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1. Introduction

The classical lattice point problem in dimension three consists of computing the error exponent

θ3 = inf
{
α: E(R) = O

(
Rα

)}
where E(R) is the lattice error term associated to a fixed smooth and strictly convex body B ⊂ R3

E(R) = #
{�n ∈ Z3: �n/R ∈ B

} − Vol(B)R3.

It is known that θ3 � 1, even in a sharper form [18]. The conjecture is θ3 = 1 but the best known general upper bound is
θ3 � 63/43 [19], improved to θ3 � 4/3 for rational ellipsoids (see [4, §6]) and to θ3 � 21/16 for the sphere [14]. The disparity
between the first and the second bound lies in the possibility of glueing variables twice when we have three rational axes
(the argument was introduced in [6] and [23]). The third result is rather different because it uses the classical and deep
result due to Gauss [11] that relates the number of lattice points on the sphere to the class number of imaginary quadratic
fields (see [12]). This interpretation, via class number formula, allows to complement the exponential sums approach with
character sums estimates.

The number of lattice points on a rational ellipsoid can be understood as the coefficient of a modular form that de-
composes into a non-cuspidal part (a linear combination of Eisenstein series) and a cuspidal part. The former encodes local
information and gives the main contribution in dimension greater than three, on the other hand W. Duke and R. Schulze-
Pillot have shown in several works a different and more intricate truth in dimension 3 (see [1,10,13]).

In our approach we start using exponential sums techniques (as in [5]) to analyze a regularization of the error term.
The loss in the regularization can be reduced controlling the number of lattice points in thin layers which is expressed as
a short sum of coefficients of a modular form decomposed as before into a cuspidal and a non-cuspidal form. The Siegel
mass formula [22] allows to express the non-cuspidal contribution as a sum of a product of local factors that mimics a short
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sum of L-functions and we succeed adapting the method of [14] to bound this kind of sums. The cuspidal coefficients cannot
be controlled individually in a satisfactory way but using the structure of Shimura lift, Duke–Iwaniec bound for half-integral
weight [9,16] and Ramanujan–Petersson conjecture for weight 2 (due to Eichler and Shimura), they can be manipulated to
prove that in the cuspidal contribution we can save a small power over the admitted error term in the non-cuspidal part.
(This saving would not occur with any nontrivial bound.)

In few words, the key idea in [5] and [14] is a decomposition of the lattice error term for the sphere using additive char-
acters (exponential sums) and multiplicative characters (character sums) and we prove that for rational ellipsoids a modular
part must be added to the decomposition (it does not appear in the sphere problem because the form x2

1 + x2
2 + x2

3 is the
only form in the genus). To our knowledge this is the first time that the properties of modular forms appear intrinsically
in the classical lattice point problem (as described above). Although a sufficiently large amount of saving is needed in the
modular part, the bounds are not critical and recent improvements [2] do not affect the result because with our estimates
the additive and the multiplicative parts dominate. In this way we reach for rational ellipsoids the best known result for
the sphere [14]:

Theorem 1. Let B = {�x ∈ R3: Q (�x) � 1} where Q is a positive definite ternary quadratic form with rational coefficients, then the
corresponding error exponent satisfies θ3 � 21/16.

2. Decomposition of the error term

From now on we shall assume that Q has integral coefficients because θ3 is invariant by dilations of B. Then we have
a symmetric matrix A ∈ GL3(Z) with even diagonal entries such that

Q (�x) = 1

2
�xt A�x.

We denote by D the determinant of A.
If fact perhaps changing A by 2A we can assume also that DA−1 has even diagonal entries and 4 | D . Hence the dual

form Q ∗(�x) = 1
2 �xt DA−1�x is also an integral quadratic form.

It is well known (see [21, p. 456], [15, Proposition 10.6]) that the theta function θQ (z) = ∑
rQ (n)e(nz) is a modular

form in M3/2(Γ0(D),χ) for a certain quadratic character χ (we abbreviate e2π ix by e(x) and rQ (n) indicates the number
of representations of n by Q ). Obviously it is not a cusp form, in fact its projection onto the linear space generated by
Eisenstein series is the genus θ -function θgen(z) = ∑

r(n,gen Q )e(nz) whose coefficients are given by the Siegel mass
formula [22]

r(n,gen Q ) = 4π
√

2n√
D

L(n) with L(n) =
∏

p

δp(n)

where δp(n) are the p-adic densities of the solutions of Q (�x) = n. In fact for α large enough

δp(n) = p−2α N pα (n)

where Nq(n) is the number of the solutions of Q (�x) = n in (Z/qZ)3.
We write

an = rQ (n) − r(n,gen Q ).

This is the nth coefficient of a form in S3/2(Γ0(D),χ), the linear space of cusp forms of weight 3/2 with the θ -multiplier
system.

Before stating the decomposition of the error term we introduce a smoothing function for technical purposes. To facilitate
references we follow the choice of [5] for 0 < H < 1, the function

f (x) =
{

x if 0 � x � R,

R(R + H − x)/H if R � x � R + H,

0 otherwise.

This election gives an explicit though slow-decaying Fourier sine transform

f̃ (ξ) := 2

∞∫
0

f (t) sin(2πξt)dt = sin(2π Rξ)

2π2ξ2
− R

H

sin(π Hξ)

π2ξ2
cos

(
π(2R + H)ξ

)
.

After these definitions, we decompose the lattice error term in three parts T , C and M that will be treated by methods
of trigonometric sums, character sums and modular functions, respectively, in Sections 3–5. The parameter H is adjustable.
In Section 6 we shall take H = R−5/8 that corresponds to the optimal value for the sphere problem in [14].
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Proposition 2. With the previous definitions, we have for R > 1 and 0 < H < 1,

E(R) = T + C + M

where

T = 8π
√

2√
D

R+H∫
R

r f (r)dr − 1 + √
2

∞∑
n=1

rQ ∗(n)
f̃ (

√
4n/D)√

n
,

C = −4π
√

2√
D

∑
R<

√
n<R+H

L(n) f (
√

n) and M = −
∑

R<
√

n<R+H

an
f (

√
n)√

n
.

In the next section (see the proof of Proposition 4) we shall check that the series in the definition of T converges, indeed
it does uniformly for R in a bounded interval. Considering this, the decomposition of E(R) is a consequence of the following
summation formula (cf. [5]).

Lemma 3. Let g ∈ C∞
0 ([0,+∞)) with g(0) = g′′(0) = 0 then

∞∑
n=1

rQ (n)
g(

√
n)√

n
= 8π

√
2√

D

∞∫
0

rg(r)dr − g′(0) + √
2

∞∑
n=1

rQ ∗(n)
g̃(

√
4n/D)√

n
.

Proof. Let G(�x) be the C2
0(R3) extension of g(

√
Q (�x))/√Q (�x). By Poisson summation formula

g′(0) +
∞∑

n=1

rQ (n)
g(

√
n )√
n

=
∑

�n
Ĝ(�n).

Using spherical coordinates we know (cf. [5, Lemma 2.1]) that the Fourier transform of g(‖�x‖)/‖�x‖ is g̃(‖�x‖)/‖�x‖. With the
change of variables �x 
→ 1√

2
C−1�x where Ct AC = I, or equivalently A−1 = CCt , we have

Ĝ(�n) =
√

2̃g(
√

4Q ∗(�n)/D)√
Q ∗(�n)

for �n �= �0 and Ĝ(�0) = 8π
√

2√
D

∞∫
0

rg(r)dr.

Substituting we get the result. �
Proof of Proposition 2. Write

E(R) =
∑

1�n�R2

rQ (n) − Vol(B)R3 =
∞∑

n=1

rQ (n)
f (

√
n)√

n
−

∑
R<

√
n<R+H

rQ (n)
f (

√
n)√

n
− 8π

√
2√

D

R∫
0

r f (r)dr.

The first and the third terms give T by Lemma 3. After the definition of an and the Siegel mass formula, the second term
gives C and M. �
3. The trigonometric sum

The exponential sum is analog to the one treated in [5]. We just outline the argument.

Proposition 4. For any 1 < H−1 < R < H−2 and ε > 0 we have

T = 4
√

2π√
D

H R2 + O ε

((
R H−1/2 + R21/16 + R11/8 H1/8)Rε

)
.

Remark. In a recent work F. Chamizo and E. Cristóbal have proved that the terms R21/16 and R11/8 H1/8 can be diminished.
This work is not published yet and we prefer to appeal to the arguments of [5]. We take this opportunity to correct a
misprint in the last but one formula of p. 427 [5], firstly pointed out by G. Kuba and not affecting the result of [5].
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Proof of Proposition 4. A calculation proves

8π
√

2√
D

R+H∫
R

r f (r)dr = 4π
√

2√
D

H R2 + 4π
√

2

3
√

D
H2 R (1)

where f is the smoothing function that we have shown before. The task is now to estimate

S f̃ (R) = √
2

∞∑
n=1

rQ ∗(n)
f̃ (

√
4n/D)√

n
. (2)

The application of Lemma 3 is justified because we shall deduce the bound (3) for each dyadic block

V N(R) =
∑

N�n<2N

rQ ∗(n)e(R
√

4n/D),

which assures the uniform convergence on compacta.
Diagonalizing Q ∗ and clearing denominators, we can write

V N(R) =
∑

�n
e

(
R

d

√
an2

1 + bn2
2 + cn2

3

)
where a,b, c,d ∈ Z+ only depend on A, and �n runs over a subset of Z3 included in ‖�n‖ 
 N1/2.

By Lemma 3.1 of [5] with minor modifications, we have

V N(R) 
 N5/4+ε + Nε min
(

R3/8N15/16 + R1/8N17/16, R7/24N49/48 + R5/24N53/48). (3)

This gives

N−1 V N(R) 
 R5/16+ε for N � R,

N−1 V N(R) 
 (
H−1/2 + R5/16)H−ε for R � N � H−2,

N−3/2 V N (R) 
 (
H1/2 + R3/8 H9/8)H−ε for H−2 � N.

Note the misprint in p. 427 of [5] and that in (5.3) R9/8 H−1/8 should be replaced by R11/8 H1/8. Now, employing the last
inequalities to bound S f̃ (R) in the same way as in the proof of Theorem 1.1 of [5] we obtain,

S f̃ (R) 
 (
R H−1/2 + R21/16 + R11/8 H1/8)H−ε

and combining this bound with (1) the proof is completed. �
4. The character sum

The aim of this section is to estimate C . The main point is to translate C into a character sum proving that L(n) is a sum
over square divisors of n of L-functions up to some local factors. The periodicity of these factors is important to disregard
their influence, so we begin by studying it.

Recall that Nq(n) is defined to be the number of the solutions of Q (�x) = n in (Z/qZ)3. We define N∗
q (n) in the same

way but considering only primitive solutions (those with at least one coordinate coprime to q). Note that both functions are
multiplicative in q.

Lemma 5. Let p be a prime with pr ‖ D and α a positive integer. We have that

δ∗
p(n) = p−2α N∗

pα (n)

is well defined, i.e. it does not depend on the choice of α provided α � r + 1 if p �= 2 and α � r + 3 if p = 2. Furthermore, by definition,
it follows that δ∗

p(n) is pr+1-periodic in n if p �= 2 and 2r+3-periodic if p = 2.

Proof. The proof falls naturally into two cases, p odd and p = 2. We first prove the lemma when p is an odd prime.
We can write A = Ct TC where T is a diagonal matrix with integral coefficients, C has coefficients in Zp and |C| ∈ Z×

p [17,
Theorem 32]. Hence, without loss of generality, we can assume that Q (�x) is a diagonal form, so we can write

Q (�x) = t1x2
1 + t2x2

2 + t3x2
3,

and suppose that pa j ‖ t j for each j ∈ {1,2,3} and a j decreasing. For any α > a1 we define N ∗
pα (n) as the number of

primitive solutions of Q (�x) ≡ n (mod pα ) with 1 � x j � pα−a j for each j ∈ {1,2,3}.
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We can write each component of a solution counted by N∗
pα (n) as w j + pα−a j h j with 1 � w j � pα−a j and 0 � h j < pa j .

So we have that

N∗
pα (n) = pa1+a2+a3 N ∗

pα (n).

We consider �w , a primitive solution of Q (�x) ≡ n (mod pα ) with 1 � w j � pα−a j . Let �x = �w + (pα−a1m1, pα−a2m2,

pα−a3m3) with 0 � m j � p − 1; it is easy to check that Q (�x) ≡ n (mod pα+1) is equivalent to

Aw1m1 + B w2m2 + C w3m3 ≡ n − Q ( �w)

2pα
(mod p) with p � A, B, C .

Given �w as before this equation has p2 solutions (m1,m2,m3). Therefore N ∗
pα+1 (n) = p2 N ∗

pα (n), consequently N∗
pα+1 (n) =

p2N∗
pα (n) and a trivial verification shows that p−2α N∗

pα (n) is constant for α � r + 1 > a1.
We now turn to the case p = 2. In this case we employ that every quadratic form is equivalent over Z2 to

s1x2
1 + s2x2

2 + s3x2
3, s1x2

1 + s2x2x3 or s1x2
1 + s2(x2

2 + x2x3 + x2
3) [17, pp. 84–85]. The three cases are alike and we restrict

ourselves to Q (�x) = s1x2
1 + s2(x2

2 + x2x3 + x2
3).

Let 2ai ‖ si and define N ∗
2α (n) for α > max(a1 + 2,a2) as the number of primitive solutions of Q ( �w) ≡ n (mod 2α )

satisfying 1 � w1 � 2α−a1−1 and 1 � w2, w3 � 2α−a2 . Note that changing x1 into x1 + 2α−a1−1m1 or x j into x j + 2α−a2m j ,
j = 2,3, leaves invariant the congruence Q (�x) ≡ n (mod 2α ) hence we have as before N∗

2α (n) = 2a1+1+2a2 N ∗
2α (n) and a solu-

tion counted by N ∗
2α+1 (n) is of the form �w + (2α−a1−1m1,2α−a2m2,2α−a2m3) for some mi ∈ {0,1}. Substituting a solution �x

in Q (�x) ≡ n (mod 2α+1) we obtain

s12α−a1 w1m1 + s22α−a2 (w2m3 + w3m2) ≡ n − Q ( �w)
(
mod 2α+1

)
.

Given �w there are 22 possibilities for (m1,m2,m3) (note that s12−a1 and s22−a2 are both odd integers) then N ∗
2α+1 (n) =

22 N ∗
2α (n) holds leading to N∗

2α+1 (n) = 22N∗
2α (n) and 2−2α N∗

2α (n) is constant for α � r + 3 > max(a1 + 2,a2). �
We can now state our result for L(n).

Lemma 6. There exists an 8D2-periodic function B such that

L(n) =
∑
d2|n

d−1 B
(
n/d2)L(1,χDn/d2) where χm =

(
m

·
)

.

Proof. Our proof starts with the observation that N∗
pα (n) and N pα (n) are related by

N pα (n) =
∑

p2γ |(n,pα)

N∗
pα−γ

(
n

p2γ

)
pγ .

From the definitions of δp(n) and δ∗
p(n) we have p2αδp(n) = N pα (n) and p2αδ∗

p(n) = N∗
pα (n) for α large enough, so that

δp(n) =
∑

p2γ |n

1

pγ
δ∗

p

(
n

p2γ

)
. (4)

For p � D Hilfssatz 16 of [22] assures

δp(n) =
∑

p2γ |n

1

pγ

1 − p−2

1 − χDn/p2γ (p)p−1

or equivalently, by (4), δ∗
p(n) = (1 − p−2)/(1 − χDn(p)p−1). Hence

L∗(n) :=
∏

p

δ∗
p(n) = B(n)L(1,χDn),

where B(n) = C D
∏

p|D δ∗
p(n) and C D = ∏

p�D(1 − p−2). Note that B is 8D2-periodic by Lemma 5.

Finally, using that δ∗
p(n) = δ∗

p(m2n) for p � m, we obtain

L(n) =
∑
d2|n

d−1L∗(n/d2)
that gives the expected formula. �

Now we employ [14] to estimate C .
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Proposition 7. For any R � 1 � H > 0 and ε > 0 there exists a constant c = c(Q ) such that

C = cR2 H + O ε

(
R1+ε

(
R5/6 H5/6 + R4/15 + R1/6 H−1/6)).

Proof. By Lemma 6 we can rewrite C as

C = −4π
√

2√
D

8D2∑
ν=1

B(ν)
∑

d<R+H

d−1
∑

R/d<
√

m<(R+H)/d
m≡ν (mod 8D2)

L(1,χDm) f (d
√

m).

By partial summation, Lemmas 1 and 2 of [14] (they also work with a congruence condition) the assertion of the
proposition is proved (see also Corollary 4.2 and the proof of Theorem 1.1 in [5]). Note that the actual value of B(ν) is not
required and this avoids the computation of the densities when p | D . �
5. The modular sum

In this section we bound the modular contribution, M.

Proposition 8. For any R � 1 � H > 0 and ε > 0 we have

M = O ε

(
R27/14+ε H + R

)
.

This result is linked to the estimation of the Fourier coefficients of modular forms of half-integral weight treated in [16]
and continued in [9] and [10]. In this last paper (see also [1,20]) it is discussed the relation between the number of
representations by forms in the same genus and in the same spinor genus. Manipulating these results it is possible to
derive Proposition 8 but we prefer to employ the following bound for cuspidal form of weight 3/2 that extends Lemma 2
of [10].

Lemma 9. Let f (z) = ∑
ane(nz) ∈ S3/2(Γ0(D),χ), 4 | D, such that its Shimura lift is a cusp form, then an 
 f ,ε n13/28+ε for every

ε > 0.

Remark. In Appendix 2 of the recent work [2] Duke–Iwaniec bound [9,16] is improved. Using Theorem 6 of [2] with
θ = 7/64 (see Hypothesis Hθ ) in the proof of this lemma one can replace 13/28 = 0.4642 . . . by 231/512 = 0.4517 . . . but
it does not affect our final result. In principle even better bounds could be obtained if [3] or [8] are extended to modular
forms of weight 2 and arbitrary level D .

Proof of Lemma 9. We can find a basis of S3/2(Γ0(D),χ) such that their elements are eigenfunctions of the Hecke operators
T p2 for every p � D (they commute and are normal) and we can assume that f is one of these basis elements because we
can always express f as a linear combination of them. Let V ⊂ S3/2(Γ0(D),χ) be the subspace of forms with the same
eigenvalues as f for every p � D (in particular the Shimura lift of each form in V is also a cusp form). As 0 < dim V < ∞
the elements of V are determined by their first N Fourier coefficients for a suitable N and we have an isomorphism
i : V → S for some subspace S ⊂ CN .

Let g = ∑
bne(nz) ∈ V , by Corollary 1.8 of [21], (T p2 )k(g) = ∑

bnp2k e(nz) for p | D and by Main Theorem in [21] for n � N

fixed bnp2k is a sum of the lpkth Fourier coefficients of a cusp form of weight 2 where l divides the non-squarefree part of n,

hence Ramanujan–Petersson conjecture assures bnp2k 
g,N,ε (pk)1/2+ε or equivalently ‖i ◦ (T p2 )k ◦ i−1‖ 
 (pk)1/2+ε for any
p | D where ‖ · ‖ indicates the operator norm. We conclude∥∥(

T p2

)k∣∣
V

∥∥ 
 (
pk)1/2+ε

for p | D. (5)

Denote by D∞ an arbitrarily large power of D . Let t squarefree and m = pα1
1 pα2

2 · · · pαr
r | D∞ and consider the operator

L = (T p2
1
)α1 |V ◦ · · · ◦ (T p2

r
)αr |V . Fixing an orthonormal basis {g j} j∈ J of V we have f = ∑

λ j g j and L(g j) = ∑
μ jk gk with

λ j 
 1 and μ jk 
 ‖L‖ 
 m1/2+ε by (5), with 
-constants not depending on m. By Duke–Iwaniec bound [9,16] the tth
Fourier coefficient of gk is O (t13/28+ε) and extracting this coefficient in the identity L( f ) = ∑

λ j L(g j) we obtain

atm2 
 t13/28+εm1/2+ε 
 (
tm2)13/28+ε

(6)

for every t squarefree and m | D∞ . Considering the t-Shimura lifting of f with t squarefree we have the identity (see [21]
or (2.4) in [1] for a more explicit formulation)

∞∑ atd2

ds
=

∑
∞

atm2

ms
·

∑ ωl

ls
· L(s,χ)−1
n=1 m|D (l,D)=1
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for a certain character χ to the modulus 4t D and some |ωl| 
 l1/2+ε (this is again Ramanujan–Petersson conjecture for
weight 2). Hence if n = td2 with t squarefree, we have

an 

∑
ml|d

m|D∞

|atm2 |l1/2+ε 
 mε
∑

m|(d,D∞)

|atm2 |(d/m)1/2 
 n13/28+ε

where we have employed (6) for the last inequality. �
Proof of Proposition 8. There exists a linear combination of theta functions

∑
χ(k)ke(tk2) with t | D such that added to

f (z) = ∑
ane(nz) gives f ∗(z) = ∑

a∗
ne(nz) ∈ S3/2(Γ0(D),χ) with cuspidal Shimura lift [7]. Note that in the range R2 � n <

(R + H)2 we have an = a∗
n except for a subset of indexes of bounded cardinality in which an = a∗

n + O (R). Hence the result
reduces to apply Lemma 9 to f ∗ . �
6. Proof of the main result

Substituting Propositions 4, 7 and 8 in Proposition 2 and choosing H = R−5/8 we obtain

E(R) =
(

4
√

2π√
D

− c

)
R11/8 + O

(
R21/16+ε

)
.

The bound
∫ ∞

0 E(t)e−t2/R2
dt = O (R) is an exercise using Poisson summation and implies c = 4

√
2π/

√
D . An alternative

approach is to appeal to two-sided Ω-results [18].
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