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By now the Lq-spectra of self-similar measures satisfying the so-called Open Set Condition is well understood. However,
if the Open Set Condition is not satisfied, then almost nothing is known. In this paper we provide non-trivial bounds for
the Lq-spectra of an arbitrary self-similar measure, see Theorem 1.1 and its corollaries, and non-trivial bounds for the mixed
Lq-spectra of finite families of arbitrary self-similar measures, see Theorem 2.1. We emphasize that we are considering
arbitrary self-similar measures and sets which are not assumed to satisfy any separation conditions; in particular, we are
not assuming that the Open Set Condition is satisfied. As an application of our results we obtain bounds for the Lq-spectra
of the (2,3)-Bernoulli convolution, see Section 3.

1. Bounds for Lq-spectra

1.1. Self-similar measures

Let Si : R
d → R

d for i = 1, . . . , N be contracting similarities and let (p1, . . . , pN ) be a probability vector. For each i, we
denote the Lipschitz constant of Si by ri ∈ (0,1). Let K and μ be the self-similar set and the self-similar measure associated
with the list (S1, . . . , SN , p1, . . . , pN ), i.e. K is the unique non-empty compact subset of R

d such that

K =
⋃

i

Si(K ), (1.1)

and μ is the unique Borel probability measure on R
d such that

μ =
∑

i

piμ ◦ S−1
i , (1.2)

cf. [6]. It is well known that the support of μ equals K . We will say that the list (S1, . . . , SN ) satisfies the Open Set
Condition (OSC) if there exists a non-empty, bounded and open set U such that Si(U ) ⊆ U for all i and Si(U ) ∩ S j(U ) = ∅
for all i �= j.
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1.2. Lq-spectra of self-similar measures

During the past 15 years the multifractal structure of μ has received much attention. Multifractal analysis refers (among
other things) to the study of the Lq-spectra of μ. For q ∈ R, we define the lower Lq-spectrum τμ(q) and the upper Lq-
spectrum τμ(q) of μ as follows. For r > 0 write

Iμ(r;q) =
∫
K

μ
(

B(x, r)
)q−1

dμ(x). (1.3)

The lower and upper Lq-spectra of μ are now defined by

τμ(q) = lim inf
r↘0

log Iμ(r;q)

− log r
,

τμ(q) = lim sup
r↘0

log Iμ(r;q)

− log r
. (1.4)

The main significance of the Lq-spectra is their relationship with multifractal analysis, cf. [3] and references therein. Indeed,
during the 1990’s there has been an enormous interest in computing the Lq-spectra in the mathematical literature, and
within the last 15 years the Lq-spectra of various classes of measures in Euclidean space R

d exhibiting some degree of
self-similarity have been computed rigorously, cf. [3].

In particular, in the 1990’s Arbeiter and Patzschke [1] succeeded in computing the Lq-spectra of self-similar measures
satisfying the OSC; their results are summarized in Theorem A below. However, before we can state Theorem A we introduce
the following definition. Namely, define the function β : R → R by

N∑
i=1

pq
i rβ(q)

i = 1. (1.5)

We can now state Theorem A from [1].

Theorem A. (See [1].) Assume that the OSC is satisfied. Then the Lq-spectra τμ(q) and τμ(q) are given by

τμ(q) = τμ(q) = β(q)

for all q ∈ R.

The reader is referred to the textbook [3] for a more detailed discussion of multifractal analysis.

1.3. Main results – Part 1: Bounds for the Lq-spectra

Unfortunately, except for a few special classes of measures, almost nothing is known about the Lq-spectra of μ if the
OSC is not satisfied. For example, Feng et al. [4,5] have recently proved that all self-similar measures (and, in particular,
self-similar measures not satisfying the OSC) satisfies some version of the multifractal formalism, and Lau et al. [10–12] and
Testud [18] have investigated multifractal properties of various special classes of self-similar measures not satisfying the
OSC.

The main purpose of this paper is to provide non-trivial bounds for the Lq-spectra of an arbitrary self-similar measure.
We emphasize that we are not imposing any condition on the size of the overlaps Si K ∩ S j K . Theorem 1.1 below is our first
main result. However, before we can state Theorem 1.1 we need to introduce the following notation. Let

Σn = {1, . . . , N}n,

ΣN = {1, . . . , N}N, (1.6)

i.e. Σn is the family of all finite strings i = i1 . . . in of length n with entries i j ∈ {1, . . . , N} and ΣN denotes the family of all
infinite strings i = i1i2 . . . with entries i j ∈ {1, . . . , N}. For i = i1i2 . . . ∈ ΣN and a positive integer n, let i | n = i1 . . . in denote
the truncation of i to the nth place. Furthermore, for i = i1 . . . in ∈ Σn , we write S i = Si1 ◦ · · · ◦ Sin and

K i = S i K .

Also, write

pi = pi1 · · · pin , ri = ri1 · · · rin

for i = i1 . . . in ∈ Σn . We can now state our first main result providing non-trivial bounds for the Lq-spectra of an arbitrary
self-similar measure.
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Theorem 1.1. For a positive integer n, let

In =
{

I ⊆ Σn
∣∣∣ ⋂

i∈I

K i �= ∅
}

(observe that In is non-empty since {i} ∈ In for all i ∈ Σn). There exists a unique sn ∈ R such that

1 = max
I∈In

∑
i∈I

pir
−sn
i .

Let s = supn sn. For all q ∈ R with q � 1, we have

β(q) � τμ(q) � τμ(q) � s(1 − q).

Theorem 1.1 follows from a more general result in Section 2, namely Theorem 2.1, providing non-trivial bounds for the
mixed Lq-spectra of a finite family of arbitrary self-similar measures. If K is not a singleton, then the next result shows that
s > 0. In particular, this implies that s(1 − q) < 0 for all q > 1, and since it is not difficult to see that τμ(q) � 0 for all q � 1,
we therefore conclude that the upper bound for τμ(q) provided by Theorem 1.1 is non-trivial.

Proposition 1.2. Let s be as in Theorem 1.1. If K is not a singleton, then s > 0. In particular, if K is not a singleton, then

τμ(q) � s(1 − q) < 0

for all q > 1.

Proposition 1.2 also follows from a more general result in Section 2, namely Proposition 2.2, providing bounds for the
mixed Lq-spectra of a finite family of self-similar measures.

If all the contraction ratios r1, . . . , rN coincide, then the results in Theorem 1.1 can be simplified. Indeed, if r1 = · · · =
rN = r for some r ∈ (0,1), then sn = 1

n log r log(maxI∈In

∑
i∈I pq

i ), and we therefore obtain the following corollary from Theo-
rem 1.1.

Corollary 1.3. Assume that r1 = · · · = rN = r. Put

s = sup
n

1

n log r
log

(
max
I∈In

∑
i∈I

pq
i

)
.

For all q � 1, we have

β(q) � τμ(q) � τμ(q) � s(1 − q).

2. Bounds for the mixed Lq-spectra

Recently mixed (or simultaneous) multifractal Lq-spectra have generated an enormous interest in the mathematical
literature, cf. [2,7,14–16] and references therein. Previously, only the scaling behaviour of a single measure μ has been
investigated, see [3]. However, mixed multifractal analysis investigates the simultaneous scaling behaviour of finitely many
measures μ1, . . . ,μk . Mixed multifractal analysis thus combines local characteristics which depend simultaneously on vari-
ous different aspects of the underlying dynamical system, and provides the basis for a significantly better understanding of
the underlying dynamics.

We will now generalize Theorem 1.1 to the mixed multifractal setting. We therefore fix a positive integer k, and let
p j = (p j,i)i=1,...,N be probability vectors for j = 1, . . . ,k with p j,i > 0 for all j, i. Next, let μ j denote the self-similar measure
associated with the list (S1, . . . , SN , p j,1, . . . , p j,N ), i.e. μ j is the unique Borel probability measure such that

μ j =
∑

i

p j,iμ j ◦ S−1
i .

As in the previous section, K denotes the common support of the measures μ1, . . . ,μk , i.e. K is the unique compact set
satisfying (1.1). Finally, we define β : R

k → R by

∑
i

pq1
1,i · · · pqk

k,ir
β(q)

i = 1 (2.1)

for q = (q1, . . . ,qk) ∈ R
k , and observe that this definition reduces to (1.5) for k = 1.
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2.1. Mixed Lq-spectra of finite families of self-similar measures

Mixed Lq-spectra of the list μ = (μ1, . . . ,μk) are defined as follows. Let Dk denote the diagonal ray in R
k , i.e.

Dk = {
(x, . . . , x) ∈ R

k
∣∣ x ∈ R

}
.

If E is a subset of R
k and r > 0, we will write B(E, r) for the r neighbourhood of E , i.e. B(E, r) = {x ∈ R

d | dist(x, E) < r}.
For q = (q1, . . . ,qk) ∈ R

k and r > 0, we define the mixed integral moment scaling function of the list μ = (μ1, . . . ,μk) by

Iμ(r;q) =
∫

K k∩B(Dk,r)

μ1
(

B(x1, r)
)q1−1 · · ·μk

(
B(xk, r)

)qk−1
d(μ1 × · · · × μk)(x1, . . . , xk). (2.2)

The lower and upper mixed Lq-spectra, denoted τμ(q) and τμ(q), of μ = (μ1, . . . ,μk) are now defined by

τμ(q) = lim inf
r↘0

log Iμ(r;q)

− log r
,

τμ(q) = lim sup
r↘0

log Iμ(r;q)

− log r
. (2.3)

For k = 1, the above definitions coincide with (1.3) and (1.4). Assuming the OSC Moran [14] and Olsen [16] computed the
mixed Lq-spectra τμ(q) and τμ(q); this result is summarized in Theorem B.

Theorem B. (See [14,16].) Assume that the OSC is satisfied. Then the mixed Lq-spectra τμ(q) and τμ(q) are given by

τμ(q) = τμ(q) = β(q)

for all q ∈ R
k.

2.2. Main results – Part 2: Bounds for the mixed Lq-spectra

Unfortunately, nothing is known about the mixed Lq-spectra τμ(q) and τμ(q) if the OSC is not satisfied, and the second
main purpose of this the paper is to provide non-trivial bounds for the mixed Lq-spectra of a list of arbitrary self-similar
measures. We emphasize that we are not imposing any condition on the size of the overlaps Si K ∩ S j K . Theorem 2.1 below
is the main result. In Theorem 2.1 and Proposition 2.2 we write x � y for x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ R

k if xi � yi for
all i and we write x > y for x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ R

k if xi > yi for all i. We also write

pi,i = pi,i1 · · · pi,in

for i = i1 . . . in ∈ Σn , and put 0 = (0, . . . ,0) ∈ R
k and 1 = (1, . . . ,1) ∈ R

k . Finally, we let 〈· | ·〉 denote the usual inner product
in R

k . We can now state Theorem 2.1.

Theorem 2.1. For a positive integer n, let

In =
{

I ⊆ Σn
∣∣∣ ⋂

i∈I

K i �= ∅
}

(observe that In is non-empty since {i} ∈ In for all i ∈ Σn). There exists a unique sn ∈ R such that

1 = max
i

I∈In

∑
i∈I

pi,ir
−sn
i .

Let s = supn sn and s = (s, . . . , s) ∈ R
k. For all q ∈ R

k with q � 1, we have

β(q) � τμ(q) � τμ(q) � 〈s | 1 − q〉.

It is clear that Theorem 1.1 follows from Theorem 2.1 by setting k = 1. Also, in order to prove Theorem 2.1 we must
show that if q � 1, then

τμ(q) � 〈s | 1 − q〉 (2.4)

and

β(q) � τμ(q). (2.5)

The proof of (2.4) is given in Section 4 and the proof of (2.5) is given in Section 5.
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Analogous to Section 1, if K is not a singleton, then we prove below that s > 0. In particular, this implies that
〈s | 1 − q〉 < 0 for all q > 1, and since it is not difficult to see that τμ(q) � 0 for all q > 1, we therefore conclude the
upper bound for τμ(q) provided by Theorem 2.1 is non-trivial.

Proposition 2.2. Let s be as in Theorem 2.1. If K is not a singleton, then s > 0. In particular, if K is not a singleton, then

τμ(q) � 〈s | 1 − q〉 < 0

for all q > 1.

Proof. For i = i1i2 . . . ∈ ΣN and a positive integer n, we write i | n = i1 . . . in . Also, define π : ΣN → R
d by {π(i)} = ⋂

n K i|n .
It is well known that K = π(ΣN). If K is not a singleton, then we can find x, y ∈ K with x �= y. Let x = π(i) and y = π(j)
where i, j ∈ ΣN . Since limn diam K i|n = limn diam K j|n = 0 and

⋂
n K i|n = {π(i)} = {x} and

⋂
n K j|n = {π(j)} = {y}, we conclude

from the fact that x �= y, that there exists a positive integer n such that K i|n ∩ K j|n = ∅. This implies that, if I ∈ In , then I

cannot contain both i | n and j | n, whence I is a proper subset of Σn . We infer from this that
∑

k∈I pi,kr−sn
k <

∑
k∈Σn pi,kr−sn

k
for all i and all I ∈ In . Hence

1 = max
i

I∈In

∑
k∈I

pi,kr−sn
k < max

i

∑
k∈Σn

pi,kr−sn
k = max

i

(∑
j

pi, jr
−sn
j

)n

.

It follows from this that 0 < sn . �
It is clear that Theorem 1.2 follows from Theorem 2.2 by setting k = 1.

3. An example: The (2,3)-Bernoulli convolution

In this section we illustrate Theorem 1.1 and Theorem 2.1 by analyzing the Lq spectra of the so-called (2,3)-Bernoulli
convolution. We note that Feng and Olivier [5] have very recently proved that the (2,3)-Bernoulli convolution satisfies the
multifractal formalism (see Section 1.1 for the definition of the multifractal formalism). Unfortunately, Feng and Olivier’s
result does not easily provide explicit values for the Lq multifractal spectra. We will now use the results in this paper
to obtain explicit and non-trivial bounds for the Lq multifractal spectra of the (2,3)-Bernoulli convolution. The (2,3)-
Bernoulli convolution is defined as follows. Define S1, S2, S3 : R → R by Si(x) = 1

2 x + i−1
4 and let (p1, p2, p3) denote the

uniform probability vector, i.e. p1 = p2 = p3 = 1
3 . The (2,3)-Bernoulli convolution is by definition the self-similar measure

μ associated with the list (S1, S2, S3, p1, p2, p3), i.e. μ is the unique probability measure such that

μ = 1

3
μ ◦ S−1

1 + 1

3
μ ◦ S−1

2 + 1

3
μ ◦ S−1

3 .

As in Example 1, the main difficulty in analyzing the multifractal spectrum of μ is due to the fact that the OSC is not
satisfied. It is clear that in this case N = 3 and r1 = r2 = r3 = 1

2 , whence

s = sup
n

sn = sup
n

1

n log 2
log

(
max
I∈In

∑
i∈I

pi

)
= sup

n

1

n log 2
log

(
max
I∈In

|I|3−n
)

= log 3

log 2
− 1

log 2
inf

n

1

n
log max

I∈In

|I|.

Since clearly β(q) = log 3
log 2 (1 − q), we conclude from Theorem 1.1 that if q � 1, then

log 3

log 2
(1 − q) � τμ(q) � τμ(q) �

(
log 3

log 2
− 1

log 2
inf

n

1

n
log max

I∈In

|I|
)

(1 − q). (3.1)

It is not difficult to see that, for example, maxI∈I2 |I| = 5, and it therefore follows from (3.1) that if q � 1, then

log 3

log 2
(1 − q) � τμ(q) � τμ(q) =

(
log 3

log 2
− log 5

log 4

)
(1 − q). (3.2)

4. Proof of inequality (2.4) in Theorem 2.1

The purpose of this section is to prove inequality (2.4). For a positive integer n, we define ρn : K → R by

ρn(x) = sup
t∈K

min
i∈Σn

t /∈Ki

dist(x, K i),

and write

δn = inf
x∈K

ρn(x).
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Lemma 4.1. Fix a positive integer n. We have δn > 0.

Proof. It is not difficult to see that ρn(x) > 0 for all x ∈ K . Also, it not difficult to see that ρn is continuous (in fact, one can
easily prove that |ρn(x) − ρn(y)| � |x − y| for all x, y ∈ K ), and the compactness of K therefore implies the existence of a
point x0 ∈ K such that infx∈K ρn(x) = ρn(x0). Hence δn = infx∈K ρn(x) = ρn(x0) > 0. �

Define M : (0,∞) → R by

M(r) = sup
i

x∈K

μi
(

B(x, r)
)
.

Theorem 4.2. Fix a positive integer n. We have

M(r) � max
i

I∈In

∑
i∈I

pi,iM

(
r

ri

)

for all 0 < r < δn.

Proof. Fix 0 < r < δn and x ∈ K .
Observe that

S−1
i

(
B(x, r)

) ⊆ B

(
S−1

i x,
r

ri

)
for all i ∈ Σn. (4.1)

Next, we prove that there exists t ∈ K such that

{
i ∈ Σn

∣∣ S−1
i

(
B(x, r)

) ∩ K �= ∅} ⊆ {
i ∈ Σn

∣∣ t ∈ K i
}
. (4.2)

Indeed, since r < δn � ρn(x) = supt∈K mini∈Σn, t /∈Ki dist(x, K i), there exists t ∈ K such that

r < min
i∈Σn

t /∈Ki

dist(x, K i). (4.3)

We now claim that {i ∈ Σn | S−1
i (B(x, r)) ∩ K �= ∅} ⊆ {i ∈ Σn | t ∈ K i}. We will now prove this. Let i ∈ Σn with S−1

i (B(x, r)) ∩
K �= ∅. We can thus choose u ∈ S−1

i (B(x, r)) ∩ K . Hence dist(x, K i) = dist(x, S i K ) � |x − S iu| � r, and we therefore conclude
from (4.3) that t ∈ K i . This proves (4.2).

Finally, observe that iteration of the self-similar identity (1.3) shows that

μi(E) =
∑
i∈Σn

pi,iμi
(

S−1
i E

)
(4.4)

for all i = 1, . . . ,k and all E ⊆ R
d .

Combining (4.1), (4.2) and (4.4) we now obtain

μi
(

B(x, r)
) =

∑
i∈Σn

pi,iμi
(

S−1
i B(x, r)

) =
∑
i∈Σn

S−1
i (B(x,r))∩K �=∅

pi,iμi
(

S−1
i B(x, r)

)
�

∑
i∈Σn

t∈Ki

pi,iμi

(
B

(
S−1

i x,
r

ri

))

�
∑
i∈Σn

t∈Ki

pi,iM

(
r

ri

)
. (4.5)

However, since clearly {i ∈ Σn | t ∈ K i} ∈ In , this implies that

μi
(

B(x, r)
)
� max

I∈In

∑
i∈I

pi,iM

(
r

ri

)
.

Since i = 1, . . . ,k and x ∈ K were arbitrary, this completes the proof. �
Proposition 4.3. Fix a positive integer n. There exists a constant c > 0 such that

M(r) � crsn

for all r > 0.
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Proof. Define W : (0,∞) → [0,∞) by W (r) = r−sn M(r). It follows from Theorem 4.2 that

W (r) � max
i

I∈In

∑
i∈I

pi,ir
−sn
i

(
r

ri

)−sn

M

(
r

ri

)
= max

i
I∈In

∑
i∈I

pi,ir
−sn
i W

(
r

ri

)
(4.6)

for all 0 < r < δn . Next, write λ = (mini ri)
n and Λ = (maxi ri)

n . Observe that if a is a positive real number with 0 < a <
a
Λ

< δn , then (4.6) and the definition of sn imply that

sup
a�r<δn

W (r) � max
i

I∈In

∑
i∈I

pi,ir
−sn
i sup

a�r<δn

W

(
r

ri

)
� max

i
I∈In

∑
i∈I

pi,ir
−sn
i sup

a
Λ

�r< δn
λ

W (r) = sup
a
Λ

�r< δn
λ

W (r),

and so

sup
a�r

W (r) = max
(

sup
a�r<δn

W (r), sup
δn�r

W (r)
)

� max
(

sup
a
Λ

�r< δn
λ

W (r), sup
δn�r

W (r)
)

= sup
a
Λ

�r
W (r).

Next, let kn be the unique integer with Λkn < δn � Λkn−1. Repeated application of the previous inequality now yields

sup
0<r

W (r) = sup
k>kn

sup
Λk�r

W (r) � sup
k>kn

sup
Λk−1�r

W (r) � · · · � sup
k>kn

sup
Λkn �r

W (r) = sup
Λkn �r

W (r) = sup
Λkn �r

r−sn M(r) � sup
Λkn �r

r−sn .

However, since maxi,I∈In

∑
i∈I pi,i � maxi

∑
i∈Σn pi,i = 1 = maxi,I∈In

∑
i,i∈I pq

i,ir
−sn
i , we conclude that sn � 0. It therefore

follows from the above inequality that

sup
0<r

W (r) � sup
Λkn �r

r−sn � Λ−kn sn = c.

We conclude from this that r−sn M(r) = W (r) � c for all 0 < r. This completes the proof. �
Proof of inequality (2.4) in Theorem 2.1. Let q = (q1, . . . ,qk) ∈ R

k with q � 1. Fix a positive integer n and let c be the
constant in Proposition 4.3. For r > 0, we have

Iμ(r;q) =
∫

K k∩B(Dk,r)

μ1
(

B(x1, r)
)q1−1 · · ·μk

(
B(xk, r)

)qk−1
d(μ1 × · · · × μk)(x1, . . . , xk)

�
∫

K k∩B(Dk,r)

M(r)q1−1+···+qk−1 d(μ1 × · · · × μk)(x1, . . . , xk)

� M(r)q1−1+···+qk−1

�
(
crsn

)q1−1+···+qk−1
.

This clearly implies that τμ(q) � sn(1 − q1 + · · · + 1 − qk). Since this is true for all n, we now conclude that τμ(q) �
s(1 − q1 + · · · + 1 − qk) = 〈s | 1 − q〉. This completes the proof. �
5. Proof of inequality (2.5) in Theorem 2.1

The purpose of this section is to prove inequality (2.5).

Theorem 5.1. Let q ∈ R
k with q � 1. Then

Iμ(r;q) �
∑

i

pq1
1,i · · · pqk

k,i Iμ

(
r

ri
;q

)

for all r > 0.

Proof. For a set X , we let 1X denote the indicator function on X . We now have

Iμ(r;q) =
∫

1K k∩B(Dk,r)
(x1, . . . , xk)

∏
l

μl
(

B(xl, r)
)ql−1

d(μ1 × · · · × μk)(x1, . . . , xk)

=
∫

· · ·
∫

1K k∩B(Dk,r)
(x1, . . . , xk)

∏
μl

(
B(xl, r)

)ql−1
dμ1(x1) · · ·dμk(xk)
l
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=
∫

· · ·
∫ ∑

i1

· · ·
∑

ik

p1,i1 · · · pk,ik 1K k∩B(Dk,r)
(x1, . . . , xk)

∏
l

μl
(

B(xl, r)
)ql−1

d(μ1 ◦ Si1 )(x1) · · ·d(μk ◦ Sik )(xk)

=
∫

· · ·
∫ ∑

i1

· · ·
∑

ik

p1,i1 · · · pk,ik 1K k∩B(Dk,r)
(Si1 x1, . . . , Sik xk)

∏
l

μl
(

B(Sil xl, r)
)ql−1

dμ1(x1) · · ·dμk(xk) (5.1)

for all r > 0.
Next, notice that if x ∈ K and l = 1, . . . ,k, then we have

μl
(

B(Sil x, r)
)ql−1 =

(∑
j

pl, jμl
(

S−1
j B(Sil x, r)

))ql−1

=
(∑

j

pl, jμl

(
B

(
S−1

j Sil x,
r

r j

)))ql−1

�
(

pl,il μl

(
B

(
S−1

il
Sil x,

r

ril

)))ql−1

= pql−1
l,il

μl

(
B

(
x,

r

ril

))ql−1

(5.2)

for all r > 0.
Combining (5.1) and (5.2) gives

Iμ(r;q) �
∫

· · ·
∫ ∑

i1

· · ·
∑

ik

p1,i1 · · · pk,ik 1K k∩B(Dk,r)
(Si1 x1, . . . , Sik xk)

∏
l

pql−1
l,il

μl

(
B

(
x,

r

ril

))ql−1

dμ1(x1) · · ·dμk(xk)

=
∫

· · ·
∫ ∑

i1

· · ·
∑

ik

pq1
1,i1

· · · pqk
k,ik

1K k∩B(Dk,r)
(Si1 x1, . . . , Sik xk)

∏
l

μl

(
B

(
x,

r

ril

))ql−1

dμ1(x1) · · ·dμk(xk)

�
∫

· · ·
∫ ∑

i

pq1
1,i · · · pqk

k,i1K k∩B(Dk,r)
(Si x1, . . . , Si xk)

∏
l

μl

(
B

(
x,

r

ri

))ql−1

dμ1(x1) · · ·dμk(xk). (5.3)

We now observe that if (x1, . . . , xk) ∈ K d and i = 1, . . . ,k, then we have

1K k∩B(Dk,r)
(Si x1, . . . , Si xk) � 1K k∩B(Dk,

r
ri

)(x1, . . . , xk) (5.4)

for all r > 0.
Finally, combining (5.3) and (5.4) gives

Iμ(r;q) �
∫

· · ·
∫ ∑

i

pq1
1,i · · · pqk

k,i1K k∩B(Dk,
r
ri

)(x1, . . . , xk)
∏

l

μl

(
B

(
x,

r

ri

))ql−1

dμ1(x1) · · ·dμk(xk)

�
∫ ∑

i

pq1
1,i · · · pqk

k,i1K k∩B(Dk,
r
ri

)(x1, . . . , xk)
∏

l

μl

(
B

(
x,

r

ri

))ql−1

d(μ1 × · · · × μk)(x1, . . . , xk)

=
∑

i

pq1
1,i · · · pqk

k,i Iμ

(
r

ri
;q

)

for all r > 0. This completes the proof. �
Proposition 5.2. Let q ∈ R

k with q � 1. There exists a constant c > 0 such that

Iμ(r;q) � cr−β(q)

for all r > 0.

Proof. Define V : (0,∞) → [0,∞) by V (r) = rβ(q) Iμ(r;q). It follows from Theorem 5.1 that

V (r) �
∑

i

pq1
1,i · · · pqk

k,ir
β(q)

i

(
r

ri

)β(q)

Iμ

(
r

ri
;q

)
=

∑
i

pq1
1,i · · · pqk

k,ir
β(q)

i V

(
r

ri

)
(5.5)

for all r > 0. Next, write λ = maxi ri . Observe that if a is a positive real number, then (5.5) and the definition of β(q) imply
that

inf
a�r

V (r) �
∑

i

pq1
1,i · · · pqk

k,ir
β(q)

i inf
a�r

V

(
r

ri

)
�

∑
i

pq1
1,i · · · pqk

k,ir
β(q)

i inf
a
λ
�r

V (r) = inf
a
λ
�r

V (r).

Repeated application of the previous inequality now yields
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inf
0<r

V (r) = inf
k�0

inf
λk�r

V (r) � inf
k�0

inf
λk−1�r

V (r) � · · · � inf
k�0

inf
λ0�r

V (r) = inf
λ0�r

V (r) = inf
1�r

V (r) = inf
1�r

rβ(q) Iμ(r;q)

� inf
1�r

rβ(q) Iμ(1;q).

Now write q = (q1, . . . ,qk) and note that qi � 1 for all i. Since
∑

i pq1
1,i · · · pqk

k,i �
∑

i p1,i · · · pk,i � (
∑

i p1,i) · · · (∑i pk,i) =
1 = ∑

i pq1
1,i · · · pqk

k,ir
β(q)

i , we conclude that β(q) � 0. It therefore follows from the above inequality that inf0<r V (r) �
inf1�r rβ(q) Iμ(1;q) � Iμ(1;q) = c. We conclude from this that rβ(q) Iμ(r;q) = V (r) � c for all 0 < r. This completes the
proof. �
Proof of inequality (2.5) in Theorem 2.1. Inequality (2.5) follows immediately from Proposition 5.2. �
6. Further remarks

6.1. Connections with renewal theory

It is clear that the two key results used for proving (2.4) and (2.5), namely Theorems 4.2 and 5.1, have a renewal theo-
retical flavour. Indeed, the inequalities in Theorems 4.2 and 5.1 are very closely related to the so-called renewal equation,
cf. [3, Chapter 7] or [9]. Renewal theoretical techniques have recently been used very successfully in fractal geometry, see,
for example [3,8,9,13,17]. In particular, we note that Lau and Wang [13] and Olsen [17] have used renewal theory to study
the Lq-spectra of self-similar measures satisfying the OSC. This suggests that a more careful analysis based on ideas from
renewal theory might give estimates for the Lq-spectra that are more precise than those presented in this paper.

6.2. Modifying the function M(r)

Fix q = (q1, . . . ,qk) ∈ R
k . It is tempting to derive a version of the inequality in Theorem 4.2 for the function

Mq : (0,∞) → R defined by

Mq(r) = max
i

∫
μi

(
B(x, r)

)qi−1
dμ(x).

Such an inequality could subsequently be used for relating the asymptotic behaviour of Mq(r) (as r → 0) to the number sn

defined by

1 = max
i

I∈In

∑
i∈I

pqi
i,ir

−sn
i .

This makes sn (and hence s) a function of q, and could possibly lead to finer upper bounds of the Lq-spectra. Unfortunately,
we have not been able to do this. We will now explain this in more detail and discuss the problems that we encountered
while attempting to do so. Recall, that we are seeking an inequality of the form

Mq(r) � max
i

I∈In

∑
i∈I

pqi
i,iM

q
(

r

ri

)
. (6.1)

Following the structure of the proof of Theorem 4.2, a proof of (6.1) might proceed as follows. Fix 0 < r < δn (recall that δn

is defined in Section 4) and x ∈ K . As in the proof of Theorem 4.2 we see that there is a point tx,r ∈ K such that

{
i ∈ Σn

∣∣ S−1
i

(
B(x, r)

) ∩ K �= ∅} ⊆ {
i ∈ Σn

∣∣ tx,r ∈ K i
} = In(x, r); (6.2)

observe that the point tx,r depends on x and r. Assuming that qi � 2 for all i, and combining (4.1), (4.4) and (6.2), we now
obtain

Mq(r) = max
i

∫ ( ∑
i∈Σn

pi,iμi
(

S−1
i B(x, r)

))qi−1

dμ(x)

� max
i

∫ ∑
i∈Σn

pi,iμ
(

S−1
i B(x, r)

)qi−1
dμ(x) [by Jensen’s inequality since qi � 2]

= max
i

∫ ∑
i∈In(x,r)

pi,iμi

(
B

(
S−1

i x,
r

ri

))qi−1

dμ(x). (6.3)

Ideally we would now like to interchange the integral sign and the summation sign in (6.3) in order to introduce the term
Mq( r ). Unfortunately, we cannot do this since In(x, r) depends on x.
ri
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Even if it was possible to interchange the integral and the summation in (6.3) it is not clear how to proceed. Indeed,
assuming that it is possible to interchange sign the integral sign and the summation in (6.3), then we need to show that

∫
μi

(
B

(
S−1

i x,
r

ri

))qi−1

dμ(x) � pqi−1
i,i Mq

(
r

ri

)
,

or (at the very least) obtain estimates for the difference
∣∣∣∣
∫

μi

(
B

(
S−1

i x,
r

ri

))qi−1

dμ(x) − pqi−1
i,i Mq

(
r

ri

)∣∣∣∣. (6.4)

Unfortunately, this does not appear to be easy. For example, assuming the OSC and using very intricate and delicate argu-
ments, Lalley [8,9], Lau and Wang [13] and Olsen [17] managed to provide estimates for the difference in (6.4). However,
because of the complicated nature of these arguments together with the fact that they rely very heavily on the OSC, it is
not clear if similar results can be obtained without assuming the OSC.
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[7] M. Kesseböhmer, M. Urbański, Higher-dimensional multifractal value sets for conformal infinite graph directed Markov systems, Nonlinearity 20 (2007)

1969–1985.
[8] S. Lalley, The packing and covering functions of some self-similar fractals, Indiana Univ. Math. J. 37 (1988) 699–710.
[9] S. Lalley, Probabilistic methods in certain counting problems of ergodic theory, in: T. Bedford, M. Keane, C. Series (Eds.), Ergodic Theory, Symbolic

Dynamics, and Hyperbolic Spaces, Papers from the Workshop on Hyperbolic Geometry and Ergodic Theory held in Trieste, April 17–28, 1989, Oxford
Science Publications, The Clarendon Press, Oxford University Press, New York, 1991, pp. 223–257.

[10] K.-S. Lau, S.-M. Ngai, Multifractal measures and a weak separation condition, Adv. Math. 141 (1999) 45–96.
[11] K.-S. Lau, S.-M. Ngai, Lq -spectrum of Bernoulli convolutions associated with P.V. numbers, Osaka J. Math. 36 (1999) 993–1010.
[12] K.-S. Lau, S.-M. Ngai, H. Rao, Iterated function systems with overlaps and self-similar measures, J. London Math. Soc. 63 (2001) 99–116.
[13] K.-S. Lau, J. Wang, Mean quadratic variations and Fourier asymptotics of self-similar measures, Monatsh. Math. 115 (1993) 99–132.
[14] M. Morán, Multifractal components of multiplicative set functions, Math. Nachr. 229 (2001) 129–160.
[15] L. Olsen, Mixed divergence points for self-similar measures, Indiana Univ. Math. J. 52 (2003) 1343–1372.
[16] L. Olsen, Mixed generalized dimensions of self-similar measures, J. Appl. Math. Anal. Appl. 306 (2005) 516–539.
[17] L. Olsen, Empirical multifractal moment measures and moment scaling functions of self-similar multifractals, Math. Proc. Cambridge Philos. Soc. 133

(2002) 459–485.
[18] B. Testud, Phase transitions for the multifractal analysis of self-similar measures, Nonlinearity 19 (2006) 1201–1207.


	Bounds for the Lq-spectra of a self-similar multifractal not satisfying  the Open Set Condition
	Bounds for Lq-spectra
	Self-similar measures
	Lq-spectra of self-similar measures
	Main results - Part 1: Bounds for the Lq-spectra

	Bounds for the mixed Lq-spectra
	Mixed Lq-spectra of finite families of self-similar measures
	Main results - Part 2: Bounds for the mixed Lq-spectra

	An example: The (2,3)-Bernoulli convolution
	Proof of inequality (2.4) in Theorem 2.1
	Proof of inequality (2.5) in Theorem 2.1
	Further remarks
	Connections with renewal theory
	Modifying the function M(r)

	References


