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Abstract

Making use of heat kernel, we prove stabilities of the Jensen and Jensen—Pexider equations in a
space of generalized functions like the spaces of tempered distributions and Fourier hyperfunctions.
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1. Introduction

In 1941 D.H. Hyers showed a stability them for the Cauchy equation which was
motivated by S.M. Ulam [19]:

Theorem 1.1 [10]. Let f: E1 — E> with E1, Eo» Banach spaces, be ¢-additive, that is,
f satisfies
[fax+y—rf@—rom|<e
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for all x, y € E1. Then there exists a unique function L : E1 — E3 such that
L(x+y)=L(x)+ L(y)

and
|f) —L|<e

for all x, y € E1.

The above stability theoremas firstly generalized by T.M. Rassias [16] in 1978. Since
then, stability theorems of many other ftional equations have been proposed by many
authorsin [3,8,11-13,15,16,18].

In this paper we consider the stabilities of the Jensen equation

+
Zf(x - ) ~f@ - fo| < (1.1)
L()O
and Jensen—Pexider equation
Zf(x;y) —g)—h()| <e (1.2)
LOO

in spaces of generalized functions such as temag distributions or Fourier hyperfunc-
tions. Note that inequalities (1.1) and (1.2) themselves make no sense in the space of
generalized functions.

As in [1-3,6,7], making use of the pullbacks of generalized functions we reformulate
the inequality (1.1) and (1.2) to the space of generalized functions as follows:

Let A, P, and P, be the functions

Ax,y)=x+y, Pi(x,y)=x, and P(x,y)=y, x,yeR".

Then the inequalities (1.1) and (1.2) can be naturally extended as
l2uoA/2—uo Pr—uo Po| e, (1.3)
l2uoA/2—voPL—wo P <e¢, (1.4)

whereuo A/2,uo P1,andu o P, are the pullbacks af by A/2, P1, andP», respectively,
and|v|| < e means thal(v, ¢)| < €ll¢| ;1 for all test functionsp.

As results, we prove that every solutismof the inequality (1.3) can be written uniquely
in the form
u=a-x+c+hkx), acC" ceC,

whereh(x) is a bounded measurable function wiith|| .~ < %s.
Also, every solution, v, andw of the inequality (1.4) can be written uniquely in the
form

u=a-x+c+hi(x), v=a-x+c1+ha(x), w=a-x+c2+h3x),

where a € C", ¢, c1, and ¢, are some complex numbers ard(x), h2(x), and
h3(x) are bounded measurable functions satisfyfig(x)| L~ < %s, lh2(xX) || e < 4e,
h3(x)]lL> < 4e.
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2. Distributions and hyperfunctions

We introduce some space of generalized functions such as the Spat¢éempered
distributions and the spacg’ of Fourier hyperfunctions which is a natural generalization
of S’. Here we use the multi-index notatioj,| = o1 + -+ - + oy, @! = 1! -+ -, x% =
xgl~~x,‘f" ando® = afl...a,?", forx=(x1,....,x,) eR", o = (1, ..., ) € N}, where
No is the set of non-negative integers ahd=0/dx;.

Definition 2.1[4,17]. We denote byS or S(R") the Schwartz space of all infinitely differ-
entiable functiong in R" satisfying

lglle.p = supx*0’p(x)| < oo (2.1)
X

for all o, 8 € Njj, equipped with the topology defined by the seminoiimg, . The ele-
ments ofS are called rapidly deeasing functions and the elements of the dual sgce
are called tempered distributions.

Imposing growth conditions of- ||« g in (2.1) Sato and Kawai introduced the sp&€e
of test functions for the Fourier hyperfunctions as follows:

Definition 2.2 [5]. We denote byF or F(R") the Sato space of all infinitely differentiable
functiong in R” such that

9% (x) | eXpk|x|

el (2.2)

lellne=  sup
xeR", aeNj

for somen, k > 0. We say thap; — 0 asj — oo if ||¢;j[ln,x — 0 asj — oo for somen,
k > 0, and denote by’ the strong dual ofF and call its elements Fourier hyperfunctions.
It can be verified that (2.2) is equivalent to
¢l = supx®dPe )| < cA Blaip!
X

for some positive constart, B, andC depending only om. It is easy to see the following
topological inclusion:

F— S, S — F.

From now on a test function means an element in the Schwartz spacthe Sato space

F and a generalized function means a tempered distribution or a Fourier hyperfunction.
We employ the:-dimensional heat kernel, this is, the fundamental soluB@s, ¢) of

the heat operatdl, — A, in R? x R;" given by

(4t) "2 exp(—|x|%/4t), t >0,

E,(x)zE(X,f)Z{O’ [go

The semigroup property

(Es * Er)(x) = Egq4(x) (2.3)
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of the heat kernel will be very useful later.
Since for each > 0, E(-, t) belongs to the Sato spageand the Schwartz spack the
convolution

Gux,)=u*E)(x,1)= uy(E(x -y, t)), xeR", t>0

is well defined for each generalized functionwhich is called the Gauss transformuof

As a matter of fact it is shown in [14] that the Gauss transféri(x, r) of u is aC*
solution of the heat equation at: (x, t) converges ta ast — 0™ in the following sense
of generalized functions: for all test functign

(Gu(-,t),(p):/Gu(x,t)go(x)dx—) (u,p) ast—0OF.

3. Main theorems
In this section we consider the stabilities of Jensen equation (1.3) and Jensen—Pexider
equation (1.4). We refer to [9, Chapter VI], for pullbacks of generalized functions. As a

matter of fact, the pullbacks o %, uo Pp andu o P involved in (1.3) and (1.4) can be
written in a more transparent way as follows:

('4OA/2,¢(x,y))=<ux,2"/¢(2x—y,y)dy>,
(uoPl,qo(x,y))=<ux,/¢(x,y)dy>,

(uo Pa,px, )= <uy,/<p(x, y)dx>

for all test functionse(x, y) defined onR?. It will be verified that by convolving
E;(x)E;(y) in each side of the inequalities (1.3) and (1.4) we have the following inequali-
ties for smooth functions

Zf(x+y, ’“) - fous)|  <e (3.1)

2 4 L

H2f<x;ry, t:s> —glx,t)—h(y,s)| <e¢ (3.2)
LOO

for x, y e R", ¢, s > 0. From now on we call a functioh defined on a group is callesh
additive function if it satisfies the Cauchy equation

L(x+y)=Lx)+ L(y).
We first consider the inequalities (3.1) and (3.2).

Lemma 3.1. Let f:R” x (0, co) — C be a continuous function satisfying the inequality

Hzf(x;y, ’Zs> —F ) = f(rs)

< e.
L()O
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Then there exist a unique additive function L (x) defined on R" and a constant ¢ such that

3
[£Gen = L) =] o < 5o

Proof. Let F(x,t) =2f(x/2,t/4). Then we have

[Fx+y.t48) — fx, )= f.9)], <e. (3.3)

Puttingy =0 in (3.3), it is easy to see that= limsup,_, o+ (0, s) exists. Thus putting
y =0 and lettings — 0% in (3.3) we obtain that

|Fe.t) = fx.0) —c| o <. (3.4)
Now it follows from (3.3) and (3.4) that

|F(x+y.t+s)—F(x,1) = F(y,5) + 2c|| ;o < 3e. (3.5)
Thus it follows from Theorem 1.1, there exists a unique mappgi6g ) satisfying

L(x+y,t+s)—L(x,t)— L(y,s)=0, (3.6)

| Fx, 1) = Lx, 1) = 2¢|| ;o < 3e. (3.7)
Replacingx, ¢ in (3.7) by 2, 4¢r and dividing by 2 in the result we have in view of (3.6)

3

| .0y = L(x,20) — ¢ gis. (3.8)

Applying the triangle inequalities in the inequalities (3.4), (3.7), and (3.8) it follows that
11
|L(x.20) = L(x, 1), < e (3.9)

Puttingx = 0 in (3.9) and using additive property 6{0, ) we have

11
L0 < e

and hence

L(0,1)=0 forallr> 0.
Puttingy = 0 in (3.6) we havel.(x,t +s) = L(x,t) for all x € R", ¢, s > 0 and hence
L(x,t) is independent of > 0. Thus we obtain the result from Eq. (3.7)2

Lemma3.2. Let f, g, h:R" x (0, co) — C be continuousfunctions satisfying the inequal-

ity
HZf(ny, tf) g —h(n9)| <e
LOC

Then there exist a unique additive function L(x, ) and constants ¢, ¢1, and ¢ such that

3
Hf(xa t) - L(xa 2t) - C”Loo g 587 ||g(xa t) - L(-x7t) - Cl”Loo < 487
[RGe, 1) = Lx,0) = c2 | < 4,

wherec = %(C1+C2).
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Proof. Letting F(x,t) =2f(x/2,t/4) we have the following inequality for the Pexider
equation

HF(x—i—y,t—l—s)—g()c,t)—h(y,s)HLOc <e. (3.10)

Letx =y =0in (3.10). Then it follows from the continuity of the functioisthat there
exist sequenceg,n=1,2,...,ands,,n=1,2, ..., of positive numbers which tend to 0
asn — oo such that

c1:= lim g(0,1,), c2:= lim h(0,s,)
n—oo n—oo

exist. Lettingy = 0 ands = s, — 0T in (3.10) we have

|Fx, 1) —gx,1) —c2|| | <. (3.11)
Similarly, we have

|Fx,t) —h(x,1) —c1] ;o <e. (3.12)
Thus it follows from (3.10), (3.11), and (3.12) that

HF(x+y,t+s) —F(x,t) — F(y,s)-l—c1+c2||LOo < 3e.
Thus there exists a unique functidrix, r) such that

L(x+y,t+s)—L(x,t) — L(y,s)=0, (3.13)

|F(x,t) = L(x,1) —c1 — c2|| o < 3e. (3.14)
From (3.11), (3.12), and (3.14) we have

Hg(xvt)_L(-xst)_cl”Loo <481 (315)

[R(x. 1) = L(x,1) = c2 | o0 < 4. (3.16)
Replacingx, t by 2x, 4t in (3.14) and dividing by 2 we have

Hf(-xit)_L(-xszt)_c”Loogggv (317)

wherec = %(61 + ¢2). This completes the proof.0

We now state and prove the stabilities of the Jensen equation and the Jensen—Pexider
equation in the spaces of temperediilisttions and Fourier hyperfunctions.

Theorem 3.3. Let u be a tempered distribution or a Fourier hyperfunction satisfying
l2uoA/2—uoPr—uo Po| <s. (3.18)
Then u can be written uniquely in the form
u=a-x+c+hkx), aeC" ceC,

where i (x) isa bounded measurable function such that |||z~ < %s.
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Proof. Convolving in the each side of (3.18) the tensor prodtig) £ (y) of n-dimen-
sional heat kernels, we have in view of (2.3)

[(QuoA/2—uo Py —uo Pp)x (E/(x)Es(y))](E n)
=[(@uo A/2) % (E/(x)Es ()] (&, n) — [ o P1) % (E(x) Es(y))] (€. n)
— [ o P2) % (E:(x)Es(»))](€.m)
=1 =11 =11,
| =(2u0A/2, Ex(§ —x)Es(n—y))= 2"+1<ux, / E((§ —2x+y)Es(n — y) dy>

= 2" g, (Er % E)(§ + 0= 20) = 2 Huy, Ergs (€ + 0 — 20))

- + +n t+s
=2”+l<ux,2 ”E(z+s>/4(57n—x)>=2(u*E)(éTn, ) )

Similarly, we have
Il =Gu(,1), Il =Gu(n,s).

Thus the inequality (3.18) is converted to

t
HZGu(x;y, —Zs) — Gu(x,t) — Gu(y, s)

By Lemma 3.1 there exist a unique additive functiofx) and constant such that

<Le.
L()O

|Gu(x,1) = L(x) — ¢, < gs. (3.19)

Since the Gauss transforfu is a smooth function, and(x, ) is obtained by the uniform
limit of the sequence 2’Gu(2"x, 2"t) as seen in the proof of Theorem 1L1must be

a continuous function anfl(x) = a - x for somea € C". By lettingr — 0T in (3.19), it

follows that

3
lu—a-x—c| < Es. (3.20)

Now the inequality (3.20) implies that(x) :=u — a - x — ¢ belongs to(LY)’ = L.
Thus all the solutions can be written uniquely in the form=a - x + ¢+ h(x), where
Al < 3e. This completes the proof.00

Theorem 3.4. Let u, v and w be tempered distributions or Fourier hyperfunctions satisfy-
ing

l2uoA/2—vo P1—wo P <e. (3.22)
Then u, v and w can be written uniquely in the form
u=a-x+c+hi(x), v=a-x+c1+h2(x), w=a-x+c2+ h3x),

wherea € C", ¢, c1, c2 € C with ¢ = 3(c1 + c2) and h1(x), h2(x), and h3(x) are bounded
measurable functions such that |21 (x)]| Lo < %’8, lh2(x) || < de, [[h3(x)]| Lo < 4e.
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Proof. As in the proof of Theorem 3.3, by convolving in (3.21) the tensor product
E:(x)E(y) of heat kernels, the inequality (3.21) is converted to

2Gu( 22 T o — Guw(n.s)| <e.
2 ' 4 Lo

By Lemma 3.2 there exists an additive functibtx, ¢) such that

|Gux, 1) — L(x,21) — | ;o < 3, (3.22)
[Goex,1) = L(x,1) —c1] ;o <4, (3.23)
|Gw(x,1) — L(x,1) — c2| ;o <4, (3.24)

wherec = 3(c1 + c2).

SinceL(x, t) is obtained by the uniform limit of the sequenc&&u(2"x, 2*t) as seen
in the proof of Theorem 1.L is a continuous function. Thus we must halér, r) =
a - x + bt for somea € C*, b € C. Lettingr — 07 in (3.22), (3.23), and (3.24) we get the
result. O

Acknowledgments

The first author, L. Li, expresses his sincere gratitude to Songwoo Foundation for support during his study at
Seoul National University. The second author, J. Chuvag partially supported by Korea Research Foundation
(KRF-2001-015-DP0011), and the third author, OmK was partially supported by KOSEF (R01-1999-000-
00001-0).

References

[1] J.A. Baker, Functional equations, tempered distitms, and Fourier transforms, Trans. Amer. Math.
Soc. 315 (1989) 57-68.

[2] J.A. Baker, Distributional methods for futicnal equations, Aequi@anes Math. 62 (2001) 136-142.

[3] J. Chung, Stability of functional equations in the spaéélistributions and hyperfunctions, J. Math. Anal.
Appl. 286 (2003) 177-186.

[4] J. Chung, S.-Y. Chung, D. Kim, Une caractérisation 'depace de Schwartz, C. R. Acad. Sci. Paris Sér. |
Math. 316 (1993) 23-25.

[5] J. Chung, S.-Y. Chung, D. Kim, A characterization faufier hyperfunctions, Publ. Res. Inst. Math. Sci. 30
(1994) 203-208.

[6] J. Chung, S.Y. Lee, Some functional equations in {reces of generalized funetis, Aequationes Math. 65
(2003) 267-279.

[7] S.-Y. Chung, Reformulation of some functional eqaas in the space of Gevrey distributions and regularity
of solutions, Aequationes Math. 59 (2000) 108-223.

[8] G.L. Forti, Hyer—Ulam stability of functional eqtian in several variables, Aequationes Math. 50 (1995)
143-190.

[9] L. Hormander, The Analysis of Linear Partial Differential Operator |, Springer-Verlag, Berlin, New York,
1983.

[10] D.H. Hyers, On the stability of the linear funatial equations, Proc. Nat. Acad. Sci. USA 27 (1941) 222—
224.
[11] D.H. Hyers, G. Isac, T.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel,

1998.



586 L.Li etal./J. Math. Anal. Appl. 299 (2004) 578-586

[12] S.M. Jung, Hyers—Ulam—Rassias stability of Jersseguation and its application, Proc. Amer. Math.
Soc. 126 (1998) 3137-3143.

[13] Z. Kominek, On a local stability of the Jensamttional equation, Demotratio Math. 22 (1989) 499-507.

[14] T. Matsuzawa, A calculus approachhgperfunctions Ill, Nagoya Math. J. 118 (1990) 133-153.

[15] J.C. Parnami, H.L. Vasudeva, On Jensdohctional equation, Aegtianes Math. 43 (1992) 211-218.

[16] T.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 7 (1978)
297-300.

[17] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966.

[18] T. Trif, Hyers—Ulam—Rassias stability of a Jensgpet Functional equation, J. Ma Anal. Appl. 250 (2000)
579-588.

[19] S.M. Ulam, Problems in Modern Mathetics, Chapter VI, Wiley, New York, 1964.



