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Abstract

We obtain multiple positive solutions of multiparameter semipositone p-Laplacian problems using the sub- and supersolution
method and the mountain pass lemma.
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1. Introduction

We consider the problem⎧⎨
⎩

−�pu = λf (x,u) + μg(x,u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω ⊂ R
n, n � 1, is a bounded domain with the boundary ∂Ω ∈ C2, �pu = div(|∇u|p−2∇u) is the p-Laplacian

of u, 1 < p < ∞, λ > 0 and μ ∈ R are parameters, and f and g are Carathéodory functions on Ω × (0,∞) such that∣∣f (x, t)
∣∣ � a1t

q−1 + a2 (1.2)

for some 1 � q < p and constants a1, a2 � 0,

f (x, t) � a3, t � t1, (1.3)

for some a3, t1 > 0, and g is bounded on bounded sets. We make no assumptions about the signs of f (x,0) and
g(x,0) and hence allow the semipositone case λf (x,0) + μg(x,0) < 0.
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In the semilinear case p = 2, Caldwell, Shivaji, and Zhu [2] studied the evolution of solution curves of (1.1) as
λ,μ > 0 vary for the ODE case n = 1. For some related results in the case p = 2 and n � 2 see Caldwell [1]. Here we
seek weak solutions in the general quasilinear case 1 < p < ∞, n � 1.

Recall that a weak solution of (1.1) is a positive function u in the Sobolev space W
1,p

0 (Ω) satisfying∫
Ω

|∇u|p−2∇u · ∇v − (
λf (x,u) + μg(x,u)

)
v = 0 ∀v ∈ W

1,p

0 (Ω). (1.4)

Bounded weak solutions are of class C1,α(Ω) for some α > 0 by Lieberman [4], and every weak solution is bounded
by Guedda and Véron [3] if g grows at most critically.

Our first result imposes no growth restrictions on g.

Theorem 1.1. There is λ0 > 0 such that for each λ � λ0, there is m(λ) > 0 for which (1.1) has a C1,α(Ω) solution
whenever |μ| � m(λ).

Denote by

p∗ =
{

np/(n − p), n > p,

∞, n � p,
G(x, t) =

t∫
0

g(x, s) ds (1.5)

the critical Sobolev exponent and the primitive of g, respectively.

Theorem 1.2. Let λ0 be as in Theorem 1.1. Then for each λ � λ0, there is m̃(λ) ∈ (0,m(λ)) for which (1.1) has two
C1,α(Ω) solutions whenever 0 < μ � m̃(λ) in the following cases:

(i) g is subcritical and p-superlinear∣∣g(x, t)
∣∣ � a4t

r−1 + a5 (1.6)

for some 1 � r < p∗ and a4, a5 � 0 and

0 < θG(x, t) � tg(x, t), t � t2, (1.7)

for some θ > p and t2 > 0,

(ii) n > p and g(x, t) = tp
∗−1.

Example 1.3. The problem⎧⎨
⎩

−�pu = λ(uq−1 − 1) + μur−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

(1.8)

with 1 � q < p, r � 1, and large λ > 0 has

(i) a solution if |μ| is small,
(ii) two solutions if p < r � p∗ and μ > 0 is small.

2. Proofs

We begin by constructing a positive subsolution. Let λ1 > 0 and 0 < ϕ1 � 1 be the first Dirichlet eigenvalue of
−�p on Ω and the corresponding eigenfunction, respectively. By (1.2) and (1.3), f � −a6 for some a6 > 0. Let

1 < β <
p

p − 1
, a7 >

λ1a6β
p−1

a3
, cλ =

(
λa6 + 1

a7

) 1
p−1

, u = cλϕ
β

1 . (2.1)
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Lemma 2.1. u is a subsolution of (1.1) for λ sufficiently large and |μ| small.

Proof. We have

−�pϕ
β

1 = βp−1
(

λ1ϕ
β(p−1)

1 − (β − 1)(p − 1)
|∇ϕ1|p

ϕ
1−(β−1)(p−1)

1

)
. (2.2)

Since ϕ1 = 0 and ∇ϕ1 �= 0 on ∂Ω , in some neighborhood Ω ′ ⊂ Ω of ∂Ω the right-hand side of (2.2) is � −a7 and
hence

−�pu � −c
p−1
λ a7 = −(λa6 + 1) � λf (x,u) − 1. (2.3)

On Ω \ Ω ′, ϕ1 � a8 for some a8 > 0 and hence

−�pu � λ1(cλβ)p−1 = λ1(λa6 + 1)βp−1

a7
� λa3 − 1 � λf (x,u) − 1 (2.4)

for λ so large that the second inequality holds, which is possible by the choice of a7, and cλa
β

8 � t1. Now take |μ| so
small that |μg(x,u)| � 1. �
Proof of Theorem 1.1. Let s > 1/(p − q), ψ be the solution of{−�pψ = 1 in Ω,

ψ = 0 on ∂Ω,
(2.5)

and ū = λsψ . For λ large and |μ| small,

−�pū = λs(p−1) � λ
(
a1λ

s(q−1)ψq−1 + a2
) + 1 � λf (x, ū) + μg(x, ū) (2.6)

by (1.2) and hence ū is a supersolution of (1.1), and

−�pū � λ1(λa6 + 1)βp−1

a7
� −�pu (2.7)

and hence ū � u by the weak comparison principle. A standard argument now gives a solution in the order interval
[u, ū]. �
Proof of Theorem 1.2. Let u be the subsolution constructed in Theorem 1.1.

(i) Let

f̃ (x, t) =
{

f (x, t), t � u(x),

f (x,u(x)), t < u(x),
g̃(x, t) =

{
g(x, t), t � u(x),

g(x,u(x)), t < u(x)
(2.8)

and consider the problem{−�pu = λf̃ (x,u) + μg̃(x,u) in Ω,

u = 0 on ∂Ω.
(2.9)

Weak solutions of (2.9) are � u by the weak comparison principle, and hence also solve (1.1), and coincide with the
critical points of the C1 functional

Φ(u) =
∫
Ω

1

p
|∇u|p − λF̃ (x,u) − μG̃(x,u), u ∈ W = W

1,p

0 (Ω), (2.10)

where

F̃ (x, t) =
t∫

0

f̃ (x, s) ds, G̃(x, t) =
t∫

0

g̃(x, s) ds. (2.11)

By (1.7), Φ satisfies the Palais–Smale compactness condition (PS).
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By (1.2), (1.6), and the Sobolev imbedding theorem,

Φ(u) � 1

p
‖u‖p − aλ

(‖u‖q + 1
) − μa9

(‖u‖r + 1
)

(2.12)

for some aλ, a9 > 0, so

inf
∂BR

Φ > 0, (2.13)

where BR = {u ∈ W : ‖u‖ < R}, for sufficiently large R > 0 and small μ. Since Φ(0) = 0, by weak lower semiconti-
nuity Φ attains its minimum on BR at a level � 0 and hence at a point in BR , which then is a local minimizer.

By (1.7),

G̃(x, t) � a10t
θ − a11 (2.14)

for some a10, a11 > 0, so Φ(t3ϕ1) < 0 for sufficiently large t3 > R/‖ϕ1‖. Now the mountain pass lemma gives a
second critical point at the level

c = inf
γ∈Γ

max
u∈γ ([0,1])

Φ(u) � inf
∂BR

Φ, (2.15)

where Γ = {γ ∈ C([0,1],W): γ (0) = 0, γ (1) = t3ϕ1} is the class of paths in W joining 0 and t3ϕ1.
(ii) Let γ0 be the line segment joining 0 and t3ϕ1 and Φ0 be the functional obtained by setting μ = 0 in Φ . Since

μ > 0 and G̃(x, t) � 0 for t � 0,

c � max
u∈γ0([0,1])

Φ(u) � max
u∈γ0([0,1])

Φ0(u) = c0. (2.16)

By Proposition 3.4 of Silva and Xavier [5], Φ satisfies the (PS) condition at all levels � c0 for sufficiently small μ, so
the conclusion follows as before. �
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