23)∥∥Gw(x, t) − L(x, t) − c2
∥∥

L∞ � 4ε, (3.24)

wherec = 1
2(c1 + c2).

SinceL(x, t) is obtained by the uniform limit of the sequence 2−nGu(2nx,2nt) as seen
in the proof of Theorem 1.1L is a continuous function. Thus we must haveL(x, t) =
a · x + bt for somea ∈ Cn, b ∈ C. Letting t → 0+ in (3.22), (3.23), and (3.24) we get th
result. �
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