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Asymptotic behavior

1. Introduction

In this work we deal with positive solutions to the boundary blow-up problem

{Au:f(u) in £2,

11
U=00 on o2, (11)

where §2 is a smooth bounded domain of RN, f a continuous function and by a solution we mean a function u €
Hlloc(fz) N C($2) verifying the equation in (1.1) in the weak sense, and the boundary condition in the sense u(x) — oo
as d(x) :=dist(x, 9£2) — 0 (of course it is a consequence of standard regularity theory that u € C1-%(£2) for every « € (0, 1),
but we are not needing this extra amount of regularity in what follows).

Problems like (1.1) have been largely dealt with in the recent years. They are usually known as boundary blow-up
problems, and their solutions are sometimes termed as large solutions. We refer the interested reader to the by now classical
papers by Bieberbach [2], Rademacher [23], Keller [16] and Osserman [22], and to the recent survey [24].

One of the earliest known features of problem (1.1) is that a necessary and sufficient condition for existence of solutions
when f is increasing is the so-called Keller-Osserman condition:

o0

dt
NG < 00 (1.2)

to

for some tp > 0, where F(t) = fotf(‘[)d‘[. See [16], [22] and also [10] where f is not necessarily increasing.
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However, the question of uniqueness is not completely understood. While it seems clear that the monotonicity of f is
necessary (as the one-dimensional examples show), it is not even known if it is also sufficient for uniqueness to hold. At
the best of our knowledge, some additional restrictions are needed.

As a matter of fact, the first important restriction deals with the boundary behavior of all possible solutions to (1.1),
a question which is intimately connected to that of uniqueness. It is known in general that such boundary behavior is
implicitly given by

o) _
dx)—0 d(x)

)

for any positive solution u to (1.1), where the function v is defined by

T dt
Wo(t)=t/\/ﬁ,

(see Theorem 1.6 in [10]). But to obtain an explicit characterization for the solution u itself, some further restrictions are
needed. For instance, a condition like

lim wO(K ) >1 foreveryk € (0,1), (1.3)
t—>oo Yol(t

implies
lim 4% 4 (14)
d0—0 ¢o(d(x))

where ¢y is the inverse function of ¥, which solves the one-dimensional problem ¢ = f(¢o) in x > 0 with ¢(0) = cc. One
simple condition on f to guarantee (1.3) is that f(t)/tP be increasing for some p > 1 and all large t. Under this condition
it follows from (1.4) that for any two solutions u, v to (1.1) we have u/v — 1 as d(x) — 0. Then an additional monotonicity
condition like

f®

— is increasing for t > 0 (1.5)

implies uniqueness (see [1]). Let us also mention that the monotonicity of f(t)/tP for large t and some p > 1 implies
condition (1.2).

The first objective of the present work is to show that condition (1.5) is not necessary for uniqueness to hold. That is, it
suffices to assume that f is increasing and there exists p > 1 such that f(t)/tP is increasing for large t. Our proof is inspired
in [10], where the radial case was considered under the assumption that either f(t) is convex or f(t)/t is increasing for
large t (although it can be shown that the former condition implies the latter at least for smooth functions, as long as the
Keller-Osserman condition holds).

Our second aim is to extend the previously mentioned uniqueness result to slightly more general problems than (1.1),
involving weights, namely

{Au:ﬁ@ﬂm in £2,

U=o00 on ds2, (16)

where a € C(£2) is a nonnegative function, possibly vanishing on 8£2. If this is the case then the profile of solutions near
0%2 is affected, depending on the vanishing rate of a (see [4-7,9,13,14,18,19,21,25,26]).

However, the most interesting point regarding problem (1.6) in the present paper is that to prove that the quotient
of any two solutions tends to one at the boundary we do not obtain the boundary behavior of each single solution, but
proceed directly. This entails that no precise asymptotic profile needs to be assumed for the weight near 952, only a growth
condition, which will take the form

C1d(x)” <a(x) < C2d(x)¥ neards2,

with y >0, and Cy, C, positive constants. The price to pay is imposing an additional growth condition on f, relating f’
and the primitive of 1/f. This condition already appears in [12]. Precisely

llm f(t)/ fr ) (1.7)

It is fulfilled by a function f if for instance f’ is asymptotic to a positive power at infinity, or more generally if f’ is of
regular variation at infinity with index p # 0 (see [5]). We remark that if the limit in (1.7) exists, it is always greater than
or equal to one.



532 J. Garcia-Melidn / J. Math. Anal. Appl. 360 (2009) 530-536

It is also important to mention that the correct growth of the solutions is determined in terms of the solution ¢ of the

one-dimensional first-order equation ¢’ = — f(¢) in x > 0 with ¢ (0) = oo, which is the inverse function of
o0
R
/) f (t)

In terms of this function, the growth of the solutions turns out to be essentially ¢ (d”*2). This device goes back to [12].
Let us finally mention that our proof of the boundary behavior is a refinement of an iterative technique attributed
to Safonov that we learned from [17], and has been further adapted and used in [3,11] or [8]. Also, some other related
uniqueness results, whose main interest is put on weakening the smoothness of the boundary 962, have been obtained
in [20], by means of a different iterative technique.
We come now to the precise statement of our results. We begin with those pertinent to problem (1.1).

Theorem 1. Assume f is continuous and nondecreasing in R™ with f(0) = 0. If there exist p > 1 and to > 0 such that f(t)/tP is
increasing for t > to, then problem (1.1) admits a unique positive solution, which in addition verifies

, u(x)
lim —— =
d(x)—0 ¢o(d(x))

As for problem (1.6) we only mention that condition (1.7) implies in particular that f(t)/t? is increasing for large t if
1<qg<o/(oc —1), and thus also condition (1.2) holds (see the details in Section 2, right after the statement of Theorem 3).

Theorem 2. Assume f is continuous and nondecreasing in R with f(0) = 0. Assume moreover that f is differentiable for large t and
(1.7) holds. If a € C(82) is a nonnegative function which verifies

Cd®)Y <a®) < Cd®Y  in 2y,

for some constants C1, C2 > 0, y > 0 and some small n > 0, where §2;) := {x € £2: d(x) < n}, then problem (1.6) admits a unique
positive solution.

One final word on the proofs: the existence of a positive solution to both problems (1.1) and (1.6) (more precisely,
a minimal positive solution) is well known, see [16] and [12], respectively. Hence we are only showing uniqueness.

The paper is organized as follows: in Section 2 we prove that the quotients of two arbitrary positive solutions to (1.6)
tends to one as the boundary is approached, while Section 3 is devoted to prove the uniqueness claimed in Theorems 1
and 2.

2. Asymptotic behavior of solutions

The aim of the present section is proving that any two positive solutions to (1.6) “agree” on the boundary of §2. As has
been already said in the introduction, this fact is nowadays well known for problem (1.1), and it usually follows because in
that case it is possible to ascertain the boundary behavior of a single solution. However, the procedure we are following
here will consist in directly comparing two solutions.

Let us precisely state the result we are going to prove.

Theorem 3. Assume f (t) is differentiable for large t and (1.7) holds. Then if u, v are positive solutions to (1.6), we have
u(x)

im —=1.
d(x)—0 V(X)

Before coming to the proof of Theorem 3, let us quote two simple consequences of hypothesis (1.7). For fixed t; > 0 and
t > ty, we have, thanks to an integration by parts:

t [e%s) [e%s) o0
, dr dt B dt B
ff(S)s/f(T)_f(t)!—f(f> f(ﬁ)f—f(r)ﬂ .

We divide by t — t1 and let t — oo to obtain

_fo [ dr
t
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(notice in passing that this also shows that in general o > 1). Finally, we observe that (1.7) also implies that f(t)/t7 is
increasing for large t if 1 <q <o /(0 —1). Indeed, notice that

f®

<f/(t)—qT>1/f(t)—>o—q(o—l) >0 ast— o0o.

Hence (f(t)/t?) =t~9(f'(t) — qf (t)/t) > O for large t, as claimed.
Let us return now to Theorem 3. The first step in the proof consists in obtaining bounds with the right growth near the
boundary for the solutions.

Lemma 4. Assume f (t) is differentiable for large t and (1.7) holds. Let u be a positive solution to (1.6). Then there exist positive numbers
n, o and Ko such that

1
5¢(1<d(x)y+2) <ux) <2¢(ed®?™?) in 2y, (2.2)
whenever 0 < ¢ < &g, K > Kp.

Proof. Since 852 is of class C2, it is well known that the distance function d(x) is C? in £2; for some small positive 7,
where it verifies |Vd| =1 (cf. for instance [15]). For small § > 0, define

iy =¢(ed—8)""?), xe),

where € > 0 is to be chosen small and 52,‘3 ={xe 2: § <d(x) <n}. We claim that us is a supersolution in .Q,S; for small
enough ¢, independent of 8. Indeed, a calculation shows that

f(p(ed—8YT2))(y +2)*d — 8)* 2
)y +2)(y + 1)(d = 8) —ef(p(ed—8)7+2))(y +2)d— 8" Ad.

Atis =&*f'(p(s(d — 8)Y2))

—ef(p(ed—8)rT2)

Thus, taking into account that a(x) > C1d(x)Y > C1(d(x) — 8)Y in £2, iis will be a supersolution provided that
e f(p(ed=8)""2)(y +2°d =)' —e(y +2)(y + D) +&(y +2)(d - 8)sup |Ad| < C

where C is a positive constant, whose exact value from now on will be unimportant. It can be easily seen that this inequality
holds for small ¢ and all § whenever

f(#(ed—8)YT?))ed - 8" <C,

which is a direct consequence of
limsup f'(¢ ()t < oo. (2.3)
t—0

Finally observe that (2.3) is implied by hypothesis (1.7) on f. Thus u;s is a supersolution in .Q;S] if ¢ is small enough. It is
also clear that us = co when d =§. If z denotes the unique solution to —Az=1 in £2 with z=0 on 352, we have that the
function il + Mz is also a supersolution in £2¢ for M > 0, which blows up on d = .

Next let u be a positive solution to (1.6). We may select a large M so that us + Mz >u on d =n. Since u <oco ond =3,
it follows by comparison that u < tis + Mz in .Qf] Letting § — 0, we arrive at

u(0) < p(ed®)’*?) + Mz(x) in2,,

and the upper inequality in (2.2) follows since Mz < ¢ (ed(x)¥ +2), taking & possibly smaller.
To prove the lower inequality we similarly check that us = ¢ (K(d + 8)Y*2) is a subsolution in £2. The reasoning in this
case is not completely symmetric. Indeed, the condition us needs to verify to be a subsolution is

K(f'(p(Kd+8)Y))(y +2°KA@+ 872 —(y +2)(y +1) — (¥ +2)(d + §) sup|Ad]) > C. (2.4)

We now notice that from hypothesis (1.7) it immediately follows that
o =liminf f'(¢(®))t > 1
t—0

so that for & verifying 1 < & < o, there exists to such that f'(¢(t))t > & if t < to. Hence (2.4) will hold provided we have
K(d+ 812 <tg and

K6 +2?%—(+2)(y+1) = (y +2)(d+8)sup|Ad]) > C. (2.5)
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Thus we may choose and fix a large value of K, say Ko, and small 7 and § so that (2.5) holds and then diminish n and § if
necessary so that Ko(d + 8)Y 12 <tg if d < .

Hence u; is a subsolution in £2;, and us — Mz also is for M > 0. A comparison as in the first part of the proof shows
that if u is an arbitrary solution to (1.6) then u > us — Mz in £2,, if M is large enough. Letting § — 0, the proof of the lower
inequality in (2.2) concludes as before. O

Our next task will be to show that with no further conditions on f, the bounds given in (2.2) suffice to guarantee that
the quotient of any two solutions to (1.6) is bounded.

Lemma 5. Assume f (t) is differentiable for large t and (1.7) holds, and let u, v be positive solutions to (1.6). Then the quotient % is
bounded in 2.

Proof. Thanks to Lemma 4 it suffices to prove that

Bt
¢ (Bt) <c
¢ (At)
for sufficiently small t if 0 < B < A. Notice that for M > 1 and sufficiently large s we have, for every g such that 1 <q <
o/(oc—1):

(2.6)

T d [ od [ d
T T T
¥ (Ms) = / =M <MD [ —— =M@ Dy (s) (2.7)
f(® f(M1) f@
Ms s s
since f(t)/t? is increasing for large t. Thus we can find M such that for large s,

y(Ms) B

yis) A

This implies ¢ (Bt/A) < M¢(t), and substituting t by At we obtain (2.6) for small positive t. This concludes the proof. O

Remark 1. We mention for later use that (2.7) implies in particular ¢ (At) < )fql*lqﬁ(t) for all » € (0,1) and sufficiently
small t.

We finally proceed to the actual proof of Theorem 3. It will be by contradiction, and is inspired in an argument in [17]
(see also [8]).

Proof of Theorem 3. Let u, v arbitrary positive solutions to (1.6). According to Lemma 5,
u(x
6 :=limsup Q
dx)—0 V()

is finite. To prove the theorem it suffices to show that 6 < 1, since reversing the roles of u and v we would then get that
the liminf is greater than or equal to one.
Thus assume 6 > 1. Given a small ¢ > 0 so that 6 — ¢ > 1, there exists § > 0 such that

u(x
Q <@ +e) ifdix) <3, (2.8)
v(x)
and xo with d(xg) < 28/3 verifying u(xp) > (6 — €)v(xp). By diminishing § if necessary, we may assume v > tp in §25, where
to is such that f(t)/t? is increasing for t >ty and some q € (1, /(o — 1)). Define
D={xeQ: u® >0 —evx]}nB(x),

where r =d(xp)/2. In the set D we have
Alu—@©O—ev)=a@(f) —©—e)f(v)=aX)(f(O—e)v)—(©O—e)f(v)
>a@)((0 — &)1 — (@ —e)) f(v) =Cd” (6 — ) f(v)

where C is a positive constant which can be taken independently of &. Now thanks to (2.2), and noticing that r <d < 3r
in D, we have v > 3¢ (Kd”*2) > 1¢(Cr’*?) in D, so that

Alu— (O —e)v) 2C(0—5)f<%¢(€ry+2)>ry in D. (2.9)
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Now let z- be the unique solution to —Az =1, in B;(Xp), with z=0 on dB;(xp). It is worth noticing that z(x) =
C(r* — |x — xg|?), for a constant which only depends on N. According to (2.9), we have A(u — (8 — &)v +«z;) >0 in D,
where k =C(0 — e)f(%qﬁ(CrV”))rV. Then, the maximum principle implies the existence of yg € dD such that

u(xg) — (6 — &)v(xo) + kzr(xo) <u(yo) — (0 —&)v(¥o) + £z (Yo)- (2.10)

If we have yg € B(xp), then u(yg) = (6 — €)v(yo), and (2.10) gives the contradiction z,(xo) < z-(yo). Hence yo € dB;(Xp),
and in particular

€O — S)f(%qﬁ(cry“))r”z Su(yo) = (0 —&)v(yo). (2.11)

We now notice that condition (2.1) implies that
1
f<5¢(Cr”+2)>rV+2 > Co(cr ),

and since d(yo) > r, using again (2.2) we derive from (2.11) the inequality u(yg) — (6 — &)v(yo) = C(0 — )¢ (Cd(yo)¥ 12),
which thanks to Remark 1 implies

uyo) = 1 +C)©O —&)v(yo). (2.12)

Finally, observing that d(yo) < 3d(xp)/2 < 8, we obtain from (2.12) and (2.8) the inequality (6 + &) > (1 + C)(0 — ¢). After
letting € — 0, we arrive at a clear contradiction.
Thus, our initial assumption 6 > 1 is incorrect, and we have 6 < 1. This concludes the proof. O

3. Uniqueness

In this section we prove our main results. We notice that, once we have shown that the quotient of two positive solutions
approaches one on the boundary, no differences arise between the proof of both theorems. Thus we only consider that of
Theorem 2. As we already said in the introduction, we focus on uniqueness.

Proof of Theorem 2. Let u be the minimal solution to (1.6). We are going to prove that for any other positive solution v to
(1.6) we have u = v. Observe first that u/v — 1 as x — 952, thanks to Theorem 3.
For small € > 0, let w =w, = (1+ €)u and define the (open) set

De={xe2: wx) <v(»}.

We may assume that D¢ is nonempty for some small enough ¢, for otherwise there is nothing to prove. Indeed, notice that
D, monotonically increases as ¢ | 0. Moreover, we may also assume that D, — 2 as ¢ | 0, for if there exist x € £2 and
a sequence &, — 0 such that x ¢ D, for all n, we have (1 4+ &p)u(x) > v(x), and hence u(x) = v(x). The strong maximum
principle then yields u = v. Finally, notice that D, € £2, since the quotient u/v tends to 1 as we approach the boundary.

Now choose 1 > 0 so that u > to in £2;, where to is such that f(t)/t is increasing for t > to (this condition automatically
holds if f(t)/t is increasing for some q > 1 and large t). Define D, ; = D¢ N §2;, and notice that D, ; is a nonempty open
set for small &. Moreover, in D, ;, we have

AWV =w)=a®)(f() - A+e)fw) >a(f(v)— fw)) >0,

so that, thanks to the maximum principle

v—w<max(v—w) inDggy.
dDe.p
Now notice that 9D ; = (3D, N £2;) U (D, N 0£2;), and the maximum of v — w cannot be achieved on 9D, for this would
imply v —w <0 in D¢ 5, which is impossible by its definition. Thus it is achieved on D, N 92, = D, N {x: d(x) = n}, since
D, Nd£2 =¢. Hence
v—w< max (v—w) inDg,. (3.1)
DeN{d=n}

Letting € — 0 in (3.1) we arrive at
v—ugrglax(v—u) =60 in$2y,. (3.2)
=1

On the other hand, since u is the minimal solution to (1.6) we have u < v and because f(t) is increasing in t > 0, it
follows that A(v —u) =aX)(f(v) — f(u)) >0 in 27 :={x € £2: d(x) > n}. The maximum principle implies that v —u <6
in £27, and hence v — u < @ throughout £2. But then the strong maximum principle gives v — u = 6. When plugged in the
equations satisfied by u and v we obtain that f(u) = f(u + 0) in £2, which can only hold if & = 0. Thus u = v, and this
shows uniqueness. O
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