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Abstract

The existence of multiple positive solutions about the singular second-order m-point boundary value
problem

ϕ′′(x) + h(x)f
(
ϕ(x)

) = 0, 0 < x < 1,

subject to some m-point boundary value conditions is considered. h(x) is allowed to be singular at x = 0
and x = 1.
© 2005 Elsevier Inc. All rights reserved.
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Recently, the existence of multiple positive solutions for nonlinear ordinary differential equa-
tions has been studied extensively, and we refer the reader to [2,3,5,6,8,9]. For the most part,
each of the papers on the existence of triple positive solutions makes an application of the fixed
point theorems by Leggett and Williams [7] and Avery [1]. In this paper, we apply the Avery
Five Functional Fixed Point Theorem to obtain the existence of multiple positive solutions to the
singular second-order m-point boundary value problem

ϕ′′(x) + h(x)f
(
ϕ(x)

) = 0, 0 < x < 1, (1)
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subject to the boundary value conditions

ϕ(0) = 0, ϕ(1) =
m−2∑
i=1

aiϕ(ξi), (2)

ϕ(0) =
m−2∑
i=1

aiϕ(ξi), ϕ(1) = 0, (3)

ϕ′(0) = 0, ϕ(1) =
m−2∑
i=1

aiϕ(ξi), (4)

ϕ(0) =
m−2∑
i=1

aiϕ(ξi), ϕ′(1) = 0, (5)

respectively, where 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, ai ∈ [0,∞) and h(x) may be singular at
x = 0 and x = 1. For the theory of cones in Banach spaces we refer to [4].

α is said to be a nonnegative concave functional on a cone P of a real Banach space E, if
α :P → [0,∞) and α(tx + (1 − t)y) � tα(x) + (1 − t)α(y) for all x, y ∈ P and t ∈ [0,1]. β is
said to be a nonnegative convex functional on a cone P of a real Banach space E, if β :P →
[0,∞) and β(tx + (1 − t)y) � tα(x) + (1 − t)α(y) for all x, y ∈ P and t ∈ [0,1].

Let γ,β, θ be nonnegative continuous concave functionals on P and α,ψ be nonnegative
continuous convex functionals on P . For nonnegative real numbers l, a, b, d and c, define the
convex sets

P(γ, c) = {
x ∈ P : γ (x) � c

}
,

P (γ,α, a, c) = {
x ∈ P : a � α(x), γ (x) � c

}
,

Q(γ,β, d, c) = {
x ∈ P : β(x) � d, γ (x) � c

}
,

P (γ, θ,α, a, b, c) = {
x ∈ P : a � α(x), θ(x) � b, γ (x) � c

}
,

Q(γ,β,ψ, l, d, c) = {
x ∈ P : l � ψ(x), β(x) � d, γ (x) � c

}
.

The following theorem is the Five Functional Fixed Point Theorem [1], a generalization of the
Leggett–Williams Fixed Point Theorem.

Theorem 1. Suppose there exist c > 0 and m > 0 such that α(x) � β(x) and ‖x‖ � mγ (x) for
all x ∈ P(γ, c). Let A :P(γ, c) → P(γ, c) be a completely continuous operator. If there exist
nonnegative real numbers a, b, d and l with 0 < d < a such that

(i) {x ∈ P(γ, θ,α, a, b, c): α(x) > a} �= ∅ and α(Ax) > a for x ∈ P(γ, θ,α, a, b, c);
(ii) {x ∈ Q(γ,β,ψ, l, d, c): β(x) < d} �= ∅ and β(Ax) < d for x ∈ Q(γ,β,ψ, l, d, c);

(iii) α(Ax) > a for x ∈ P(γ,α, a, c) with θ(Ax) > b;
(iv) β(Ax) < d for x ∈ Q(γ,β, d, c) with ψ(Ax) < l,

then A has at least three fixed points x1, x2 and x3 in P(γ, c) with β(x1) < d, a < α(x2), d <

β(x3) and α(x3) < a.
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In Banach space C[0,1] in which the norm is defined by ‖ϕ‖ = max0�x�1 |ϕ(x)|, we set

P = {
ϕ ∈ C[0,1]: ϕ(x) � 0, x ∈ [0,1]},

then P is a cone in C[0,1]. ϕ is called to be a positive solution of (1)–(i) if ϕ ∈ C[0,1] ∩
C2(0,1), ϕ(x) > 0, x ∈ (0,1) and satisfies (1)–(i) (i = 2,3,4,5).

Suppose that

(H1)
∑m−2

i=1 ai < 1.

(H2) h : (0,1) → [0,+∞) is continuous, h(x) �≡ 0, and

1∫
0

h(x)dx < +∞. (6)

(H3) f : [0,+∞) → [0,+∞) is continuous.

We first consider (1)–(2) and let

k(x, y) =
{

x(1 − y), 0 � x � y � 1,

y(1 − x), 0 � y � x � 1.
(7)

Denote under (H1)

K(x, y) = k(x, y) + x

(
1 −

m−2∑
i=1

aiξi

)−1 m−2∑
i=1

aik(ξi, y), 0 � x, y � 1. (8)

Set

(Aϕ)(x) =
1∫

0

K(x,y)h(y)f
(
ϕ(y)

)
dy, x ∈ [0,1]. (9)

It follows from [10] that if (H1)–(H3) are satisfied, A :P → P is completely continuous and
that if A has a fixed point ϕ �= θ , then ϕ is the positive solution of (1)–(2).

Let δ = ∑m−2
i=1 ai . It is easy to see that ∀x, y ∈ [0,1],

0 � k(x, y) � K(x,y) � 1

4
+ δ

1 − δ
� σ1. (10)

Take τ ∈ (0, 1
2 ) such that h(x) �≡ 0, x ∈ [τ,1 − τ ]. Obviously,

k(x, y) � τk(y, y), x ∈ [τ,1 − τ ], y ∈ [0,1], (11)

and k(x, x) � τ(1 − τ), ∀x ∈ [τ,1 − τ ]. Denote

σ2 = 1

τ 2(1 − τ)
, h0 =

1∫
0

h(x)dx, hτ =
1−τ∫
τ

h(x) dx. (12)

It is easy to see that σ1 � 1
4 , σ2 > 8, h0h

−1
τ � 1, thus h0h

−1
τ σ1σ2 > 2.

Theorem 2. Suppose that (H1)–(H3) are satisfied. If there exist 0 < d < a < c (c > h0h
−1
τ σ1σ2a)

such that
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f (u) < dh−1
0 σ−1

1 , ∀0 � u � d, (13)

f (u) � σ2h
−1
τ ε0a, ∀d � u � c, (14)

f (u) � σ2h
−1
τ a, ∀a � u � c, (15)

where ε0 � 1 with ε0h0h
−1
τ σ1σ2a < c, then (1)–(2) has at least three nonnegative solutions in

which there are at least two positive solutions.

Proof. Let l = 0, m = 1 and for ϕ ∈ P ,

α(ϕ) = min
τ�x�1−τ

ϕ(x), ψ(ϕ) ≡ 0, γ (ϕ) = β(ϕ) = θ(ϕ) = ‖ϕ‖.
It is easy to see that γ,β, θ are nonnegative continuous convex functionals on P and α,ψ are
nonnegative continuous concave functionals on P . Moreover, α(ϕ) � β(ϕ) and ‖ϕ‖ � mγ (ϕ)

for ϕ ∈ P . In the following we shall show that the conditions in Theorem 1 are satisfied with
b = c.

Clearly we have{
ϕ ∈ P(γ, θ,α, a, b, c): α(ϕ) > a

} =
{
ϕ ∈ P : min

τ�x�1−τ
ϕ(x) > a, ‖ϕ‖ � c

}
�= ∅.

From (11), (12) and (15) we have that for ϕ ∈ P(γ, θ,α, a, b, c),

α(Aϕ) = min
τ�x�1−τ

(Aϕ)(x) = min
τ�x�1−τ

1∫
0

K(x,y)h(y)f
(
ϕ(y)

)
dy

� τ

1−τ∫
τ

k(y, y)h(y)f
(
ϕ(y)

)
dy > τ 2(1 − τ)

1−τ∫
τ

h(y) · σ2h
−1
τ a dy = a. (16)

Therefore (i) holds.
It is obvious that{

ϕ ∈ Q(γ,β,ψ, l, d, c): β(ϕ) < d
} = {

ϕ ∈ P : ‖ϕ‖ < d
} �= ∅.

It follows from (10) and (13) that for ϕ ∈ Q(γ,β,ψ, l, d, c),

β(Aϕ) = ‖Aϕ‖ = max
0�x�1

1∫
0

K(x,y)h(y)f
(
ϕ(y)

)
dy � σ1

1∫
0

h(y)f
(
ϕ(y)

)
dy < d.

Thus (ii) is true.
Since

P(γ,α, a, c) =
{
ϕ ∈ P : min

τ�x�1−τ
ϕ(x) � a, ‖ϕ‖ � c

}
,

we have α(Aϕ) > a for ϕ ∈ P(γ,α, a, c) according to (16). This means that (iii) is satisfied.
As far as (iv) is concerned, we notice that ψ(Aϕ) < l = 0 is impossible.
By Theorem 1, A has at least three fixed points ϕ1, ϕ2 and ϕ3 in P satisfying

‖ϕ1‖ < d, min
τ�x�1−τ

ϕ2(x) > a, d < ‖ϕ3‖, min
τ�x�1−τ

ϕ3(x) < a.

Therefore, (1)–(2) has at least three nonnegative solutions in which there are at least two positive
solutions. �
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Example 1. Let h(x) = 1√
x(1−x)

,

f (u) =

⎧⎪⎨
⎪⎩

1
5π

(3 − u), 0 � u < 1,

2
5π

(319u − 318), 1 � u < 2,

4
15π

(u + 478), u � 2.

Then the singular three-point boundary value problem{
ϕ′′(x) + h(x)f (ϕ(x)) = 0, 0 < x < 1,

ϕ(0) = 0, ϕ(1) = 1
2ϕ(η), 0 < η < 1,

(17)

has at least three positive solutions.

Proof. Obviously, h(x) is singular at both x = 0 and x = 1 and (H2) is satisfied by the properties
of Euler integral.

Choose τ = 1
4 and take d = 1, a = 2, c = 242, ε0 = 3

2 in Theorem 2. It is easy to verify that
the conditions in Theorem 2 are satisfied. By Theorem 2 and f (0) > 0, we know that the singular
three-point boundary value problem (17) has at least three positive solutions. �

For the case subject to the other boundary value conditions, we obtain the same existence re-
sults of multiple positive solutions as in Theorem 2. In the following we point out the differences
briefly.

For the case subject to the boundary value condition (3), let

K1(x, y) = k(x, y) + (1 − x)

(
1 −

m−2∑
i=1

ai(1 − ξi)

)−1 m−2∑
i=1

aik(ξi, y),

0 � x, y � 1, (18)

where k(x, y) is defined by (7).
For the case subject to the boundary value condition (4), let

k∗(x, y) =
{

1 − y, 0 � x � y � 1,

1 − x, 0 � y � x � 1,
(19)

K2(x, y) = k∗(x, y) +
(

1 −
m−2∑
i=1

ai

)−1 m−2∑
i=1

aik
∗(ξi, y), 0 � x, y � 1. (20)

Take σ1 = 1 + δ
1−δ

, σ2 = 1
τ 2 .

For the case subject to the boundary value condition (5), let

k∗∗(x, y) =
{

x, 0 � x � y � 1,

y, 0 � y � x � 1,
(21)

K3(x, y) = k∗∗(x, y) +
(

1 −
m−2∑
i=1

ai

)−1 m−2∑
i=1

aik
∗∗(ξi, y), 0 � x, y � 1. (22)

Take σ1 = 1 + δ , σ2 = 1
2 .
1−δ τ
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Example 2. Let h(x) = 1√
x(1−x)

,

f (u) =

⎧⎪⎨
⎪⎩

1
12π

(4 − u), 0 � u < 1,

1
4π

(383u − 382), 1 � u < 2,

1
6π

(u + 574), u � 2.

Then the singular three-point boundary value problem{
ϕ′′(x) + h(x)f (ϕ(x)) = 0, 0 < x < 1,

ϕ′(0) = 0, ϕ(1) = 1
2ϕ(η), 0 < η < 1,

(23)

has at least three positive solutions.

Proof. Choose τ = 1
4 and take d = 1, a = 2, c = 290, ε0 = 3

2 in Theorem 2 for the version that
is in the case of (1)–(4). It is easy to verify that the conditions in the theorem are satisfied. By
Theorem 2 and f (0) > 0, we know that the singular three-point boundary value problem (23)
has at least three positive solutions. �
Acknowledgments

The authors express their gratitude to the referees for their valuable comments and suggestions.

References

[1] R.I. Avery, A generalization of the Leggett–Williams fixed point theorem, Math. Sci. Res. Hot-line 2 (1998) 9–14.
[2] R. Avery, J. Henderson, Three symmetric positive solutions for a second order boundary value problem, Appl. Math.

Lett. 13 (2000) 1–7.
[3] Z. Bai, Y. Wang, W. Ge, Triple positive solutions for a class of two-point boundary-value problems, Electron.

J. Differential Equations 6 (2004) 1–8.
[4] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988.
[5] X. He, W. Ge, Triple solutions for second-order three-point boundary value problems, J. Math. Anal. Appl. 268

(2002) 256–265.
[6] J. Henderson, H. Thompson, Multiple symmetric positive solutions for a second order boundary value problem,

Proc. Amer. Math. Soc. 128 (2000) 2373–2379.
[7] R.W. Leggett, L.R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indi-

ana Univ. Math. J. 28 (1979) 673–688.
[8] P. Wong, Triple positive solutions of conjugate boundary value problems, Comput. Math. Appl. 36 (1998) 19–35.
[9] P. Wong, Triple positive solutions of conjugate boundary value problems II, Comput. Math. Appl. 40 (2000) 537–

557.
[10] G. Zhang, J. Sun, Positive solutions of m-point boundary value problems, J. Math. Anal. Appl. 291 (2004) 406–418.


