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Abstract

We obtain the strong asymptotics for the sequence of monic polynomials minimizing the norm

‖q‖S =
(

N∑
k=0

∥∥q(k)
∥∥2
k

)1/2

,

where ‖ · ‖k , k = 0, . . . ,N − 1, are L2 norms with respect to measures supported on the same rectifiable Jordan closed curve or
arc Γ , and ‖ · ‖N is the L2 norm corresponding to a weight supported on Γ , which satisfies the Szegő condition, plus mass points
in the unbounded connected component of C \ Γ .
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1. Introduction

Let Γ be an arc or a closed rectifiable Jordan curve in the complex plane. For simplicity, we assume that the
parametrization of Γ with respect to the arc length is a complex valued function f defined on an interval [a, b] ⊂ R.
We assume that Γ ∈ C2+; that is, f has second derivative which satisfies the Lipschitz condition∣∣f ′′(x) − f ′′(y)

∣∣ � C|x − y|α,

for some constants C,α > 0 and for all x, y ∈ [a, b].
By Ω we denote the unbounded connected component of C \ Γ . Throughout this paper we assume that

{z1, . . . , zm} ⊂ Ω is a finite set of points, and {μk}Nk=0 a set of N + 1 finite positive Borel measures supported on Γ ,
where μN is such that dμN(ξ) = ρN(ξ)|dξ |. On the vector space of polynomials P, we consider the inner products

〈p,q〉k =
∫
Γ

p(ξ)q(ξ) dμk(ξ), k = 0, . . . ,N − 1, (1)

〈p,q〉N =
∫
Γ

p(ξ)q(ξ)ρN(ξ)|dξ | + p(Z)Aq(Z)∗,

p(Z) = (
p(z1), . . . , p

(d1)(z1),p(z2), . . . , p
(d2)(z2), . . . , p(zm), . . . ,p(dm)(zm)

)
, (2)

and

〈p,q〉S =
N∑

k=0

〈
p(k), q(k)

〉
k
, (3)

where p(k) denotes the kth derivative of p, p(Z)∗ is the transposed conjugate vector of p(Z), and A is a hermitian
positive definite matrix of order M = m + ∑m

i=1 di . The norms corresponding to (1), (2), and (3) on P are denoted
‖ · ‖k , ‖ · ‖N , and ‖ · ‖S , respectively. (3) is called a Sobolev inner product and (2) a discrete Sobolev inner product.
Notice that only derivatives of order � N are evaluated at the points zk , k = 1, . . . ,m, in (3). The nth monic orthogonal
polynomial with respect to the inner product (3) is the unique polynomial Qn of degree n and leading coefficient equal
to 1, such that

κn = ‖Qn‖2
S = inf

{‖q‖2
S : q(z) = zn + · · ·}. (4)

In the past two decades, the study of the algebraic and asymptotic properties of sequences of Sobolev orthogonal
polynomials has attracted much attention. Let us mention some results related with special cases of (3) dealing with
general classes of measures.

For N = 0, in [4] the authors study the limit of the sequence {Qn/Pn}, n ∈ N, where {Pn}, n ∈ N, is the sequence
of monic orthogonal polynomials with respect to μ0 and μ′

0 > 0 on its support consisting of a bounded interval of R.
In [1], the authors consider a similar problem for general measures μ0 in the Szegő class supported on an arc or a
closed rectifiable Jordan curve in C.

When N > 0 and A ≡ 0 (known as the continuous case) the strong asymptotic of Sobolev orthogonal polynomials
and their first derivative (N = 1) was studied in [5] assuming that μ0 and μ1 belong to the Szegő class. A natural
extension when N > 1 was given in [6].

In this work, we extend the results on strong asymptotics contained in the papers mentioned above. To this aim,
we compare the norms and the monic orthogonal polynomials Qn with respect to the general inner product (3) with
the norms and the monic orthogonal polynomials with respect to (2).

Let μ be a finite positive Borel measure supported on Γ and μ = ρ(ξ)|dξ | + μs its Lebesgue decomposition on Γ

with respect to |dξ |. We say that μ satisfies the Szegő condition on Γ , and we write μ ∈ S(Γ ), if∫ (
logρ(ξ)

)∣∣Φ ′(ξ)
∣∣|dξ | > −∞, (5)
Γ
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where Φ is the conformal mapping of Ω onto the exterior of the unit circle such that

Φ(∞) = ∞, Φ ′(∞) = lim
z→∞

Φ(z)

z
= 1

C(Γ )
> 0.

C(Γ ) is the logarithmic capacity of Γ . In particular, (5) implies that ρ > 0 almost everywhere on Γ . If μ is absolutely
continuous with respect to |dξ | and verifies (5), we write ρ ∈ S(Γ ), and use ρ in place of μ in the notation of norms
and polynomials.

Set

τn = ‖Ln‖2
N = inf

Rn(z)=zn+··· ‖Rn‖2
N, (6)

where Ln(z) = zn + · · · . Our first result establishes the asymptotic behavior of the Sobolev norms (4).

Theorem 1. Let {μk}N−1
k=0 be a set of N finite positive Borel measures supported on Γ ∈ C2+, dμN(ξ) = ρN(ξ)|dξ |,

with ρN ∈ S(Γ ), and {z1, . . . , zm} ⊂ Ω a fixed set of points. Then

lim
n→∞

κn

n2Nτn−N

= 1. (7)

Consider the extremal problem

ν∗(ρN) = min
f ∈H̃

‖f ‖2
H 2(Ω,ρN )

= ‖F∗‖2
H 2(Ω,ρN )

, (8)

where H̃ = {f ∈ H 2(Ω,ρN): f (∞) = 1, f (j)(zi) = 0, j = 0, . . . , di, i = 1, . . . ,m} (see Section 2 for the definition
of H 2(Ω,ρN)). Standard arguments show that a minimizing function F∗ ∈ H̃ exists and is unique. Notice that

(F∗)(j)(zi) = 0, j = 0, . . . , di, i = 1, . . . ,m. (9)

The function F∗ allows to describe the asymptotic behavior of the N th derivative of the polynomials Qn.
By limn→∞ ϕn = ϕ in Ω , we denote local uniform convergence in the region Ω of the sequence of functions

{ϕn}n∈N as n → ∞ (i.e. uniform convergence on each compact subset of Ω).

Theorem 2. Under the assumptions of Theorem 1, we have

Q(N)
n (z) = nN

[
C(Γ )Φ(z)

]n−NF∗(z)
(
1 + εn(z)

)
, (10)

where limn→∞ εn = 0 in Ω . Equivalently,

lim
n→∞

Q
(N)
n (z)

nNLn−N(z)
= 1 in Ω. (11)

Notice that the asymptotic behavior of {Q(N)
n } only depends on the weight ρN and the interaction matrix A. Some of

the measures μk , k = 0, . . . ,N − 1, may even be zero as long as 〈·,·〉S is an inner product in the space of polynomials.
If we assume additionally that the measures {μk}N−1

k=0 satisfy the Szegő condition on Γ , the asymptotic behavior of
the polynomials Qn and all its derivatives can be described as follows:

Theorem 3. If μj ∈ S(Γ ), j = 0, . . . ,N , and μN is absolutely continuous, then for k ∈ Z+

Q(k)
n (z) = nk C(Γ )n−NΦ(z)n−k

(Φ ′(z))N−k
F∗(z)

(
1 + εn(z)

)
, (12)

where limn→∞ εn = 0 in Ω . Equivalently, for k ∈ Z+

lim
n→∞

Q
(k)
n (z)

nkLn−k(z)
= 1

([C(Γ )Φ]′(z))N−k
in Ω. (13)
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From (9), (12), and Hurwitz’ theorem, the asymptotic behavior of the zeros of the polynomials Qn is derived. Let
G = C \ Ω ; therefore, G is an open connected set if Γ is a closed curve, and it is empty if Γ is an arc.

Corollary 1. Under the assumptions of Theorem 3, for n sufficiently large, each point zi , i = 1, . . . ,m, attracts exactly
di + 1 zeros of Qn. The rest of the zeros accumulate on Γ ∪ G.

The paper is organized as follows. The next section, includes the definitions and auxiliary results needed in the
sequel. Section 3 is dedicated to the proof of Theorem 1. Finally, Section 4 contains the proof of Theorems 2 and 3.

2. Definitions and auxiliary results

In order to give a unified treatment to the cases of an arc and a closed curve, we will consider a rectifiable Jordan
arc as a two sided cut of the complex plane. If Γ is an arc and g is an analytic function in Ω with boundary values
almost everywhere on Γ (with respect to the Lebesgue measure) when we approach the arc from each side, we denote
by g+(ξ) and g−(ξ) the two boundary values of g at a given point ξ ∈ Γ .

If g+ and g− are integrable on Γ with respect to the weight ρ, we define∮
Γ

g(ξ)ρ(ξ)|dξ | =
∫
Γ

g+(ξ)ρ(ξ)|dξ | +
∫
Γ

g−(ξ)ρ(ξ)|dξ |.

When Γ is a closed curve and g is analytic on Ω with boundary values g(ξ) for almost all ξ ∈ Γ , we define∮
Γ

g(ξ)ρ(ξ)|dξ | =
∫
Γ

g(ξ)ρ(ξ)|dξ |.

Assume that μ is a finite positive Borel measure supported on Γ ∈ C2+ and dμ = ρ(ξ)|dξ |, ρ ∈ S(Γ ). Let Pn(ρ; z)
denote the nth monic orthogonal polynomial with respect to ρ, and

λn(ρ) =
∫
Γ

∣∣Pn(ρ; ξ)
∣∣2

ρ(ξ)|dξ | = inf
p(z)=zn+···

∫
Γ

∣∣p(ξ)
∣∣2

ρ(ξ)|dξ |. (14)

Set Γr = Φ−1({w ∈ C: |w| = r}), r > 1. Since Γ ∈ C2+, by Carathéodory’s theorem (see [7, Chapter 2]), Φ and
Φ−1 have one-to-one continuous extensions to the boundary of their respective domains of definition (considering in
the case that Γ is an arc that it has two sides) and |Φ(ξ)| = 1 (|Φ±(ξ)| = 1 if Γ is an arc) for all ξ ∈ Γ .

Since ρ ∈ S(Γ ), there exists a unique function D(ρ; ·) analytic on Ω satisfying:

(1) for all z ∈ Ω , D(ρ; z) 
= 0,
(2) D(ρ;∞) > 0,
(3) for almost all ξ ∈ Γ , D(ρ; ·) has non-tangential limit D(ρ; ξ) (D+(ρ; ξ), D−(ρ; ξ) if Γ is an arc) and |D(ρ; ξ)| =

ρ(ξ) (|D±(ρ; ξ)| = ρ(ξ)).

If g(z;∞) = log|Φ(z)| denotes the Green function of Ω with singularity at infinity, and ∂/∂η denotes the exterior
normal derivative to Γ , then

D(ρ;∞) = exp

{
1

2π

∮
Γ

logρ(ξ)
∂g(ξ ;∞)

∂η
|dξ |

}
. (15)

An analytic function f on Ω is said to belong to E1(Ω), if

sup
r>1

∮
Γr

∣∣f (z)
∣∣|dz| < ∞.

By H 2(Ω,ρ) we denote the space of analytic functions f on Ω such that f 2D(ρ, ·) ∈ E1(Ω).
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Each f ∈ H 2(Ω,ρ) has a non-tangential limit f (ξ) (f+(ξ), f−(ξ) if Γ is an arc) at almost all ξ ∈ Γ . Moreover,
f (ξ) ∈ L2(ρ), (f+(ξ), f−(ξ) ∈ L2(ρ)). The inner product

〈f,g〉H 2(Ω,ρ) =
∮
Γ

f (ξ)g(ξ)ρ(ξ)|dξ |, (16)

makes H 2(Ω,ρ) a Hilbert space. By the Riesz representation theorem it follows that there exists (see [8, §7]) a
function K(t, z), called Szegő reproducing kernel, such that for any f ∈ H 2(Ω,ρ)

f (z) = 〈
f,K(., z)

〉
H 2(Ω,ρ)

, z ∈ Ω. (17)

Let ‖ · ‖H 2(Ω,ρ) be the norm induced by (16). The extremal property (14) of the polynomials Pn(ρ; ·) motivates the
following extremal problem:

ν(ρ) = min
{‖f ‖2

H 2(Ω,ρ)
: f ∈ H 2(Ω,ρ), f (∞) = 1

}
. (18)

It has a unique minimizing function, which we denote by F , satisfying additionally (see [8, §6 and §7])

F2(z) = Φ ′(z)D(ρ;∞)

D(ρ; z) , z ∈ Ω,

ν(ρ) = 2πD(ρ;∞)C(Γ ), (19)

F(z) = ν(ρ)K(z,∞), z ∈ Ω. (20)

The function F and the extremal constant ν(ρ) are intimately connected with the asymptotic properties of the orthog-
onal polynomials Pn(ρ; ·). In fact,

lim
n→∞

λn(ρ)

C(Γ )2n
= ν(ρ), (21)

Pn(ρ; z) = [
C(Γ )Φ(z)

]nF(z)
(
1 + εn(z)

)
, (22)

where limn→∞ εn = 0 in Ω .
In [1], the following extremal problem is considered

ν∗(ρ) = min
f ∈H̃

‖f ‖2
H 2(Ω,ρ)

, (23)

where H̃ = {f ∈ H 2(Ω,ρ): f (∞) = 1, f (j)(zi) = 0, j = 0, . . . , di, i = 1, . . . ,m}. Let F∗ be the extremal function
for the problem (23). There exists a close connection between the extremal constants and functions of problems (18)
and (23) (see [2,3]). In fact,

F∗(z) = B(z)F(z), (24)

ν∗(ρ) = ν(ρ)

m∏
i=1

∣∣Φ(zi)
∣∣2(di+1)

, (25)

where

B(z) =
m∏

i=1

(
Φ(z) − Φ(zi)

Φ(z)Φ(zi) − 1

|Φ(zi)|2
Φ(zi)

)di+1

has the following properties:

(1) B ∈ H 2(Ω,ρ), B(∞) = 1,
(2) B(j)(zi) = 0, j = 0, . . . , di , i = 1, . . . ,m,
(3) |B(ξ)| = ∏m

i=1 |Φ(zi)|di+1, ξ ∈ Γ (|B±(ξ)| = ∏m
i=1 |Φ(zi)|di+1, if Γ is an arc).

The authors of [1] prove that

lim
n→∞

λn(ρ)

τn

=
m∏∣∣Φ(zi)

∣∣−2(di+1)
, (26)
i=1
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and the relation of the extremal function F∗ and constant ν∗(ρ) with the asymptotic behavior of the orthogonal
polynomials Ln with respect to (3) with N = 0 is

lim
n→∞

τn

C(Γ )2n
= ν∗(ρ), (27)

Ln(z) = [
C(Γ )Φ(z)

]nF∗(z)
(
1 + εn(z)

)
, (28)

where limn→∞ εn = 0 in Ω .
Notice that the asymptotic formulas (27) and (28) coincide in form with those given in (21) and (22) for λn(ρ) and

Pn(ρ, ·), respectively, only the extremal constant and function change.
The following result shows that for functions in H 2(Ω,ρ), estimates of Γ in the L2 norm imply estimates on

K ⊂ Ω in the uniform norm (see [8, Corollary 7.4]).

Lemma 1. Let K ⊂ Ω be a compact set and ρ ∈ S(Γ ). Then, there exists a constant A(K), which only depends on K ,
such that for all f ∈ H 2(Ω,ρ)

max
z∈K

∣∣f (z)
∣∣2 � A(K)‖f ‖2

H 2(Ω,ρ)
.

3. Asymptotics of the Sobolev norms

We begin establishing two auxiliary results needed for the proof of (7) in Theorem 1.
Let P

∗ be the family of monic polynomials in P. Fix a point ξ0 ∈ Γ and consider the mapping Π : P
∗ → P

∗ given
by

R(z) = zn + · · · ⇒ Π(R)(z) := (n + 1)

z∫
ξ0

R(ξ)dξ,

that is, Π(R) is the monic primitive of the monic polynomial R that vanishes at ξ0. Now, define Π0 = I (the identity
operator on P∗), Πk = Π ◦ Πk−1, k ∈ N. If R(z) = zn + · · · , then deg(Πk(R)) = n + k and for each j ∈ {0, . . . , k}

Π
(j)
k (R)(z) = (n + k)!

(n + k − j)!Πk−j (R)(z). (29)

Lemma 2. Let μ be a finite positive Borel measure supported on Γ , dμ(ξ) = ρ(ξ)|dξ |, ω a monic polynomial whose
zeros lie in C \ Γ , degω = M , W = |ω|2 and Pn = Pn(Wρ; ·) the nth monic orthogonal polynomial with respect to
the measure Wρ|dξ |. If 1/ρ ∈ L1(Γ ), then for each k ∈ N, the sequence of polynomials

αn,k(z) := n!
(n + k)!

Πk(ωPn−M)(z)√
λn−M(Wρ)

, n ∈ N, n > M, (30)

is uniformly bounded on Γ and tends to zero for all z ∈ Γ as n → ∞.

Proof. Let l be the length of Γ and ξ = ξ(t), t ∈ [0, l], ξ(0) = ξ(l) = ξ0, ξ0 ∈ Γ , be the parametrization of Γ with
respect to the arc length. If z ∈ Γ ,

αn,1(z) := 1

n + 1

Π1(ωPn−M)(z)√
λn−M(Wρ)

=
∫

Λ(z)

ω(ξ)pn−M(ξ)dξ =
s∫

0

ω
(
ξ(t)

)
pn−M

(
ξ(t)

)
ξ ′(t) dt,

where Λ(z) = ξ [0, s] denotes the arc along Γ from ξ0 to z, following the orientation given by the parametrization,
and pn = pn(Wρ; ·) is the nth orthonormal polynomial with respect to the measure Wρ|dξ |.

If 1Λ(z) is the characteristic function of Λ(z), then

αn,1(z) =
∫

[0,l]
1Λ(z)

(
ξ(t)

)W(ξ(t))ρ(ξ(t))

ω(ξ(t))ρ(ξ(t))
pn−M

(
ξ(t)

)
ξ ′(t) dt =

∫
Γ

f (z; ξ)pn−M(ξ)W(ξ)ρ(ξ)|dξ |

= 〈
f (z; ·),pn−M

〉
L2(Wρ), (31)
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where

f (z; ξ) = 1Λ(z)(ξ)ξ ′(t)
ω(ξ)ρ(ξ)

, ξ ∈ Γ.

Thus, αn,1(z) is the conjugate of the (n − M)th Fourier coefficient of f (z; ·) with respect to the orthonormal system
{pn} in L2(Wρ). Since 1/ρ ∈ L1(Γ ), then for all z ∈ Γ ,∥∥f (z; ·)∥∥2

L2(Wρ)
=

∫
Γ

∣∣f (z; ξ)
∣∣2

W(ξ)ρ(ξ)|dξ | �
∥∥∥∥ 1

ρ

∥∥∥∥
L1(Γ )

. (32)

Using (31), (32), and the Bessel inequality, we obtain

∣∣αn,1(z)
∣∣ �

∥∥f (z; ·)∥∥
L2(Wρ)

�
∥∥∥∥ 1

ρ

∥∥∥∥1/2

L1(Γ )

, z ∈ Γ, n > M,

lim
n→∞αn,1(z) = 0, z ∈ Γ,

which establishes Lemma 2 for k = 1. For the case of k � 2 one can proceed by induction making use of the identity

αn,k+1(z) =
z∫

ξ0

αn,k(x) dx, n, k ∈ N, n > M, z ∈ C,

and the Lebesgue dominated convergence theorem. �
For what follows, we fix the notation

ω(z) =
m∏

i=1

(z − zi)
di+1, M = degω = m +

m∑
i=1

di, W = |ω|2. (33)

Lemma 3. Assume that the assumptions of Theorem 1 are satisfied and let Pn = Pn(WρN ; ·) be the nth monic orthog-
onal polynomials with respect to the measure WρN |dξ |, with W given in (33). Then

lim sup
n→∞

κn

n2Nλn−N−M(WρN)
� 1, (34)

where κn = ‖Qn‖2
S and λn(WρN) = ‖Pn‖2

L2(WρN |dξ |).

Proof. Let us assume initially that 1
ρN

∈ L1(Γ ). By the extremal property of Qn, we have

κn = ‖Qn‖2
S �

N−1∑
k=0

∥∥(
ΠN(ωPn−N−M)

)(k)∥∥2
k
+ ∥∥(

ΠN(ωPn−N−M)
)(N)∥∥2

N

�
N−1∑
k=0

[
n!

(n − k)!
]2∥∥ΠN−k(ωPn−N−M)

∥∥2
k
+

[
n!

(n − N)!
]2

‖ωPn−N−M‖2
N.

Hence[
(n − N)!

n!
]2

κn

λn−N−M(WρN)
�

N−1∑
k=0

[
(n − N)!
(n − k)!

]2 ‖ΠN−k(ωPn−N−M)‖2
k

λn−N−M(WρN)
+ 1,

and

κn

n2Nλn−N−M(WρN)
�

N−1∑
‖αn−N,N−k‖2

k + 1.
k=0
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From Lemma 2 and the Lebesgue dominated convergence theorem, it follows that

lim
n→∞‖αn−N,N−k‖2

k = 0, k = 0, . . . ,N − 1.

Consequently, we have (34) when 1/ρN ∈ L1(Γ ).
Now, assume that the weight ρN ∈ S(Γ ) is arbitrary. Take a constant δ > 0 (to be fixed later) and define ρ̃N (ξ) =

ρN(ξ) + δ. Let P̃n = P̃n(Wρ̃N ; ·) be the nth monic orthogonal polynomial with respect to the measure dμ̃(ξ) =
W(ξ)ρ̃N (ξ)|dξ |, and let α̃n,k be the sequence defined in (30) corresponding to the measure μ̃. Then

κn

n2Nλn−N−M(WρN)
�

[
N−1∑
k=0

‖α̃n−N,N−k‖2
k + 1

]
λn−N−M(Wρ̃N)

λn−N−M(WρN)
. (35)

But 1/ρ̃N ∈ L1(Γ ); therefore, from Lemma 2 and (35), we have that

lim sup
n→∞

κn

n2Nλn−N−M(WρN)
� lim

n→∞
λn−N−M(Wρ̃N)

λn−N−M(WρN)
. (36)

Since ρN ∈ S(Γ ), then WρN , Wρ̃N ∈ S(Γ ). Therefore, from (21), (18) and (15), we obtain

lim
n→∞

λn−N−M(Wρ̃N)

λn−N−M(WρN)
= ν(Wρ̃N)

ν(WρN)
= exp

{
1

2π

∫
Γ

[
log(ρN + δ) − logρN

]
(ξ)

∂g(ξ ;∞)

∂η
|dξ |

}
. (37)

It remains to use the continuity of the extremal constant ν(ρ), ρ ∈ S(Γ ), in the metric

dist(ρ,σ ) = 1

π

∫
Γ

|logρ − logσ |(ξ)
∂g(ξ ;∞)

∂η
|dξ |, ρ, σ ∈ S(Γ ).

In fact, by the Lebesgue dominated convergence theorem

dist(ρ̃N ,ρN) → 0, δ → 0.

Then, for an arbitrary fixed ε > 0, we can take δ > 0 in (37) so that

lim
n→∞

λn−N−M(Wρ̃N)

λn−N−M(WρN)
� 1 + ε. (38)

Now, (34) follows from (36), (38), and the arbitrariness of ε > 0. �
Proof of Theorem 1. By the extremal property (6), for all n ∈ Z+, n > N , we have

κn =
N−1∑
k=0

∥∥Q(k)
n

∥∥2
k
+ ∥∥Q(N)

n

∥∥2
N

�
∥∥Q(N)

n

∥∥2
N

�
(

n!
(n − N)!

)2

τn−N.

Therefore,

lim inf
n→∞

κn

n2Nτn−N

� 1. (39)

On the other hand,

κn

n2Nτn−N

= κn

n2Nλn−N−M(WρN)

λn−N−M(WρN)

λn−N(ρN)

λn−N(ρN)

τn−N

.

According to (21) and (19), we have

lim
n→∞

λn−N−M(WρN)

λn−N(ρN)
= D(WρN ;∞)

D(ρN ;∞)

1

C(Γ )2M
=

m∏
i=1

∣∣Φ(zi)
∣∣2(di+1)

,

since due to (15),

D(WρN ;∞)

D(ρN ;∞)
= C(Γ )2M

m∏∣∣Φ(zi)
∣∣2(di+1)

.

i=1
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Using (26) and (34), we conclude that

lim sup
n→∞

κn

n2Nτn−N

� 1. (40)

Now, (7) follows from (39) and (40). �
4. Asymptotics of Sobolev polynomials

The following two lemmas pave the way for the proof of Theorem 2.

Lemma 4. Assume that the assumptions of Theorem 1 are satisfied and let

Ψn−N(z) = ηn−N

Q
(N)
n

Φn−N
(z), where ηn−N = (n − N)!

n!C(Γ )n−N
, n ∈ N, n > N. (41)

Then {Ψn−N } is uniformly bounded on compact subsets of Ω and

lim
n→∞Ψ

(j)
n−N(zi) = 0, j = 0, . . . , di, i = 1, . . . ,m. (42)

Proof. From the definition of κn, we have

η2
n−Nκn =

N−1∑
k=0

η2
n−N

∥∥Q(k)
n

∥∥2
k
+ ∥∥ηn−NQ(N)

n

∥∥2
L2(ρN )

+ η2
n−NQ(N)

n (Z)AQ(N)
n (Z)∗. (43)

Using (7) and (27), it follows that

lim
n→∞η2

n−Nκn = ν∗(ρN). (44)

On the other hand, (43) and (44) imply

lim sup
n→∞

‖Ψn−N‖2
H 2(Ω,ρN )

� ν∗(ρN).

Therefore, the sequence {Ψn−N } is bounded in H 2(Ω,ρN) and Cauchy’s integral formula renders that {Ψn−N } is
uniformly bounded on compact subsets of Ω .

For A hermitian and positive definite,

min
x∈CM,x 
=0

x∗Ax

x∗x
= λ1 > 0,

where λ1 > 0 is the smallest eigenvalue of A. In particular, for every x ∈ C
M ,

x∗x � x∗Ax

λ1
. (45)

From (43) and (44) we have that the sequence {η2
n−NQ

(N)
n (Z)AQ

(N)
n (Z)∗}n∈N is bounded; that is, there exists a

constant C > 0 such that[
ηn−N Q(N)

n (Z)
]
A

[
ηn−NQ(N)

n (Z)∗
]
� C, ∀n ∈ N. (46)

Hence, by (45), sequence{
ηn−N Q(N)

n (Z)∗
}
n∈N

⊂ C
M, (47)

is uniformly bounded with respect to the Euclidean norm. Since in a finite-dimensional space all norms are equivalent,
we conclude that sequence (47) is bounded with respect to the uniform norm; that is,{

ηn−N Q
(N+j)
n (zi)

}
n∈N

, j = 0, . . . , di, i = 1, . . . ,m,

are uniformly bounded.



530 G. López Lagomasino et al. / J. Math. Anal. Appl. 340 (2008) 521–535
We have

∣∣ηn−NQ
(N+j)
n (zi)

∣∣ =
(

(n − N)!
n!C(Γ )j

∣∣Φ(zi)
∣∣n−N−j

)∣∣∣∣ Q
(N+j)
n

[C(Γ )Φ]n−N−j
(zi)

∣∣∣∣,
and

lim
n→∞

(n − N)!
n!

∣∣Φ(zi)
∣∣n−N−j = ∞.

Therefore,

lim
n→∞

Q
(N+j)
n

[C(Γ )Φ]n−N−j
(zi) = 0, j = 0, . . . , di, i = 1, . . . ,m, (48)

and convergence takes place with geometric rate. Let us see that

lim
n→∞

(
Q

(N)
n

[C(Γ )Φ]n−N

)(j)

(zi) = 0, j = 0, . . . , di, i = 1, . . . ,m, (49)

also converges with geometric rate.
According to the Leibnitz formula,(

Q
(N)
n

[C(Γ )Φ]n−N

)(j)

(zi) =
j∑

k=0

(
j

k

)
Q(N+k)

n (zi)

(
1

[C(Γ )Φ]n−N

)(j−k)

(zi). (50)

The derivative of order l, l ∈ N, of the function 1/[C(Γ )Φ]n−N , is of the form

l∑
t=1

(−1)t
t∏

r=1

(n − N + r − 1)
Ct

[C(Γ )Φ]n−N+t
(z), (51)

where Ct(z), t = 1, . . . , l, do not depend on n, but only on C(Γ ) and on some of the values Φ ′(z), . . . ,Φ(l)(z).
From (50) and (51), we have(

Q
(N)
n

[C(Γ )Φ]n−N

)(j)

(zi) =
j∑

k=0

(
j

k

) j−k∑
t=1

(−1)t
t∏

r=1

(n − N + r − 1)
Q

(N+k)
n

[C(Γ )Φ]n−N−k
(zi)

Ct

[C(Γ )Φ]k+t
(zi). (52)

Now, using (52) and (48), we obtain (49). Finally, (42) follows from (41) and (49). �
Associated with the extremal function F∗ and the conformal mapping Φ , we consider the sequence of func-

tions {H ∗
n }, defined almost everywhere on Γ by

H ∗
n (ξ) =

{
F∗(ξ)Φn(ξ), if Γ is a closed curve,

F∗+(ξ)Φn+(ξ) +F∗−(ξ)Φn−(ξ), if Γ is an arc.

Lemma 5. Under the assumptions of Theorem 1, we have

lim
n→∞

∥∥∥∥H ∗
n−N − Q

(N)
n

nN C(Γ )n−N

∥∥∥∥
L2(ρN )

= 0. (53)

Proof. Obviously,∥∥H ∗
n−N − ηn−NQ(N)

n

∥∥2
L2(ρN )

= ∥∥H ∗
n−N

∥∥2
L2(ρN )

+ ∥∥ηn−NQ(N)
n

∥∥2
L2(ρN )

− 2 Re
〈
H ∗

n−N,ηn−NQ(N)
n

〉
L2(ρN )

. (54)

In connection with the first term of (54), if Γ is a closed curve, then
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∥∥H ∗
n−N

∥∥2
L2(ρN )

=
∫
Γ

∣∣F∗(ξ)
∣∣2∣∣Φ(ξ)

∣∣2(n−N)
ρN(ξ)|dξ | =

∮
Γ

∣∣F∗(ξ)
∣∣2

ρN(ξ)|dξ |

= ‖F∗‖2
H 2(Ω,ρN )

= ν∗(ρN), (55)

since F∗ is the solution of the extremal problem (23) and |Φ(ξ)| = 1 for ξ ∈ Γ . If Γ is an arc, we have∥∥H ∗
n−N

∥∥2
L2(ρN )

= 〈
F∗+Φn−N+ +F∗−Φn−N− ,F∗+Φn−N+ +F∗−Φn−N−

〉
L2(ρN )

=
∫
Γ

∣∣F∗+(ξ)
∣∣2∣∣Φ+(ξ)

∣∣2(n−N)
ρN(ξ)|dξ | +

∫
Γ

∣∣F∗−(ξ)
∣∣2∣∣Φ−(ξ)

∣∣2(n−N)
ρN(ξ)|dξ |

+ 2 Re
〈
F∗+Φn−N+ ,F∗−Φn−N−

〉
L2(ρN )

=
∮
Γ

∣∣F∗(ξ)
∣∣2

ρN(ξ)|dξ | + 2 Re
∫
Γ

Φn−N+ (ξ)Φn−N− (ξ)F∗+(ξ)F∗−(ξ)ρN(ξ)|dξ |

= ‖F∗‖2
H 2(Ω,ρN )

+ 2 Re
∫
Γ

Φn−N+ (ξ)Φ
−(n−N)
− (ξ)F∗+(ξ)F∗−(ξ)ρN(ξ)|dξ |, (56)

and the second term tends to zero when n → ∞ (see [8, Lemma 12.1]). Therefore, if Γ is an arc or a closed curve,

lim
n→∞

∥∥H ∗
n−N

∥∥2
L2(ρN )

= ν∗(ρN). (57)

Let us consider the second term in the right-hand side of (54). We have∥∥Q(N)
n

∥∥2
L2(ρN )

�
∥∥Q(N)

n

∥∥2
N

� ‖Qn‖2
S = κn.

Hence,

η2
n−N

∥∥Q(N)
n

∥∥2
L2(ρN )

�
(

(n − N)!
n!

)2
κn

τn−N

τn−N

C(Γ )2(n−N)
. (58)

From (27), (7) and (58),

lim sup
n→∞

∥∥ηn−NQ(N)
n

∥∥2
L2(ρN )

� ν∗(ρN). (59)

Consider the third term in (54). If Γ is a closed curve,

〈
Q(N)

n ,H ∗
n−N

〉
L2(ρN )

=
∫
Γ

Q(N)
n (ξ)F∗(ξ)Φn−N(ξ)ρN(ξ)|dξ | =

〈
Q

(N)
n

Φn−N
,F∗

〉
H 2(Ω,ρN )

.

If Γ is an arc,〈
Q(N)

n ,H ∗
n−N

〉
L2(ρN )

=
∫
Γ

Q(N)
n (ξ)H ∗

n−N(ξ)ρN(ξ)|dξ |

=
∫
Γ

(
Q(N)

n (ξ)F∗+(ξ)Φn−N+ (ξ) + Q(N)
n (ξ)F∗−(ξ)Φn−N− (ξ)

)
ρN(ξ)|dξ |

=
∫
Γ

(
Q

(N)
n (ξ)

Φn−N+ (ξ)
F∗+(ξ) + Q

(N)
n (ξ)

Φn−N− (ξ)
F∗−(ξ)

)
ρN(ξ)|dξ |

=
∮
Γ

Q
(N)
n (ξ)

Φn−N(ξ)
F∗(ξ)ρN(ξ)|dξ | =

〈
Q

(N)
n

Φn−N
,F∗

〉
H 2(Ω,ρN )

,

where we used again that |Φ| = 1 (|Φ±| = 1) on Γ . Therefore, if Γ is an arc or a closed curve, from the definition of
Ψn−N , (24), (25), (20), and the properties of B(z), it follows that
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〈
ηn−N Q(N)

n ,H ∗
n−N

〉
L2(ρN )

= 〈Ψn−N,F∗〉H 2(Ω,ρN ) = ν(ρN)
〈
Ψn−N,BK(·,∞)

〉
H 2(Ω,ρN )

= ν(ρN)

〈
Ψn−N

B
|B|2,K(·,∞)

〉
H 2(Ω,ρN )

= ν∗(ρN)

〈
Ψn−N

B
,K(·,∞)

〉
H 2(Ω,ρN )

. (60)

Notice that (Ψn−N/B)(∞) = 1, and Ψn−N/B /∈ H 2(Ω,ρN), since the points zi , i = 1, . . . ,m, are poles of this
function. For all n ∈ N,

Ψn−N(z)

B(z)
=

m∑
i=1

di∑
j=0

a
(i,j)
n−N

(z − zi)j
+ gn(z), gn ∈ H 2(Ω,ρN), gn(∞) = 1. (61)

Substituting (61) in (60) and using property (17) of the reproducing kernel, we obtain

〈
ηn−NQ(N)

n ,H ∗
n−N

〉
L2(ρN )

= ν∗(ρN)

(
1 +

m∑
i=1

di∑
j=0

a
(i,j)
n−N

〈
1

(z − zi)j
,K(·,∞)

〉
H 2(Ω,ρN )

)
. (62)

Now, suppose that

lim inf
n→∞ Re

〈
ηn−NQ(N)

n ,H ∗
n−N

〉
L2(ρN )

< ν∗(ρN). (63)

Let Λ ⊂ N be such that

lim
n∈Λ

Re
〈
ηn−NQ(N)

n ,H ∗
n−N

〉
L2(ρN )

= lim inf
n→∞ Re

〈
ηn−NQ(N)

n ,H ∗
n−N

〉
L2(ρN )

. (64)

Since {Ψn−N } is uniformly bounded on compact subsets of Ω , there exists Λ′ ⊂ Λ and ΨΛ′ , holomorphic in Ω , such
that for j ∈ Z+,

lim
n→∞Ψ

(j)
n−N = Ψ

(j)

Λ′ in Ω where n ∈ Λ′. (65)

From (42) and (65), we have that

Ψ
(j)

Λ′ (zi) = 0, j = 0, . . . , di, i = 1, . . . ,m. (66)

Using the definition of B(z), (65) and (66), we have that ΨΛ′/B ∈ H 2(Ω,ρN) and for n ∈ Λ′,

lim
n→∞

Ψn−N

B
= ΨΛ′

B
in Ω \ {z1, . . . , zm} where n ∈ Λ′. (67)

On account of (61) and (67), we conclude that a
(i,j)
n−N → 0, j = 0, . . . , di , i = 1, . . . ,m, for n ∈ Λ′, and from (62), we

obtain

lim
n∈Λ′ Re

〈
ηn−NQ(N)

n ,H ∗
n−N

〉
L2(ρN )

= ν∗(ρN). (68)

Since Λ′ ⊂ Λ, (64) and (68) contradict the assumption (63). Therefore,

lim inf
n→∞ Re

〈
H ∗

n−N,ηn−NQ(N)
n

〉
L2(ρN )

� ν∗(ρN). (69)

Taking upper limit on both sides of (54), (53) follows from (57), (59) and (69). �
Proof of Theorem 2. If Γ is a closed curve,∥∥∥∥F∗ − (n − N)!

n!
Q

(N)
n

[C(Γ )Φ]n−N

∥∥∥∥
H 2(Ω,ρN )

=
∥∥∥∥H ∗

n−N − (n − N)!
n!

Q
(N)
n

C(Γ )n−N

∥∥∥∥
L2(ρN )

.

Lemma 1 and (53) imply

lim
n→∞

Q
(N)
n

nN [C(Γ )Φ]n−N
(z) = F∗(z) in Ω,

which is (10). Due to (28), (10) is equivalent to (11).
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If Γ is an arc, using (17), we have

(n − N)!
n!

Q
(N)
n

[C(Γ )Φ]n−N
(z) =

〈
(n − N)!

n!
Q

(N)
n

[C(Γ )Φ]n−N
,K(·, z)

〉
H 2(Ω,ρN )

=
∮
Γ

(n − N)!
n!

Q
(N)
n

[C(Γ )Φ]n−N
(ξ)K(ξ, z)ρN(ξ)|dξ |

=
∮
Γ

(n − N)!
n!

Q
(N)
n (ξ)

C(Γ )n−N
Φn−N(ξ)K(ξ, z)ρN(ξ)|dξ |

=
∫
Γ

(n − N)!
n!

Q
(N)
n (ξ)

C(Γ )n−N

(
Φn−N+ (ξ)K+(ξ, z) + Φn−N− (ξ)K−(ξ, z)

)
ρN(ξ)|dξ |

= 〈
H ∗

n−N,Φn−N+ K+(·, z) + Φn−N− K−(·, z)〉
L2(ρN )

−
〈
H ∗

n−N − (n − N)!
n!

Q
(N)
n

C(Γ )n−N
,Φn−N+ K+(·, z) + Φn−N− K−(·, z)

〉
L2(ρN )

.

Using the Cauchy–Schwartz inequality and (53), it is easy to see that the second term in the last equality tends to zero
as n → ∞. Additionally,〈

H ∗
n−N,Φn−N+ K+(·, z) + Φn−N− K−(·, z)〉

L2(ρN )

= 〈
F∗,K(., z)

〉
H 2(Ω,ρN )

+
∫
Γ

{
F∗+(ξ)Φn−N+ (ξ)Φ

−(n−N)
− (ξ)K−(ξ, z) +F∗−(ξ)Φ

−(n−N)
+ (ξ)Φn−N− (ξ)K+(ξ, z)

}
ρN(ξ)|dξ |

= F∗(z) +
∫
Γ

{
F∗+(ξ)Φn−N+ (ξ)Φ

−(n−N)
− (ξ)K−(ξ, z) +F∗−(ξ)Φ

−(n−N)
+ (ξ)Φn−N− (ξ)K+(ξ, z)

}
ρN(ξ)|dξ |.

In the last equality, the second term tends to zero since it is the Fourier coefficient of an integrable function. Therefore,
we also have (10) when Γ is an arc and we conclude. �

In proving Theorem 3, we use the following auxiliary result.

Lemma 6. Under the assumptions of Theorem 3, we have for k = 0, . . . , i − 1 and i = 1, . . . ,N ,

lim
n→∞

Q
(k)
n

ni[C(Γ )Φ]n−k
(z) = 0 in Ω.

Proof. Let ρk(ξ)|dξ |, k = 0, . . . ,N , be the absolutely continuous component of dμk(ξ). We have

κn

n2NC(Γ )2(n−N)
=

N−1∑
k=0

∥∥∥∥ Q
(k)
n

nNC(Γ )n−N

∥∥∥∥2

k

+
∥∥∥∥ Q

(N)
n

nN C(Γ )n−N

∥∥∥∥2

N

�
N−1∑
k=0

∥∥∥∥ Q
(k)
n

nNC(Γ )n−N

∥∥∥∥2

L2(ρk)

+
∥∥∥∥ Q

(N)
n

nNC(Γ )n−N

∥∥∥∥2

L2(ρN )

.

Since (see (44))

lim
n→∞

κn

n2NC(Γ )2(n−N)
= ν∗(ρN),

and, according to (53) and (57),
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lim
n→∞

∥∥∥∥ Q
(N)
n

nNC(Γ )n−N

∥∥∥∥2

L2(ρN )

= lim
n→∞

∥∥H ∗
n−N

∥∥2
L2(ρN )

= ‖F∗‖2
H 2(Ω,ρN )

= ν∗(ρN),

it follows that

lim
n→∞

∥∥∥∥ Q
(k)
n

nN [C(Γ )Φ]n−k

∥∥∥∥2

L2(ρk)

= 0, k = 0, . . . ,N − 1.

Since μk ∈ S(Γ ), k = 0, . . . ,N , using Lemma 1, we obtain for k = 0, . . . ,N − 1,

lim
n→∞

Q
(k)
n

nN [C(Γ )Φ]n−k
(z) = 0 in Ω. (70)

Therefore, the lemma is true when i = N .
By the Weierstrass theorem, for k = 0, . . . ,N − 1,

lim
n→∞

[
Q

(k)
n

nN [C(Γ )Φ]n−k

]′
(z) = 0 in Ω. (71)

It is easy to verify that

(n − k)Φ ′(z)
nΦ(z)

Q
(k)
n

nN−1[C(Γ )Φ]n−k
(z) = 1

C(Γ )Φ(z)

Q
(k+1)
n

nN [C(Γ )Φ]n−(k+1)
(z) −

[
Q

(k)
n

nN [C(Γ )Φ]n−k

]′
(z).

Therefore, using (70) and (71),

lim
n→∞

Q
(k)
n (z)

nN−1[C(Γ )Φ]n−k(z)
= 0 in Ω

for k = 0, . . . ,N − 2. Repeating the arguments, we conclude the proof. �
Proof of Theorem 3. For a given k ∈ Z+, (12) and (13) are equivalent due to (28). On the other hand, using the
Weierstrass theorem it is easy to prove that if (12) is true for a certain k then it holds for all i � k. For k = N , (12)
coincides with (10). Therefore, (12) takes place for all k � N . To conclude, we will assume that (12) is satisfied for
some k,1 � k � N , and prove that it also holds for k − 1.

We have

(n + 1 − k)Φ ′(z)
nΦ(z)

Q
(k−1)
n

nk−1[C(Γ )Φ]n−(k−1)
(z) = 1

C(Γ )Φ(z)

Q
(k)
n

nk[C(Γ )Φ]n−k
(z) −

[
Q

(k−1)
n

nk[C(Γ )Φ]n−(k−1)

]′
(z).

From Lemma 6 and the Weierstrass theorem, the second term on the right-hand side of this equality tends to zero
uniformly on compact subsets of Ω . By assumption,

lim
n→∞

1

C(Γ )Φ(z)

Q
(k)
n (z)

nk[C(Γ )Φ]n−k(z)
= 1

C(Γ )Φ(z)

F∗(z)
([C(Γ )Φ]′(z))N−k

in Ω.

Taking limit on both sides of the equality above, (12) immediately follows for k − 1 and we are done. �
Remark. The following questions arise naturally. First of all, can the assumption that μN is absolutely continuous be
suppressed? Moreover, consider a Sobolev inner product of the form

〈p,q〉S̃ =
N∑

k=0

∫
Γ

p(k)(ξ)q(k)(ξ) dμk(ξ) + p(Z)Aq(Z)∗,

where

p(Z) = (
p(z1), . . . , p

(d1)(z1),p(z2), . . . , p
(d2)(z2), . . . , p(zm), . . . ,p(dm)(zm)

)
,

zi ∈ Ω , i = 1, . . . ,m, and A is a hermitian semi positive definite matrix of order M = m + ∑m
i=1 di . Under what

assumptions can we obtain theorems similar to those above for the corresponding sequence of Sobolev orthogonal
polynomials? How does the appearance of derivatives of order < N in the discrete part affect the results?
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