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1. Introduction

This work treats the variational calculus of time-harmonic fields scattered by a periodic slab structure as functions of the
material coefficients of the scatterer. We deal with scalar fields u governed by the linear Helmholtz equation

V-rVu—f—a)zeu:O,

which governs acoustic fields and, in case the coefficients are invariant in one direction, polarized electromagnetic fields,
in a composite material characterized by the spatially varying coefficients ¢ and 7. We take these coefficients to be real
and positive, which means that the structure is lossless. Fig. 1 depicts an example of the type of scatterer we consider. The
slab is periodic in two directions and finite in the other, and it is in contact with the ambient space, making it an open
waveguide. A traveling time-harmonic wave, originating from sources exterior to the slab, is incident upon the slab at an
angle and is diffracted by it. Our aim is to compute the sensitivity of the resulting total field to variations of the material
properties (¢ and t) and geometry of the slab, as well as the sensitivity of the amount of energy transmitted across the
slab.

A motivation for this subject is the desire to optimize the way in which energy flows through a periodic slab or film,
as well as the related inverse problem, in which one seeks to determine the structure that produces given diffracted field
patterns upon illumination by plane waves. Slabs of photonic crystal structures can be used to guide energy of an incident
wave at specific frequencies through channels to the other side of the slab [1]. The characteristics that one seeks to optimize
are the amount of transmitted energy and the directionality of the field that is transmitted, as well the electromagnetic
mode density, which is important for control of the spontaneous emission rate of atoms placed in the structure [2]. The
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Fig. 1. An example of a periodic slab scatterer. The slab is infinite and periodic in the x; and x, directions (only sixteen periods are shown) but of finite
thickness in the x3 direction. We impose no fixed boundary conditions (as Dirichlet or Neumann); rather, the slab is in natural contact with the ambient
space to its left and right, which is homogeneous with &(x) = &y and 7(x) = 7o. This figure depicts a slab consisting of two homogeneous materials. In
this work, we treat the much more general case, in which &(x) and 7(x) are measurable functions bounded from below and above. The reflected and
transmitted fields depict the diffractive orders associated with the angle of incidence of the source field.

variational calculus of the scattered, or diffracted, field as a function of the structural parameters is the basis for control and
optimization of these properties.

Variations of practical interest are not typically uniformly small across the scatterer; rather they tend to be large but
supported in a small domain. For example, one may wish to vary the diameter of a dielectric sphere S of fixed permittivity
&1 repeated in a two-dimensional periodic array within a matrix of permittivity €9 or the diameters of the holes in the
example of Fig. 1. The function & = €15 + €0Xsc (X5 is the characteristic function of S) is not continuous with respect
to the diameter of S if the function is measured in the supremum norm, or L® norm, but it is continuous if the function
is measured in any p-power integral norm, or L? norm, with 1 < p < oco. Therefore, the question of whether the scattered
field is differentiable, or even merely continuous, with respect to LP perturbations of the scatterer is an important one. In
this work, a rigorous formulation (Theorems 15 and 16) of the following theorem is proved:

Theorem 0. The scattered field of a lossless periodic slab as well as the transmitted energy, for a fixed incident wave, are Fréchet
differentiable with respect to the coefficients ¢ and 7, if the field and its gradient are measured in the root-mean-square norm (Sobolev
norm H') and € and T are measured in an LP norm, with p < oo, as long as & and t are bounded from above and below and do not
admit resonance. The derivatives are Lipschitz continuous.

Fréchet differentiability with respect to the material coefficients in an LP norm implies Hélder continuity with respect to
variations of a smooth boundary of a homogeneous component of the scatterer. In fact, the scattered field has been shown
to be differentiable with respect to variation of periodic interfaces separating materials of differing dielectric coefficient
in two-dimensional polarized electromagnetic scattering problems. See, for example, Bao [3], Dobson [4], and Elschner
and Schmidt [5,6], as well as [4,7,8], and Bao and Bonnetier [9] for applications to optimal design. The differentiability of
solutions to strongly elliptic equations in a bounded domain as well as functionals of these solutions, with respect to the
boundary in norms of Holder continuity, is treated by Pironneau [10, §1.7, 6.2]. In their study of the inverse problem for
bounded impenetrable obstacles, Colton and Kress [11, §5.3] prove the Fréchet differentiability of the far field pattern in the
L? norm of the sphere as a function of the boundary in the norm of continuous differentiability. The inverse problem for
scattering by periodic interfaces is treated by Kirsch [12] and in [5].

Theorem 0 implies differentiability with respect to any LY norm with q > p. Obtaining an upper bound on the minimal
p is an open problem, whose solution would facilitate numerical implementation of the variational gradient. The formal
calculus of variations leads to a candidate for the gradient of the field and transmission coefficient as functions of ¢ and 7.
The gradient of the transmission coefficient is expressed in terms of an adjoint problem, derived formally by Lipton, Ship-
man, and Venakides [13]. In that work, the authors used the formal results in a two-dimensional reduction (where ¢ and t
are constant in one direction) to manipulate numerically the transmission coefficient as a function of frequency by varying
the slab structure. In this work, this gradient is established rigorously for LP perturbations of ¢ and t.

The proof uses N. Meyers’ theorem on higher integral regularity (p > 2) of solutions of elliptic equations and their
gradients [14]. In order to apply the theorem, one needs an a priori bound on the solution of the scattering problem that
is independent of the material coefficients. The obstruction to such a bound is field resonance in the structure, resulting
from the presence of guided modes. A guided mode is a pseudoperiodic solution (Bloch solution) to the Helmholtz equation
that falls off exponentially with distance from the slab. Mathematically, it is self-sustained, that is, not forced by an incident
source field. Because a solution of the scattering problem is not unique for a given structure at a frequency and Bloch
wavevector that admit a guided mode, the scattered field is not uniformly bounded near these parameters. This work
concerns the perturbation of the material properties within a range that excludes resonance, in which the scattering problem
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necessarily has a unique solution. Perturbation analysis near resonance is singular, and quite a different problem, as the field
and transmitted energy exhibit anomalous behavior near a guided mode frequency. Rigorous perturbation analysis with
respect to frequency and Bloch wavevector about a guided mode is presented in [15], and similar analysis with respect to
material coefficients and geometry is possible.

The exposition of the ideas and results is summarized as follows.

e Section 2 presents the mathematical formulation of the problem of scattering of incident traveling waves by a periodic
slab structure as well as formal perturbation analysis. This analysis gives rise to the correct candidate for the derivative
of the scattered field u with respect to variations of the material coefficients € and 7.

e The sensitivity of the transmitted energy to variations of the scatterer is discussed in Section 3, with specialization to
structures with homogeneous components.

e Section 4 develops the weak formulation of the scattering problem, in which the frequency and Bloch wavevector are
parameters. We discuss eigenvalues of the sesquilinear forms associated with the scattering problem and their relation
to guided modes of the slab.

e The main contributions of this work are stated and proved in Section 5. The first, Theorem 13 (p. 202), establishes an
a priori bound on the root-mean-square norm of the solution of the scattering problem and its gradient in the scatterer
as long as the structure, frequency, and wavevector do not admit a guided mode. This result, together with Meyers’
regularity theorem are used to prove the main result, Theorem 15 (p. 205), on the differentiability of the scattered field
with respect to LP variations of the material coefficients. Theorem 16 applies the main theorem and the adjoint method
to give an explicit representation of the variational gradient of the transmitted energy as a function of the material
coefficients.

2. The scattering problem and sensitivity analysis

The aim of this section is to derive a candidate for the variational gradient of the field scattered by a periodic slab as
a function of the material coefficients of the scatterer. The variational calculus is treated rigorously in Section 5. First, we
present the mathematical formulation of the scattering problem.

2.1. The scattering problem

We shall consider time-harmonic solutions U (x, t) = ii(x)e '®! (x = (x1, X2, X3) € R3) of the scalar wave equation
82
e—=U=V-.-1VU, 1
Te (1)

in which the material coefficients &(x) and 7 (x) are positive, 27 -periodic in x; and x,, and bounded from below and above.
The spatial factor i satisfies the Helmholtz equation

V. 1Vil+ ew?i =0. (2)
By means of the (partial) Floquet transform in (x1,x3), a solution i can be decomposed into an integral superposition of
components u(x; k), where xk = (K1, k2) € R?, that are «-pseudoperiodic in x; and x, with periods 2 (see [16] or [17], for
example). This means that u(x; x) satisfies

V.1Vu+ew?u=0, (3)

U(X; ) = Uper(X; k)@ K1X1H42%2)  and 11, has period 277 in X1 and x,. (4)
The Bloch wavevector k = (k1, k2) is related to the angle of incidence of an incoming wave

eiﬂxaei((m1+K1)X1+(m2+K2)X2)’ (5)

for some m = (my, my) € Z?, which impinges upon the left-hand side of the slab at an angle of # = arctan |m + «|/n with
the normal. We shall take « to lie in the first Brillouin zone,

1 1)\?
kKel|l-=,-]),
2'2
11

because each k € R? can be written k =m + & for m € Z? and &k € [—3, 5)2.

Exterior to the slab (x3 <z~ and x3 > z*), where the material is homogeneous, we set € =g9 >0 and T = 79 > 0,
and the periodic factor uper can be decomposed into Fourier components parallel to the slab (in X' = (x1, x2)). They are
indexed by m € Z? (with different coefficients on the two sides of the slab), and the x3-dependence of each component is
determined by separation of variables in the equation V - Vu + w?(go/7o)u =0,

UK X316) = Y (Cheboh (x3) + Crappy (x3)) € T HOY (6)

meZ?
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in which qbr,i; are independent solutions of the ordinary differential equation ¢;, + n,znd)m =0, where the numbers n, are
defined through

%+ Im + x> = w*eo/ 0. 7)
The Fourier harmonics are known as the diffractive orders or diffraction orders associated with the periodic structure. There
are many references that expound these ideas, including C. Wilcox [18] and M. Neviére [19]. The dﬁ are either oscillatory,
linear, or exponential, depending on the numbers 7. We make the following definitions:

me2z, <= n,zn >0, 7nm>0 (propagating harmonics),

mez, <+ n; =0, nm=0 (linear harmonics),

mez, <+— n,% <0, —inm >0 (evanescent harmonics). (8)

In the problem of scattering of source fields given by traveling waves impinging upon the slab, we must exclude ex-
ponential or linear growth of u as |x3| — oco. The form of the total field is therefore (we suppress the kx-dependence of
u(x', x3;k))

L . , . : /
u(x’,x3) — Z a;Tl:llCelt]mX3el(m+K)X + Z ame—mmX3el(m+K)x (x3 < z), (9)
mez, meZ2
. . . , . . ,
u(X/,X3) — Z b;’{‘lce—lnmX3el(m+K)X + Z bmelrsz3el(m+K)x (x3>24). (10)
meZp meZ2

The infinite series are understood in the L% sense. The first sums in these expressions represent right-traveling source waves
incident upon the slab from the left-hand side and left-traveling source waves incident upon the slab from the right-hand
side. We say that a function u is outgoing if it is of the form (9), (10) with a;;¢ =0 and b;; =0 for all m € Zp.

Definition 1 (Outgoing and incoming). A complex-valued function u defined on R3 is said to be outgoing if there are real
numbers z_ and z; and sequences {an}°%, and {b;;}>, in £2(—00, 00) such that

ux) = Z ame X3l MmN for o <7 (11)
meZ2

u(x) = Z bye!mX3 @l MHX for yo > Z4. (12)
meZ2

The function u is said to be incoming if it admits the expansions

u(x) = Z e M3 MHOX forxa <z, (13)
mez?

UX) =Y bpe el MHOX forys > 7, (14)
meZz?

We shall take the pseudoperiodic source field to be a superposition of traveling waves incident upon the slab from the
left and right. We think of these waves as emanating from x3 = —oo and from x3 = oco:

uinC(X/,X3) — Z (a';;llceinmxa + b'igce—ir]mxz)ei(m-&-/()x,' (15)

mezp
The problem of scattering of the incident wave ui"® by the slab is expressed as a system characterizing the total field u,
which is the sum of the incident field u™ and the scattered, or diffracted, field u*¢, the latter of which is outgoing. The
“strong form” of the problem is posed for functions & and 7 that are smooth except on a set X' consisting of continuously

differentiable surfaces of discontinuity, with normal vector n. The “weak form”, presented in Section 4.1, allows ¢ and 7 to
be merely measurable.

Problem 2 (Scattering of an incident wave, strong form). Given an incident field (15), find a function u that satisfies the following
conditions:

V.-tVu+w?eu=0 inR3\ X,

(
u and T d,u are continuous on X, (
u is k -pseudoperiodic in (x1, X2), (

(

u=u"+u*, with u* outgoing.
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One can generalize the scattering problem by introducing sources originating from the slab itself or from points outside
the slab. Such sources are represented by a periodic function h and a periodic vector field &, which enter the equation thus:

V.-tVu+w?su=V-£+h. (20)

In our investigation of the perturbation of the scattering Problem 2, we will be concerned with an auxiliary problem
involving sources that are confined to the region between x3 =z_ and x3 =z (besides the incident source field originating
from x3 = +00).

Problem 3 (General scattering, strong form). Given an incident field (15), find a function u that satisfies the following conditions:

V.-tVu+w?eu=V-£+h forz_ <x3<zyandx¢ X, (21)
V.TVu+w?cu=0 otherwise, (22)
u and T d0,u are continuous on X, (23)
u is k -pseudoperiodic in (x1, x2), (24)
u=u" +u*,  withu outgoing. (25)

2.2. Formal sensitivity analysis

Let u be the solution of the scattering Problem 2 (existence and uniqueness will be dealt with later), and let u + i be
the solution of the scattering problem with the same incident field but with € + & and 7 + T in place of & and t. The
coefficients &g and 1o exterior to the slab remain fixed. The functions u and u + i satisfy

V-tVu+w?eu =0, (26)

V(T +H)VU+i) + (e +8)(u+ 1) =0. (27)
Subtracting these equations yields the equation for the perturbed field i,

V(T +D)Vil+ w?(E+8)il=—V-Vu + w’éu, (28)

and 1 is outgoing because the incident fields for u and u + u are identical and the forcing term on the right-hand side
of (28) is confined to z_ <x3 <z,. If we remove the terms on the left-hand side that are quadratic in &, 7, and i, we obtain
the differential equation for the formal leading-order sensitivity @ of the total field as a function of the perturbations &
and 7. We denote this linear approximation to i by iig,

V. TVilp + wellg = —V - 1 Vu + w?éu, (29)
ilg is outgoing. (30)

In order to establish that the linear map (&, T) — lig is truly the variational differential of u with respect to (¢, ), we
should demonstrate two things,

lioll < C| ., D). N
[l — o | .
e 0 & D] —o. >

The appropriate norm in which to measure u is the H!-norm, restricted to a domain £2 (Fig. 2) comprising one period of
the structure between x3 =z_ and x3 =2z :

Q2={xeR 0<x; <2m, 0<x; <27, z_ <x3 <Z:}, (33)
Me={xeR* 0<x; <2, 0<x; <27, X3 =21} (34)

The two-dimensional squares Iy are the left and right boundaries of £2. The normal vector n to I" is taken to be directed
outward, so that
—oJdu/dx3 onl_,
fu=| 0 (35)
ou/ox3 on /7.
The H! norm in £ is

1/2
lull @) = (/(Wm2 + |u|2)dV> : (36)

2
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Fig. 2. The rectangular prism £2 encloses one period of the slab structure, which is defined by material coefficients &(x) and 7 (x) for x = (x1,x2,x3) € 2
that are extended periodically in the x; and x; directions. For x3 < z_ and for x3 > z, the material is homogeneous, with €(x) = &9 and 7(x) = 1p.

The main result of this work proves that (31) and (32) hold if (&, ) is measured in some LP norm in £2, with p < oo,

1/p
6.l = ([0 4 1217)av) (37)
2

3. Energy transmission and special structures

We apply the results discussed in the previous section to the sensitivity analysis of the amount of energy of an incident
wave that is transmitted from one side of the slab to the other. The formal analysis of the adjoint problem associated with
the differential of the transmitted energy that was derived in [13] is revisited in the light of the rigorous results of this
work.

3.1. Variation of the transmitted energy
Let us send a traveling wave toward the slab from the left and consider the energy transmitted to right-hand side of the
slab. This means that we take bjh¢ =0 in (10). We are interested in the sensitivity of the transmitted energy to perturbations

of the material coefficients ¢ and t. The time-averaged energy flux through one period of the right-hand boundary of the
slab is defined by

£:lmftoﬂ8nu, (38)
Iy

in which u is the solution to the scattering Problem 2. This quantity can be expressed in terms of the Fourier coefficients
by of the propagating harmonics of the transmitted field:

U= Z bmelMmXselMTOX (x> 7., (39)
meZ?
E=1 Z 77m|bm|2o (40)
mezp

The coefficients b, are functions of € and t.

We prove in Section 5.3 (Theorem 16) that £ is differentiable with respect to & and t if these are measured in an
appropriate LP norm, with p < oo, as long as & and 7 are bounded from below and above by positive numbers and there
are no resonant frequencies for the scattering problem. The derivative is expressed in terms of the solution u,q to an adjoint
problem in which the incident field u;f(‘f is obtained by sending the transmitted field of u back toward the slab from the
right. The incident and scattered fields have Bloch wavevector —«,

V. TViag + w?elg =0 inR3\ X, (41)
U,q and T d,u,g are continuous on X, (42)

Uaq is —k-pseudoperiodic in (x1, X7), (43)
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Uad = Ul + 1SS, with u$S outgoing, (44)
;réc _ Z b e 177m;<3e—1(m+/<)x (45)
mezp

If u+ 1 is the solution of the scattering problem with perturbed coefficients & + & and 7 + 7 and £ is the corresponding
change in the transmitted energy, that is,
€+5’=lm/to(ﬁ+ft)an(u+ﬁ), (46)
Iy

then the linear, leading-order, change 5‘0 in £ is given by

&= Imf(fVu Vg — 0?EUllyg). (47)

It is proved in Theorem 16 that & is bounded as a function of & and ¥ measured in an LP norm (p < o0) and that the
error is estimated by the square of the LP norm,

s 9 o 2
1€ — &l < C(ITlp () + 1P (2))”- (48)
3.2. Variation of the complex transmission coefficients

The transmitted energy £ is a function of the coefficients of the transmitted propagating harmonics by, m € Z;. In fact,
one can obtain the variational gradient of each complex coefficient individually. The associated adjoint problem for by, is
obtained by replacing the incident field (45) by a single incoming harmonic,

(ufy) ™ = eI, (49)

The linear, leading-order, change (Bm)o in b, as a function of variations of ¢ and 7 is
o i
bm)o= —— | (Vu - VU™, — w?8uu™). 50
( m)O 871'277m770 f( ad ad) ( )
2

Compare the formulas in [7] and [6, §4], for the case of conical diffraction by two-dimensional periodic structures, in which
the interfaces between contrasting homogeneous dielectrics are varied.

3.3. Structures with homogeneous components

An important class of periodic structures is comprised of those that consist of homogeneous components. The variational
gradient (47) can be formulated in terms of the material and geometric parameters of these components. Suppose that one
period of the slab consists of components described by N disjoint domains D with material coefficients given by spatial
constants ¢; and 7;. The coefficients exterior to the components are &g and 7o, and the normal vector n to dD; is directed
outward.

Variation of the values of tj and ¢;. If we keep the boundaries of the domains D; fixed and perturb the numbers &; and t;
by amounts &; and j, then (47) becomes

N N
§o=1m2<fj/Vu-Vuad—a)zéjfuuad) :lmZ(fj / uadanu—i—wz(fjejrj‘l —éj)/uuad). (51)
j=1 D;j j=1 -

i i i

Since the domains Dj are fixed, the estimate (48) yields

1€ — ol < CZw, +1%1%). (52)

and therefore (51) gives the gradient of £ with respect to the numbers ¢; and ;.

Variation of the boundaries. Let us now hold ¢; and 7; fixed and let each boundary dD; vary in the direction of a given
vector field v; defined on 9D by allowing the points on dD; to flow in the direction of v; for a distance h. Then (47)
becomes

EO_ImZ/ £(j — T0) VU - Vitag F 0* (€ — £0)Ullza). (53)

=1}
D;
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in which D j denotes the region traversed by the boundary points. The upper sign is taken if the normal component of v
is directed out of D; and the lower sign is taken if the normal component of v; is directed into D;. For small h, we obtain

N
&= hlmz / ((tj — ) Vu - Vuyg — w* () — €0)Ullyg)Vj-n+ o(h). (54)
J=13p;
From (48), we obtain, for sufficiently small h,

N 2/p
|é—£“o|<Ch2“’<z/(|ej—eo|l’+|rj—ro|")|vj-n|> : (55)
j=1aDj

This result implies only that £ is differentiable with respect to h" for 0 <r < 2/p at h = 0; in particular, £ is Holder
continuous with respect to uniform perturbations of the boundary. As discussed in the Introduction, it has been proven in
two-dimensional cases that £ is in fact differentiable with respect to h.

4. Eigenvalues and the scattering problem in weak form

The weak formulation of the scattering problem places it within the framework of sesquilinear forms in the Hilbert
space H,l( (£2) of k-pseudoperiodic functions on a period §2 of the scatterer. It allows proper treatment of guided modes,
as well as existence, uniqueness, and bounds of solutions. The weak formulation requires the Dirichlet-to-Neumann map
that characterizes outgoing fields. For bounded scatterers in R3, one may refer to Lenoir et al. [20] or Colton and Kress
[11, §5.3]; for periodic structures, our formulation is essentially the same as that used by Bonnet-Bendhia and Starling [21].

4.1. The weak formulation of the scattering problem

By treating the Helmholtz equation in the scattering Problem 2 in the weak sense, the second condition on the continuity
of u and td,u is automatically satisfied. The weak sense is expressed as follows: If ¢ and T are smooth except along smooth
surfaces of discontinuity, and if & is a smooth vector field and h is a smooth scalar function, then a function u satisfies the
Helmholtz equation

V-tVu+ew*u=V-£+h (56)

at points where ¢ and 7 are smooth and the condition of continuity of u and td,u on interfaces between materials if and
only if

/(rw VY — w?euv) = /(g Vv +hv) forallve C§®(R?). (57)
R3 R3
This weak form of the Helmholtz equation allows one to relax the regularity of € and 7 so that they are merely measurable
and the regularity of &, h, u, and the distributional gradient of u, so that they are required only to be locally square-
integrable.

To incorporate the pseudoperiodicity and outgoing conditions required by the scattering Problem 2, its weak form is
posed in one period §2 of the slab structure, between its bounding planes x3 = z_ and x3 =z (see Fig. 2). The pseudope-
riodicity condition is enforced by requiring that the solution u and the test functions v be in the pseudoperiodic Sobolev
space

HL(2) = {ue H'(2): um,x2,x3) = 2" 1u(0,x2,x3), u(xq,27,x3) = 2" 2u(x1,0,x3)}. (58)

The evaluation of u on the boundary of §2 is in the sense of the trace map H!(£2) — H? (0£2).
The outgoing condition is enforced through the Dirichlet-to-Neumann operator for outgoing fields, T : H 5 ('y—-H -3 ).
It acts on traces on I" of functions in H,}(.Q) and is defined through the Fourier transform as follows. For any f € H? (r),

let fm be the Fourier coefficients of e‘“"‘/f; this is a pair of numbers fm = (]‘nj, f,f{), one giving the mth pseudoperiodic
Fourier component of f on I_ and the other on I,

fa.xp.ze) =Y felmtox, (59)

meZ2

Then T is defined by
1 1 — oA
T:H2(I')>H™2(I), (THm = —inm fm. (60)

The operator T has a nonnegative real part T, and a nonpositive imaginary part T;:
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T=T,+iT;, (61)

T Pom = { il fm 1T € Ze, (62)
0 otherwise,

(ﬁ?)mz{‘”mfm ifm e 2p, (63)
0 otherwise.

The adjoint of T with respect to the pairing (f, g) = fr fg for fe H%(F) and g € H_%(F) is

T HY D) > H (D), (T*P)m = ifim]m. (64)
T characterizes the normal derivative of an outgoing function on I as a function of its values on I". If we denote the trace
of u on I by u again, then

opnu+Tu=0 on [ foruoutgoing, (65)
whereas the adjoint T* characterizes incoming fields,

pu+T*u=0 on I foruincoming. (66)
Using this together with the decomposition u = u'™ + u5¢ of the solution to the scattering Problem 2, we obtain
Zmezp _2inma;1r11cezr/mxsel(m+lc)x ; xel_,

L . , (67)
Zmezp —2inmbiNCeimXse=iM+HX =y e [y .

Ot + Tu = 9,u'™ + Tyl = :

The function (3, + T)ui™ gives rise to an element of the space H,l( (£2)* of bounded conjugate-linear functionals on H}((Q),
which we denote by fj?. We emphasize only the dependence on the frequency w, the parameters «, &9, and 7o being fixed.
We also write T® for T,

2wy =1 /((an +T?)u™)vdA forallve HL(£2), (68)
r
in which evaluation of v on I' is in the sense of the trace map.

Problem 4 (Scattering of an incident wave, weak form). Find a function u € H,l( (£2) such that

/(rVu -V — a)zsu\?) + 'co/(T‘”u)\_/ = f2(v) forallveHL(R). (69)
2 r

The scattering problem is generalized by allowing f;? to be replaced by a general element f H,}(.Q)*. Problem 3 has
the weak form:

Problem 5 (General scattering, weak form). Find a function u € H ,1( (£2) such that

/(rVu -V — a)zsu\_/) + to/(T“’u)\"/ = fRw)+ /(s -VV+hv) forallveHL(). (70)
2 r 2

The vector field & and the function h are in L?(£2), making the right-hand side a bounded conjugate-linear functional
on H}{ (£2). The equivalence of the scattering Problems 2 and 4 as well as their generalizations 3 and 5 is expressed in the
following theorem, whose proof is standard.

Proposition 6 (Equivalence of strong and weak forms). Let & and T be bounded and measurable in §2, and let & and h be in L%(£2). If
ue HllOC (R3) satisfies the scattering Problem 2 (resp. 3), in which the Helmholtz equation (21), (22) and the interface conditions (23)
together are replaced by the weak condition (57), then u|g € H,l( (£2) satisfies Problem 4 (resp. 5). Conversely, if u € H}(SZ) satisfies
Problem 4 (resp. 5), then there exists a unique extension ii of u to R such that ii satisfies Problem 2 (resp. 3).

The unique extension i of the solution u of Problem 4 or 5 to all of space, mentioned in Proposition 6, admits the Fourier
expansions (9), (10). Because of this, one can prove that i is bounded in any finite domain in R? by u and the incident field,
as expressed in the following theorem. The theorem may be proved most elegantly using an integral representation formula
that expresses the scattered field in a finite region to the left or right of one period of the structure as a bounded operator
of the Cauchy data on I' of the total field (see Lemma 2.1 of [22] and the proof of Lemma 3.8 of [23] for boundedness). We
take a more direct approach here.
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Lemma 7 (Boundedness of field extension). Let D be a bounded domain in R® and w, a positive number. There exist numbers Cy
and C,, independent of w as long as w < w., such that, ifu € H'. _(R3) is k-pseudoperiodic in X' = (x1, x2) and admits expansions
(9), (10), then

lullr ) < Cillllyn gy +C2 Y ([aine]® + [bIC|*) (1 + mi). (71)

mez,

loc

Proof. Because u is pseudoperiodic, it is sufficient to prove the theorem for a domain £2 of the form
Q:{XGR3:O<X1<27[,O<X2<27T,ZO<X3<Z,}, (72)

and for a domain of an analogous form with z; < x3 < zg. The proofs are analogous. It is convenient to express the form (9)
as

u(x/,X3): Z a;]r;ceinm(@fz,)ei(erK)x’ + Z amefinm(x;,fz,)ei(mﬂ()x’ (x3< 7). (73)

mez, mez?

Denote the first sum by u; and the second by u5,

[luzl =42 )" /|a e~ im(5=2)12 gy

mezZ? zo

=472 Z |G| /‘672””"("3 )| dxs

meZ2
2 2 2 |am|2
<4nt(z-—z0) Y laml* +47° Y T (74)
me¢Z, meZ, Nim
The gradient of u in £2 is
Vu, = Z ame—inm(xg—z,)ei(l<+m)x/<i(K m), —i77m>~ (75)

meZ2

Similar estimates yield

2 2
K+m
/|Vuz|2 <Atz —20) Y lawl*(np + Ik +mP?) + 472 ) Pclill it il (76)
P m¢Z, mezZ, 2|77m|
For uq, we obtain the estimate
[(|u1|2 +|Vu ) <4m?(z- - z0) Z |a}{1‘c|2(1 +nE, + (k +m)?). (77)

o mezp

From the estimates (76), (77) and the definition of the numbers 7, one infers that there is a positive constant c¢ such that
c [Qui+1vup) < 3 JaieP 1 m) + 3 lanf (1 -+ m). (78)
P mez, mez?
and ¢ does not depend on w as long as w < wy. The trace theorem allows us to estimate the coefficients an; in terms of u
in £2,
> A an|* (1 Im) + Y JamP (14 ml) = lulr 132 < MUl g (79)
mez, m¢zZ,
From estimates (77), (78), (79), we obtain
2 2 inc|2
clullfy g < Ml g, +2 D [an] (1 + ml). (80)

mezp

A similar estimate is obtained for a domain analogous to §2 for x3 > z... As a result of the pseudoperiodicity of u and the
boundedness of D, we obtain the desired estimate. O
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4.2. Eigenvalues of the scattering problem

We will assume that the functions &(x) and t(x) are bounded from below and above in 2 by fixed positive constants,
0<e? <e<el and 0<7t<T(x)<7? forxe . (81)

The weak form of the scattering problem can be expressed in terms of the following sesquilinear forms in H,l (£2):

a“’(u,v):/tVu-V\7dV+to/(T“’u)\7dA, (82)
2

aﬁ‘)(u,v)=/tVu'Vf/dV—i-to/(Tr“’u)\'/dA, (83)
2 r

0@, v) = 1o / (TCu)7dA, (84)

r
b(u,v):fsu\'/dv. (85)
2

Observe that a” =ay + ia{’. In terms of these forms, Problem 4 can be written as

a®(u, v) —’b(u,v) = fE(v) forallveHL (), (86)
and the generalized scattering problem as

a®u,v) —w?bu,v) = f(v) forallve HL.(2) (feHL()"). (87)
We consider first the homogeneous problem

a®(u,v) —w?b(u,v)=0 forallve H,l(.Q). (88)

This is a nonlinear eigenvalue problem because of the dependence of a” on w through the Dirichlet-to-Neumann opera-
tor T®.

Definition 8. A number w is said to be an eigenvalue of a one-parameter family of bounded sesquilinear forms c®(:,-) in
a Hilbert space H if there exists a nonzero element u € H such that, for all v € H, ¢®(u, v) =0.

The eigenvalues of the family a® — w?b are in general complex. Its real eigenvalues form a subset of the eigenvalues of
the real part of the form, namely a® — w?b, as stated in Proposition 9 below. For an eigenfunction of the real form to be
an eigenvalue of the complex form also, all of its propagating Fourier harmonics must vanish. This means that, as long as
Z, is empty, a nontrivial solution of (88), for real w?, falls off exponentially with distance from the slab structure; such
a field is a guided mode of the slab. If this frequency w is large enough so that Z, is not empty, then w is an embedded
eigenvalue for the x-pseudoperiodic operator corresponding to the partial (in X' = (x1, x2)) Floquet-Bloch decomposition of
the Helmholtz equation in R3. Typically, an embedded eigenvalue is not robust with respect to perturbations of «, &, or T
because the condition (91) below that the coefficients of all propagating harmonics vanish is generically not satisfied. The
existence of a guided mode requires special conditions, such as symmetry of ¢ and 7 for k = 0. The reader is referred to
[15,21,24] for further discussion of non-robust guided modes in this context.

Proposition 9 (Characterization of real eigenvalues). If w? € R, then a function u € H,lc (£2) satisfies the homogeneous problem (88) if
and only if it satisfies the equation

a?(u, v) —iaf (u, v) — @’b(u,v)=0 forallve H,l (£2) (89)
and if and only if it satisfies the pair

a?(u, v) —w?bu,v)=0 forallve H,lc(Q), (90)

(lﬂ?)m:O forallme 2. (91)

Proof. We prove that (88) is equivalent to the pair (90), (91). The equivalence to Eq. (89) is proved similarly. Suppose that
w and u # 0 satisfy (88). The imaginary part of this equation with v = u, together with the expression (63) for T;, gives

0y —nm!(LﬂF)m|2=/(T;Uu)a:o. o)

meZz, r
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Since 1y > 0 for all m € Zp, all propagating Fourier coefficients (er)m of u on I' vanish. This in turn proves that
aj(u,v)=0 for all v e H}C (£2), so that w and u satisfy (90). Conversely, if (91) holds, then a;(u, v) =0 for all v € H}C (£2)
and therefore (90) is equivalent to (88). O

Proposition 10 (Real eigenvalue sequences). Given the bounds (81) on the functions & and t, the eigenvalues w of the family
a’(u,v) — w?b(u, v) consist of the elements of a nondecreasing sequence of positive numbers {wj(e, r)}j?il that tends to oo and
their additive inverses. The eigenvalues of the family a®(u, v) — w®b(u, v) consist of a subsequence {wj (e, 17)},’;’:1 of this sequence,
where N is a nonnegative integer (perhaps 0) or infinity.

Proof. The proof follows [21]. As the family a®(u, v) — w?b(u, v) depends only on w?, we shall consider only nonnegative
values of w. Let w > 0 be given, and let us consider the set of numbers A such that there exists a nonzero function
ue H}C (£2) such that a? (u, -) —Ab(u, -) = 0. According to the min-max principle (see [17, §XIII], for example), this set consists
of a strictly increasing sequence of positive numbers {A;f’(e, ‘L')};?‘;1 defined by

a®(u,u
W9, T)=  sup in ar, u)
vi-1<12() ue(vi-hyh\(oy b(u,u)
ueH} (2)
= sup inf [o TIVu?dV + 1 [(TCwi dA o)
Vi-l<12(2) ue(vi-hyL\{o} [ €lul>dA
ueH (2)

in which the supremum is taken over all k-dimensional subspaces V¥ of L2(£2), for k= j — 1, and “L” refers to the
orthogonal complement with respect to the norm b(u, u) in L?(£2). One can prove that, for each positive integer j, A‘jf’(e, T)
is a continuous and nonincreasing function of @ > 0 (see the proof of Theorem 3.3 of [21]). There is therefore, for each j,
exactly one positive number, which we denote by wj(¢, 7), that satisfies

wje. 1> =27 e, 0). (94)

The number w is an eigenvalue of the family a?(u, v) — ®?b(u, v) if and only if there exists an integer j such that w? =
kj.’)(s, 7). The sequence {wj(¢, t)}]?; therefore consists of all the nonnegative eigenvalues of the family.
The second statement in the proposition follows from this and Proposition 9. O

Because the Rayleigh quotient in the min-max principle (93) decreases with an increase in ¢ and increases with an
increase in 7, the eigenvalues inherit the property of monotonicity with respect to these functions.

Proposition 11 (Eigenvalue dependence on € and t). Let €_, €, T—, and t4 be measurable real-valued functions on £2 that satisfy
the bounds (81) and the inequalities £_ (x) < &4 (x) and T_(x) < T4 (x) on 2. Then, for each positive integer j,

wj(ey, 7o) <wj(e_, Ty). (95)
5. Proof of the main theorem

Proof of the theorem on differentiability of the solution of u and the transmitted energy £ with respect to ¢ and t
rely on Meyers’ theorem on higher regularity of solutions of elliptic equations. As we have discussed, in order to apply this
theorem to the solution u of the scattering problem, it is necessary to be assured that u is uniformly bounded over all
admissible functions ¢ and 7. The precise condition we will need is one on lower and upper bounding functions for these
material coefficients.

Condition 12 (Non-resonance). For a given number w € R, the measurable real-valued functions e_, £, T_, and T4 on 2 satisfy the
non-resonance condition if, for each pair (¢, ) of measurable real-valued functions on §2 that satisfy
- <e<er(® and T-(0) <TRX) < T4 (%), (96)

or all x € £2, w is not an eigenvalue of the family a® — w?b.
fi g ly

This condition can be arranged if we choose the upper and lower bounding functions such that, for some integer j,
wj(e—, T4) <wjq1(84, T2). (97)
Then, Proposition 11 guarantees that, for all functions ¢ and t between these functions,

wj(e, T) Swj(e-, T4) < Wj11(84,T-) S Wjt1(€, T), (98)
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in which case Condition 12 holds for each w strictly between wj(e_, 74) and wjyq1(é4, 7). The condition (97) can be
achieved, for example, by beginning with a fixed pair of functions (&, 7) for which wj(¢, 7) < wj;1(€, ), and varying them
up and down continuously in the L° norm, with respect to which each wj(g, ) is a continuous function of & and 7. In
view of the fact that the eigenvalues of a® — w?b are a subset of {a)j};?il, the condition (97) is evidently stronger than
what is necessary. In fact, as we have discussed, any w; is typically not an eigenvalue of the scattering problem, for given
material coefficients ¢ and .

5.1. A uniform bound for the scattered field

The following theorem guarantees a bound on the solution of the scattering problem that is uniform over functions &
and t bounded below and above by functions that satisfy Condition 12.

Theorem 13 (Bound on the scattered field). Let ¢_, €4, T, and t4+ be measurable real-valued functions on $2 that satisfy the
bounds (81) and the non-resonance Condition 12 for all w in some positive interval [w_, w4 ]. There exists a positive number K
such that, for each w € [w—, w4] and each pair of measurable real-valued functions & and T on £2 that satisfy

e—(<e<er(® and (%) <TRX) < T4 (%), (99)
the generalized scattering problem (70) admits a unique solution u such that
Il gy < KIFllyga gy (100)

where f € H,l((.Q)* denotes the general functional on the right-hand side of (70).
Proof. We first prove that the scattering problem (70) admits a unique solution for the parameters given in the theorem.
Rewrite (87) as

[a®(u, v) +b(u, v)] = (@ +1)b(u, v) = f (). (101)

Since both a and b are bounded forms in H}((Q), there exist linear operators A% and C® from H}((Q) into itself, as well as
an element ]‘ € H}C (£2) defined through

(Au, v) =a®(,v) +b(u,v), (102)

(Cu,v) = —(0* +1)b(u, v), (103)

(f.v)=fw). (104)
In terms of these objects, Eq. (101) takes the form

(A® +C®)u=Ff. (105)

The operator A® is bijective with a bounded inverse because a®(u, v) + b(u, v) is coercive (recall that T® is a positive
operator):

Re(a“’(u,u)—i—b(u,u))=/I|Vu|2+/8|u|2+10/(Tﬁ"u)ﬁ

2 2 r

> 20 [19up 4 e [ > min{r®. e Jlul g ) (106)
2 2

Moreover, C* is compact because of the compact embedding of H,lc(fz) into L2(£2). By the Fredholm alternative, (105)
(equivalently, (101)) has a unique solution if A® + C® is injective, that is, w is not an eigenvalue of the family a® — w?b.
But this is implied by the non-resonance Condition 12 which we have assumed for w.

We turn to establishing a bound on this solution that is uniform over all functions ¢ and 7 and numbers @ that
satisfy the hypotheses of the theorem and all f in the unit ball in H}(Q)*. To accomplish this, it suffices to consider
arbitrary sequences &, and t, of measurable functions that satisfy the bounds (99), a sequence w, of numbers satisfying
w_ < wp < oy, and sequences u, € HL(2) and f, € H}(2)* with [|un|ly1p) <1 and f; — 0 such that

/(rnVun - VV — wenun¥) + To /(T“}"un)\'f = fa(v) forallveH (), (107)

2 r

and to prove that, necessarily, [|un|ly1o) — 0. We may as well assume (by extracting a subsequence) that there exists
a number w € [w_, w4 ] such that w, — w. We rewrite this equation as

f(rnVun VV — w?enun¥) + 7o /(T“’un)\'/ =gn(v) forallveHL(£2), (108)
2 r
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in which the elements g, € H}(SZ)* are defined by

80V = )+ (@7~ 02) [[ennd + 70 [ (1 = T un. (109)
2 r

We shall prove that g, — 0 in Hl(£2)*.
We first estimate the third term in (109),

ro/(T“)—T“’")un\"/:—iro Z (ng—nﬁn)ﬁnmf/m, (110)
r meZ?

in which, for simplicity, ii,, denotes the x-Fourier coefficient of uy,| . It is straightforward from the definition of 7, to
demonstrate that there exists a number ¢ such that, for all m € Z? and all n sufficiently large,

0% —nen| < clo? — 2|2 (111)

This allows us to estimate, using ||uy|l 41 @ <1
K

; n\5 2 211/2 2.2 211/2
’—lfo > (i = 1) nm V| < toc|@? — @ | lunl Pl 2 1VIr ll2(@) < oMc|@? —op | Vi o) (112)
meZ2

This proves that

rO/(T‘”—T“)")un\"/e 0 asn— oo (113)
r

uniformly over v € HL(£2) with |lv| = 1.
The second term of (109) is estimated by

2 2 . 01,2 _ 2 201,22
‘(w —wn)/enunv <el|o? — op|lunllz) 1VIl2@@) < MPel|0® — of| IVl 1 o) (114)
2
demonstrating that
(wz—a)ﬁ)/snun\'z—>0 asn — oo (115)

2

uniformly over v € H,l((SZ) with ||v| =1.
The results (113), (115), together with the convergence f, — 0 prove the strong convergence of g, to zero in H;1< (£2)*.
We shall now demonstrate that there exists a function u € H }{ (£2), measurable functions ¢ and 7 satisfying the bounds
(99), and an infinite subset 7" of the positive integers such that the following convergences hold, restricted to indices in the
subsequence 77,

up—u weak H'(£2),

up — u strong L*(£2),

en— & weak* L®(£2),

Enlln — U strong H~1(£2),

T, — T G-convergence in 2,

gn— 0 strong H~1(£2). (116)

The first and second subsequence limits are due to the uniform bound on the functions u, in H'(£2), the Alaoglu theorem,
and the compact embedding of H!(£2) into L?(£2). The third is due to the uniform bound on the functions &, in L>®(£2)
and the Alaoglu theorem. Because of the strong L% convergence of u,, we obtain, for each v € L2(£2), u,v — uv in L1(£2)
(for the subsequence 7°), and therefore because of the weak-* convergence of &,

/enun\'/—> /gur/ forall v e HY(£2) D H(£2), (117)
2 2

from which we infer that e u, — eu weakly in H~1(£2) = Hé (£2)*, or, more precisely, that j(e,un) — j(eu), where j is the
natural embedding of L?(£2) into H~'(£2) defined by j(w)(v) = [, w¥ for v € H}(£2). Since this embedding is compact
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and the sequence &,u, is bounded in L2(§2), we have strong (and therefore also weak) convergence of a subsequence,
&nlln — W € H™1(£2), and by the uniqueness of weak limits, we obtain w = eu, which justifies the fourth convergence in the
list (116). The last convergence follows from the strong convergence g, — 0 in H}((.Q)* and the inclusion Hé(Q) C H}(Q).
The existence of the G-limit (or H-limit) t satisfying the bounds 7_ (x) < 7(x) < 74+ (x) for x € £2 follows from Theorem 2 of
Murat and Tartar [25] and the discussion in the second paragraph of that work (p. 21).

The divergence V - & of a vector field £ € L2(£2) is the element of H~1(£2) defined by

(V-s)(v):/$~VV forveH(l)(.Q), (118)
Q
whose norm is bounded by the norm of &,
IV - &llg-102) < €l 2(0)- (119)
From Eq. (108) and items 4 and 6 in (116), we infer
V- 7V, — j(eu) strongly in H=1(£2) (120)

(the action of the integral over I" in (108) is trivial on H(l,(.Q)). Because of the strong convergence of V - t,Vu,, the weak
convergence of u, in H'(§2) and the G-convergence of T,, we may apply Theorem 1 of [25] to deduce that

TV, — TVu  weakly in L2(£2). (121)
Because of the weak convergence of u, in H'(£2), we have, for all v e H}(22) (forne T)
rof(T‘“un)\'/ = rofun(T‘”*v) — rg/u(Tw*v) = rO/(T‘”u)\'/. (122)
r r r r
We can now take the limit of each term in (108) to obtain

/(rVu VU —w?euv) + to/(T“’u)\_/ =0 forallveH (). (123)
2 r

By the uniqueness of the solution to this problem, which we proved above, we must have u =0 in H'(£2). Eq. (108), with
v set equal to uy, gives

0,62 2 2 2 0 2
90 unl? g, > 0 [ enlunl >0 [ 1 = gatun)
2

2
=2 (lunllfr o) = ltnllfa ) = [gntun)|, (124)
whence we obtain
(€S @? + ) lunllfz g = T2MlunlF ) — |gnlun)]. (125)

From of the strong convergence u,t = 0 in L%*(£2) and the strong convergence of g, — 0 in H,l((.Q)*, we deduce that
lunllg1 ey — O, as we set out to do. We conclude that there exists a number K such that the solution u of the generalized
scattering problem (70) satisfies

”u”H’l((_Q) < K”f”H,l((Q)* (126)

forall f e H,l((.Q)*, for all functions ¢ and t that satisfy (99), and for all w € [w—, w4+]. O

5.2. Field sensitivity to LP perturbations

This section contains the main theorem of this work, Theorem 15, and its proof. The theorem makes rigorous the formal
variational gradient, obtained in Section 2.2, of the solution u of the scattering problem as a function of the material
coefficients ¢ and t. The field u satisfies

/(rVu VY — w?euv) + ‘co/(T‘”u)\'/ = ro/(an + T?)u™y (127)
Q r r

forall v e H,} (£2). If we replace ¢, 7, and u with € + &, T + 7, and u + @ and subtract from (127), we obtain
f(rvﬁ VU — w?eliv) + ro/(T‘”a)\'/ =— /(W(u +1)- Vi — 0?8 (u+)v). (128)
2 r Q
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Retaining only the linear part of the right-hand side gives an equation for iig, the formal linearization of the perturbation
of u about (g, 1),

/(tszo ViV — w?eligV) + To /(T“’ﬂo)\'/ =— /(fw VY — w?Euv). (129)
2 r ko)

The task is to prove that || — tig]| = O(|| (¢, T)||) as & and T tend to zero in an LP norm.
Recall that, if, for some vector function & € L2(£2) and scalar function h € L2(£2), a function u € Hg)(.Q) satisfies

/(rVu-V\'/—wzsu\'/):/(s~V\7+h\7) (130)
2 2
forall v e H(l) (£2), we say that u satisfies, in the weak sense, the partial differential equation

V.tVu—w?cu=V-£+h inS. (131)

The proof of Theorem 15 requires the following specialization of the theorem of Meyers on the higher integral regularity

of solutions of elliptic differential equations.?
Theorem 14 (Meyers regularity). Given a bounded domain D C R3, a real-valued measurable function T (x) in D, and positive real
numbers t_, T4, and Ro such that

O<7_<t(® <14, (132)
there exists a number Q with 2 < Q < 6 such that, for each q satisfying

2<q<Q <6, (133)

there exist constants C1 and Cy such that, given

ue HY(D), ¢el9D), hel*D), (134)
V.-tVu=V.-é£+h inD, (135)
By(2R) C D, withy e D and R > Ry, (136)

the following inequalities hold:

IVullLa, @y < Cilllull 2, qry) + 1§ 196, @ry) + Ihll28, 2r) ] (137)
lullzay Ry < C2lltllg s, (r))- (138)

The second statement (138) is a result of the compact embedding of Hl(By(R)) into LY(By(R)) for q <6 (see Theo-
rem 7.26 of [26], for example).

Theorem 15 (Field sensitivity to LP variations). Let €_, €., T_, and T, be measurable real-valued functions on $2 that sat-
isfy the bounds (81) and the non-resonance Condition 12 for all w in some positive interval [w_, w,]. Assume additionally that
Zmezp(la,‘;fl2 + |binc|2y is bounded uniformly for @ € [w—, w]. Then there exist real numbers C and p > 6 such that, for all

w € [w_, w4 ] and all measurable functions ¢, &, T, and T on $2 that satisfy

e_x)<e@) <er(x) and T_(x) <T(x) <T4(X), (139)
<

)
)< (e+H®<er(®) and () < (T+ DX < T4(X), (140)
the following statement holds:

Ifue H,l (£2) is the unique solution of the scattering problem guaranteed by Theorem 13 (that is, u satisfies (127) for all v €
H,l((.Q)), u + 1 is the unique solution of the scattering problem with t replaced by t + T and & replaced by € + & in (127), and iy
satisfies the approximate Eq. (129) forall v € H,l( (£2), then the linear operator

2 [ o
(LP(£2))" — H'(2) :: (£,8) > Hio (141)
2 In Theorem 2 of [14], we fix p; =2, r =2, and the dimension n = 3. The p in Meyers' theorem corresponds to our q here. We also enforce Q < 6,

which guarantees r* > q for all g < Q, because r* = (r"! —n~1)"1 =6 > Q > q. We may use Eq. (49) from the theorem because q > 2 > 6/5 =2n/(n +2)
with n=3.
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(restricted to (¢, T) admissible by (140)) satisfies
ltioll 1y < C(IIE lIp(2) + 1ENILr(22)) (142)

and
2

I —tioll g1y < C(ITILr ) + 1ElILp(2)) (143)

Moreover, the derivative (141) is Lipschitz continuous, that is, if (T, &) — ﬁg, and (7, &) — ﬁg denote the derivatives at (¢!, t1)
and (€%, T2), respectively, then

)
Ug —Up

1 2 1 2 . %
|H1((2) <C(<! -7 HLP(.Q) + et —e ||Lp(sz))(||f||ﬂ’(9) + IEllr @) (144)
so long as the functions €1, €2, T1, 72, &1 + &, 62 + & t! + ¥, and 12 + ¥ satisfy the bounds (139), (140).
Because the conclusion of the theorem holds for each g > p if it holds for a given p, the condition p > 6 could be

logically be replaced, equivalently, with the condition p > 1. We have used the number 6 because, in the proof, p arises as
a number greater than 6.

Proof. Let ¢, &, 7, and T satisfy the bounds in the theorem, and let w € [w_, w.] be given. Let By be a ball of radius Ry
containing £2, and let B; and B; be the balls whose centers coincide with that of By and whose radii are 2Ry and 4Ry,
respectively. Let Q be as provided in Theorem 14 for the domain B, and the constant Rg. Let s, q, and p be such that

2<s<q<Q, (145)
¢ '+p'=s"! and s '4+p =21 (146)
Let the constants C1 and C; in Theorem 14 be valid for both q and s in place of the g in the theorem. Denote the solutions
of the scattering problems in R corresponding to u and u + i1 by these same symbols.

Theorem 13 and Lemma 7 together provide a number K1, independent of the choice of ¢, &, t, and 7, such that

lu+ s, < K1 and [ullyigg, < Ki. (147)

Because the condition on the incident field stated in the theorem makes f{* bounded uniformly over w, this number K is
also independent of w € [w_, w4].
We begin by bounding IIﬁollHl(Q) by a multiple of ||T||1r(2) + II€]lLr(s2)- To do this, we must estimate the right-hand side

of (129) in H}((Q)*. Since u satisfies the scattering problem (127), u satisfies the differential equation
V-tVu+w?eu=0 inR>. (148)

Applying Theorem 14 to this equation yields

|@*8u] o) < @PEI @) Ul @) < C20? 8l lullgig) < C2Kiwd [Ellr(2), (149)
1ZVull 2@y < IE @I Vulls@) < CillE i@ [lull2s,) + |@®eu 2, ] < C1K1(1+e2w?) €l (150)

From these estimates and Theorem 13, we infer that iy is the unique function in H,l( (£2) that satisfies Eq. (128) for all
ve H}(Q) and that there is a constant K3, independent of ¢, &, t, T, and w such that

lltioll 1 () < K2[lIElIp(2) + 1 lILr () ]- (151)

Because of this, the linear functional (g, T) — g is uniformly bounded from (LP(£2))? to H,l( (£2), proving the first part of
the theorem.

An analogous argument can be applied to the system (128) for & and the corresponding differential equation for u + 1,
which appears on the right-hand side of (128),

V- T+DH)Vu+i)+o?c+8)u+iu)=0 inR3. (152)
This results in the inequality (151), with & in place of g, which, together with Lemma 7, yields (reusing the constant K3),
I 18, < K2[IEllzec2) + N1ElILp(2)]- (153)

Next, we bound the “second-order” part of the right-hand side of (128), namely w?&ii and V - Vit in HL(£2)* by
a multiple of (||T||rr(2) + ||é||Lp(g))2. For this, we apply Theorem 14 to the differential equation
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V. 1Vi+ew?ll=—V - tV(u+1i) — éw?(u+1) inBy; (154)
2y~ 2% -
| EUHLz(Q) S o€l @)lltlisw)
< G |E )il g o) < C2Kaoh Bl @) [I1E @) + IElr @) ]: (155)
1T Vil 20y < ITlr@) I Vills@)
< CillEle@ [l 2, + @ lleitl 2, + +0? [E@+ D] g, ) + [FV @+ D 15 5, ]- (156)
The first two terms in the right-hand side of this last estimate are in turn estimated by
Il 25,y + @* €l 25,y < K2(1 4+ @3e)[I1F ILp(2) + IEllLr () ]- (157)
The last two terms are estimated by
@ Eu+D] g, < OBy U+ llisy) < C20? 18l U+l 5,y < C2K1@l [Ellie sy, (158)

|2V (u+1i)

o o o o 2 o o
L5(B1) < ”T”LP(B])HV(U"FL’) L9(By) <C1”T”LP(B1)[||U+u||L2(Bz)+ Hw (8+8)(u+u)HL2(BZ)]
<CiK1(1+&%02) 1T Iy (159)

To simplify notation in the rest of the proof, the symbol C will denote different constants. By putting the estimates (156),
(157), (158), (159) together and using the periodicity of £ and 7 to get

[IZNp By + I8 ] < C[IIElIp2) + NElLp (2] (160)
we obtain
I Villl 20y < ClE @[T Ir@) + 1Elp @) ] (161)

Considering L? functions and their divergences as elements of H!(£2)*, we conclude from (155) and (161) that

|V - Vil + w?Eil

: y 2
Hi(@2)* < C(IIENr ) + NElr ()" (162)

Egs. (128) and (129) give the system for i — 1ig,

/(rV(ﬂ —1ig) - VV — w?e(ll — lig)V) + T / T(l — 11g)V
2 r
=— /(fva -VV —w?gv) forallv e HL(£2). (163)
2

This, together with Theorem 13 and Eq. (162), gives us the desired result

.. y . 2
i — ol g1y < C(ITNLr ) + IElILp(2)) (164)

in which the constant is independent of ¢, &, T, 7, and w, subject to the conditions in the theorem.

Finally, we prove the Lipschitz continuity of the derivative with respect to & and 7 in the LP norm. To do this, we let
& and T be fixed as directions of differentiation and perturb the functions ¢ and 7, at which we differentiate, by functions
& and 7, remembering to require that &, 7, 6 +&, T+ 7T, e+ &, 1+ 7T, e+ &+&, and t + T + 7 satisfy the bounds in the
hypotheses of the theorem. This results in perturbations of the fields u and g,

e, ) (e+E,T+7T), (165)
U u+i, (166)
g > tlg + lclo. (167)

By subtracting (129) as it is written from (129) with these substitutions, we obtain

/((r+f)Vﬁo-V\'/—a)(s—l—é)fto\?)—kro/Twﬁo\?
2 r
= —/(fva VU — ?E0V) — /(fvao ViV — w?&ligV). (168)
2 2

Steps analogous to those between Eqs. (155) and (162) give us the estimates
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|V -2V + w?8il] 1 o) < C(IE @) + 18 @) (IE @) + 1E]0(2) (169)

|V - £Viip + w?&ilg Hm(g)* < C(ITNerc2) + &) (1T 2y + 1€ NLr(2))s (170)
in which the constant is independent of the functions. An application of Theorem 13 to Eq. (168) gives a uniform bound

”a0“H1(9) < C(IFlIp () + NENp ) (1T lLpc2) + 1ElILr(2))- (171)

This means that the linear functional (&, ) — (lig +L:l()), which is the derivative of the total field with respect to the material
parameters at (¢ + &, T 4 7), is bounded by C(||T[lLr(2) + 1€ llLr(2)). We conclude that the derivative, defined on admissible
functions & and 7, is Lipschitz continuous with respect to the LP? norm over functions ¢ and t that satisfy the hypotheses
of the theorem. 0O

5.3. Transmitted energy

We take bi" = 0 so that there is a source field incident upon the slab only from the left. The energy transmitted to the
right-hand side of the slab is given by

€=lm/toﬂ8nu = —lm/to(Tu)ﬂ. (172)
ry ry
Let &t be a arbitrary perturbation of u, and £ the corresponding perturbation of &,
£+é=—lm/ro(T(u+ﬂ))(a+fc). (173)
Iy

From the equations for £ and &€ + &, we obtain
&=—Im / (Tl + (Tu)it + (Ti)). (174)
Iy
Denote the linear part of I by 50,
Eou, i) = —lm/ To((Tih)id + (Tu)it). (175)
Iy

Because of the trace theorem and the boundedness of T, we have

2
€] < Cliullg @yl 1 (). (177)
58 )

This demonstrates that the map H}{ (£2) > R::u+> & is bounded and differentiable and that the bounded linear map
HY(2) >R & (179)

defined through (175) is the derivative of u — £ at u.

Because the adjoint problem for the transmission described below is a scattering problem with wavevector —«, we will
need to exhibit explicitly the dependence of 1, Zp, and T on the wavevector, which we have suppressed until now. From
the definition (8) of ny, and Z,, we obtain

Nm =0 2, =—Z2. (180)
Using this and the relation fllr; = ﬁ'im for the x-Fourier coefficients (59) of a function u € H}C (£2) restricted to I" by the
trace map, one can derive the relations

Th=T (i, Tei=T"d, (181)
and thence the equivalent expression for the differential of the transmitted energy

Eo=E(u, i) =— [mf to((T— — T* )il (182)
Iy
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Essentially following [13], we will demonstrate that the solution uaq to an adjoint scattering problem represents the
transmission functional. We take as incident field a —«-pseudoperiodic left-traveling wave u;'(‘f, incident upon the slab from
the right, that is obtained by sending the transmitted propagating harmonics of u back toward the slab. This is done by

conjugating u and retaining only the propagating harmonics:

U= bye el MO (3> 7)), (183)
meZ2
ul® — propagating part of ii = Z b_me " X3 pl(m—k)x’, (184)
meZ,“

Let uyq € Hl_K (£2) be the solution to Problem 4 with Bloch wavevector —« and incident field u;‘f; thus u,q satisfies

/(TVuad VW — @?euyw) + To /(T,Kuad)v‘v =19 f(an + T_)ulw (185)
r

2 Iy

for all w e HL,(£2). Observe that, since u;r(‘f has no right-traveling part, (8, + T_K)uia‘éﬂp+ = (T—y — Ti,()uil‘(‘ﬂp+ By mak-
ing the identification iip = w, and using the first identity in (181) and the definition of ul} together with the fact that
(T—, — T*,) vanishes on the linear and exponential Fourier harmonics, we obtain

/(rvﬁo - Vig — @®elloliag) + To /(T,(ﬁo)uad =1 /((T_K —T*,)i)io. (186)
Q r it

Using the identification u,q = v in Eq. (129) for the derivative of (7, &) — u and Eq. (182), with iig in place of ii, we obtain
an expression for the derivative of the composite operation (t,€) > u+ &,

Eo = Eo(u, llg) = Im/(fVu - Vilad — 0*EUllzg). (187)
2

The derivative of (7, &) — u > &£ is Lipschitz continuous, as we now demonstrate. Consider the derivative at two different
pairs (g, 7) = (e12, 71-2),

G, B iy ' ud) at(el ), (188)
G, B> i Eu? i) at(e?, 7). (189)
By using Eq. (182), we obtain
(' i) — £ i) = —Im / [T — T* ) (@' — 82)il + (T — T, )8 (i) — i) . (190)
Iy

From of the boundedness of (T_, — T*,) and estimates (153), (151), (147), (144), we obtain the estimate

[Eu i) — E(u?. ug)| < (7'~ Tz“Lp(.(z) + et —e? ”LP(Q))(“f”LP(SZ) +1Ellr(2)). (191)

which demonstrates the Lipschitz continuity.
The results of this section are summarized in the following theorem. An analogous theorem can be established for the
variational derivative of bp,, given by (50).

Theorem 16 (Transmission sensitivity to LP perturbations). Let the stipulations in Theorem 15 hold, as well as Egs. (172), (173)
defining the transmitted energy £ and its perturbation £. Then the linear operator

(L92))" > R (1,8) > & (192)
defined through (187) is bounded and
s & . o 2
1€ — &0l < C(I Tl () + IElIp ()" (193)

Moreover, the derivative operator (192) is Lipschitz continuous, restricted to functions (¢, T) that satisfy the hypotheses of Theorem 15.
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