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1. Introduction

We denote by G a locally compact Abelian group that contains a strictly decreasing sequence of open compact subgroups
(Gn)∞n=−∞ such that

⋃∞
n=−∞ Gn = G , and

⋂∞
n=−∞ Gn = {0}. By Γ we denote the dual group of G . It is the union of the

increasing sequence of its subgroups Γn = {γ ∈ Γ : γ (x) = 1, ∀x ∈ Gn}.
Let μ,λ be the Haar measures on G and Γ respectively. These are chosen so that μ(G0) = λ(Γ0) = 1, and μ(Gn) =

(λ(Γn))−1 = m−1
n .

Take a fixed sequence of elements (xn)n of G such that xn ∈ Gn\Gn+1 for every n ∈ Z. Then every x ∈ G can be expressed
in the form x = ∑+∞

n=M anxn , where aM �= 0 if x ∈ G M\G M+1. If we put pn+1 = |Gn/Gn+1|, then mn = p1 p2 . . . pn and m−1−n =
p0 p−1 p−2 . . . p−n+1 for n � 1.

The convention Gn = G if n � 0 is used when G is compact.
The group G is said to be bounded if supn pn < ∞.

Definition 1.1. A complex function a is called an atom on G if

1. supp(a) ⊂ y + Gn ,
2. ‖a‖∞ � 1

μ(Gn)
,

3.
∫

G a(x)dx = 0.

The atomic Hardy space H1 consists of integrable functions f which can be represented as f = ∑∞
i=1 λiai , where each

ai is an atom and
∑∞

i=1 |λi| < +∞. The norm in H1 is given by ‖ f ‖H1 = inf
∑∞

i=1 |λi |, where the infimum is taken over all
such decompositions of f .
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Definition 1.2. For any distribution f , let

1. M f (x) = supn | f ∗ (μ(Gn))−11Gn (x)|, and
2. M̃ f (x) = supn,In

| f ∗ (μ(In))−11In (x)|,

where In is an interval of the form In = ⊎β

i=α ixn + Gn+1, 0 � α � β < pn+1.

The spaces H and H̃ consist of all distributions f such that M f ∈ L1 resp. M̃ f ∈ L1. The norms are given by ‖ f ‖H =
‖M f ‖1 resp. ‖ f ‖H̃ = ‖M̃ f ‖1.

The relationship between these concepts is the matter of our attention in Section 2. In Section 3 we prove a Fourier
multiplier theorem that encompasses several previous theorems of this kind.

2. On the spaces H 1, H̃ and H

For a short history of the Hardy spaces over Vilenkin groups one should consult [5]. Onneweer and Quek [10] proved
that H = H1 on bounded Vilenkin groups.

The space H̃ was introduced by S. Simon in [11] for compact Vilenkin groups. The maximal function used there is smaller
than M̃ f , but generates the same space. See also [6] and [12] for some further useful insights.

Considering some compact unbounded Vilenkin groups, Gat [7] constructed a function from H that does not belong to H̃ ,
concluding that the atomic and maximal function definitions do not agree in this case.

In the following theorem we prove that the situation remains the same in our general setting, i.e. these relations extend
to the case of locally compact groups as well.

Theorem 2.1.

1. H1 = H̃ and the respective norms are equivalent.
2. H̃ � H on unbounded groups.

Proof. 1. It is easily seen that ‖M̃a‖1 � 1 for any atom a. Thus H1 ⊂ H̃ and ‖ f ‖H̃ � ‖ f ‖H1 .
For the converse, we proceed as in the proof of Theorem 3.5 in [10].
Let f ∈ H̃ . For each k ∈ Z we put Ωk = {x ∈ G: M̃ f (x) > 2k}. If y ∈ Ωk there exist an n and an interval In such that

(μ(In))−1| f ∗ 1In (y)| > 2k . It can be seen that y + Gn+1 ⊂ Ωk since t − In = y − In for every t ∈ y + Gn+1 and for every
interval In . As it was noticed in [10] there exists an α(y) ∈ Z such that y + Gα(y) ⊂ Ωk but y + Gα(y)−1 � Ωk . There exists
a maximal interval Iα(y)−1 containing y + Gα(y) and included in y + Gα(y)−1 ∩ Ωk . We denote these intervals by Ik,i and
their union

⋃
i Ik,i forms the set Ωk . This union can be taken disjoint because of the maximality of the intervals Ik,i .

For every interval Ik,i we consider the interval Ĩk,i ⊃ Ik,i chosen so that Ĩk,i = y +⊎β

j=0 jxn +Gn+1 if Ik,i = y +⊎β

j=1 jxn +
Gn+1. Then y ∈ Ĩk,i \ Ik,i , and μ( Ĩk,i) � 2μ(Ik,i). The intervals Ĩk,i remain mutually disjoint because of the maximality of Ik,i .
Moreover, if the interval Ik,i is of the form y + In , then the interval Ĩk,i must be either of the form y′ + I ′n or y + Gn . It is
easily seen that if Ik+1, j ⊂ Ik,i then also Ĩk+1, j ⊂ Ĩk,i .

Let Ω̃k be the union of the intervals ( Ĩk,i)i .
For k,n ∈ Z we define the function gn

k on G by

gn
k (x) =

{
fn(x), x ∈ G \ Ω̃k;
Pn

k,i, x ∈ Ĩk,i,

where fn(x) = f ∗ (μ(Gn))−11Gn (x), and Pn
k,i = (μ( Ĩk,i))

−1
∫

Ĩk,i
fn(x)dx.

In order to obtain the conclusion of Theorem 3.5 in [10], we need to verify the corresponding conditions on the func-
tions gn

k .
We first check that |gn

k (x)| � 2k for every x ∈ G .

Suppose that Ĩk,i is an interval of the form y + Il , where y ∈ Ĩk,i \ Ik,i and let n � l. Then fn is constant on y + Gl and
therefore also on y + Il , where it is obviously bounded by 2k . Now if n > l, then x + Gn ⊂ Il for every x ∈ Il . Hence

Pn
k,i = (

μ(Il)
)−1

∫
Il

fn(y + x)dx

= (
μ(Il)

)−1
∫ (

μ(Gn)
)−1

∫
f (y + x + t)dt dx
Il Gn
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= (
μ(Gn)

)−1
∫
Gn

(
μ(Il)

)−1
∫
Il

f (y + x + t)dx dt

= (
μ(Il)

)−1
∫

y+Il

f (x)dx.

The last expression is bounded by 2k by assumption.
We notice that μ(

⋂
k Ω̃k) = 0 because of the integrability of M̃ f .

Let bn
k,i = (gn

k+1 − gn
k )1 Ĩk,i

, λk,i = 2k+2μ(Gn) if Ĩk,i is of the form Ĩk,i = y + ⊎β

j=α jxn + Gn+1, and an
k,i = (λk,i)

−1bn
k,i . If we

prove that
∫

G bn
k,i(x)dx = 0, we will have all the conditions needed and used in the proof of Theorem 3.5 in [10].

We have∫
G

bn
k,i(x)dx =

∫
Ĩk,i

(
gn

k+1 − gn
k

)
dx =

∫
Ĩk,i

gn
k+1 dx −

∫
Ĩk,i

fn(x)dx

=
∫

Ĩk,i\Ω̃k+1

fn(x)dx +
∫

Ĩk,i∩Ω̃k+1

gn
k+1,i −

∫
Ĩk,i

fn(x)dx.

By assumption, if the intersection Ĩk,i ∩Ω̃k+1 is not empty then it must be equal to some union of mutually disjoint intervals
( Ĩk+1, j) j . If the second integral is split into integrals over the intervals ( Ĩk+1, j) j each will be of the form∫

Ĩk+1, j

gn
k+1(x)dx =

∫
Ĩk+1, j

fn(x)dx,

which means that their sum will be∫
Ĩk,i∩Ω̃k+1

gn
k+1,i =

∫
Ĩk,i∩Ω̃k+1

fn(x)dx,

and the result follows.
2. Let G be an unbounded Vilenkin group. We may assume that the sequence (pn)n is increasing. Let the sequence of

functions (an)n�0 be defined as an = mn(1xn+Gn+1 − 12xn+Gn+1). Obviously the functions an are atoms and have mutually
disjoint supports.

We consider two cases: when the sequence (pn)n is such that
∑∞

n=1
1
pn

< +∞ and when it is such that
∑∞

n=1
1
pn

= +∞.
In the first case, the function f defined by f = ∑

n�0 an belongs to the space H because M f (x) = 0 if x ∈ Gn \ (Gn+1 ∪
xn + Gn+1 ∪ 2xn + Gn+1) and M f (x) = mn if x ∈ xn + Gn+1 ∪ 2xn + Gn+1. It follows that

∫
G M f (x)dx = ∑∞

n=1
2
pn

< +∞.

In order to see that f does not belong to H̃ we calculate M̃ f . For every x ∈ Gn \ Gn+1: M̃ f (x) = mn . This implies that∫
G M̃ f (x)dx = ∑∞

n=1 mn( 1
mn

− 1
mn+1

) = ∞.

For the second case, we take the function f = ∑
n�0

an
pn

. �
Proposition 2.2. The maximal function M̃ is a bounded operator on L2 .

Proof. It is clear that the operator M̃ is strongly bounded in L∞ . By interpolation theorem, we only need to show that M̃
is weakly bounded in L1.

Let f ∈ L1, λ > 0 and E = {x ∈ G: M̃ f (x) > λ}. Suppose that F is a subset of finite measure of E . If we show that F is
contained in a countable collection of mutually disjoint intervals xi + Ini such that (μ(Ini ))

−1| ∫xi+Ini
f (t)dt| > λ for every i,

then this will imply that

μ(F ) �
∑

i

μ(Ini ) < λ−1
∑

i

∣∣∣∣
∫

xi+Ini

f (t)dt

∣∣∣∣ � λ−1‖ f ‖1.

We construct the countable collection as follows:
Let x ∈ F . There exists some interval x + Il such that (μ(Il))

−1| ∫x+Il
f (t)dt| > λ. The collection of such intervals need not

be disjoint but we can extract a countable sub-collection considering only the intersecting intervals that are contained in
some coset x + Gn . Namely, in the other cases, two intervals only intersect when one of them is a subset of the other.

Let i1 be the smallest index such that the coset x + i1xn + Gn+1 contains at least one point, say y1, from F . Let I1 be
such that (μ(I1))

−1| ∫ f (t)dt| > λ. Continuing this way, let i2 be the smallest index such that x + i2xn + Gn+1 contains
y1+I1
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an element y2 from F and such that x + i2xn + Gn+1 does not intersect y1 + I1, and let I2 be the corresponding interval. In
this way we obtain a finite collection of mutually disjoint intervals (yi + Ii)i that contain all the elements of F in the coset
x + Gn and such that (μ(Ii))

−1| ∫yi+Ii
f (t)dt| > λ. �

3. Fourier multipliers

The known multiplier theorems for Hardy spaces on bounded Vilenkin groups provide sufficient conditions on the kernel
of the multiplier operator. These were proved in the works of Kitada [8], Onneweer and Quek [9] and then Daly and
Phillips [4]. In this note we give a weaker sufficient condition in the general setting and compare it with Daly–Phillips’
result.

Theorem 3.1. Let φ ∈ L∞(Γ ) and supN

∫
Gc

N
|(φ − φN+1)

∨(y)|dy = O (1), where φN+1 = φ1ΓN+1 and ∧, ∨ denote respectively the

Fourier transform and the inverse Fourier transform. Then φ is a multiplier on H1 , i.e φ ∈ m(H1).

Proof. In order to prove that φ is a multiplier we only need to prove that the operator T f = (φ f ∧)∨ is bounded on the set
of atoms. Let a be an atom. We can assume that supp(a) ⊆ G N for some N because the multiplier operator T is translation
invariant. We split∫

G

∣∣M̃T (a)(x)
∣∣dx =

∫
G N

∣∣M̃T (a)(x)
∣∣dx +

∫
Gc

N

∣∣M̃T (a)(x)
∣∣dx.

By Proposition 2.2 and a standard L2 argument, we obtain that the first integral on the right-hand side is bounded
by C‖φ‖∞:∫

G N

∣∣M̃T (a)(x)
∣∣dx =

∫ ∣∣M̃T (a)(x)
∣∣1G N (x)dx

�
∥∥M̃T (a)

∥∥
2‖1G N ‖2

� C
∥∥T (a)

∥∥
2‖1G N ‖2

� C‖φ‖∞‖a‖2
(
μ(G N)

) 1
2

� C‖φ‖∞
(
μ(G N)

)−1
2

(
μ(G N)

) 1
2 = C‖φ‖∞.

To estimate the second integral, we write T (a) in the form

T (a) = (
φa∧)∨ = φ∨ ∗ a =

( ∞∑
j=−∞

	 jφ

)∨
∗ a =

∞∑
j=−∞

(	 jφ)∨ ∗ a,

where the equality holds in the sense of distributions. Here 	 jφ = φ1Γ j+1 − φ1Γ j .

It was noticed in [4] that (	 jφ)∨ ∗ a = 0 on Gc
N if j � N . Since φN+1 = ∑N

j=−∞ 	 jφ, we have

T (a) =
∞∑

j=N+1

(	 jφ)∨ ∗ a = (φ − φN+1)
∨ ∗ a, and

(
μ(In)

)−1
T (a) ∗ 1In = (φ − φN+1)

∨ ∗ a ∗ (
μ(In)

)−1
1In hold on Gc

N .

This yields the following inequality on Gc
N :

∣∣(μ(In)
)−1

T (a) ∗ 1In (x)
∣∣ �

∫
G

∣∣(φ − φN+1)
∨(y)

∣∣∣∣a ∗ (
μ(In)

)−1
1In (x − y)

∣∣dy.

We prove that the expression a ∗ (μ(In))−11In (x − y) vanishes if y ∈ G N .
Namely, if x ∈ Gc

N and y ∈ G N , we have

a ∗ (
μ(In)

)−1
1In (x − y) = (

μ(In)
)−1

∫
In

a(x − y − t)dt.

If In ⊆ G N , then x − y − t ∈ Gc for every t ∈ In . Thus a(x − y − t) = 0.
N
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Consider now the case In ⊃ G N . Then∫
In

a(x − y − t)dt =
∫

x−y−In

a(t)dt = 0,

because the interval x − y − In either contains G N or does not intersect it.
Consequently,

∣∣(μ(In)
)−1

T (a) ∗ 1In (x)
∣∣ �

∫
Gc

N

∣∣(φ − φN+1)
∨(y)

∣∣∣∣a ∗ (
μ(In)

)−1
1In (x − y)

∣∣dy

�
∫

Gc
N

∣∣(φ − φN+1)
∨(y)

∣∣ sup
n,In

∣∣a ∗ (
μ(In)

)−1
1In (x − y)

∣∣dy

=
∫

Gc
N

∣∣(φ − φN+1)
∨(y)

∣∣M̃T (a)(x − y)dy,

for every x ∈ Gc
N .

We have obtained that∫
Gc

N

∣∣M̃T (a)(x)
∣∣dx =

∫
Gc

N

sup
n,In

∣∣T (a) ∗ (
μ(In)

)−1
1In (x)

∣∣dx

�
∫

Gc
N

(∫
Gc

N

∣∣(φ − φN+1)
∨(y)

∣∣M̃T (a)(x − y)dy

)
dx

=
∫

Gc
N

∣∣(φ − φN+1)
∨(y)

∣∣( ∫
Gc

N

M̃T (a)(x − y)dx

)
dy

�
∫

Gc
N

∣∣(φ − φN+1)
∨(y)

∣∣dy < +∞,

which is the desired result. �
The following corollary is an extension of Daly–Phillips multiplier theorem [4, Theorem 3] from bounded to unbounded

Vilenkin groups.

Corollary 3.2. If φ ∈ L∞(Γ ) and supN
∑∞

j=N+1

∫
Gc

N
|(	 jφ)∨(x)|dx = O (1), then φ ∈ m(H1).

We construct a multiplier that does not satisfy the condition of Daly and Phillips.

Example 3.3. Let G be the dyadic group and (ωk)k be the sequence of Walsh functions: ωk = ∏∞
j=0 eiπ y j+1k j where k =∑∞

j=0 k j2 j and the dyadic number x = ∑∞
j=0 y j+1x j corresponds to the real number

∑∞
j=1 y j2− j from the interval [0,1).

We consider the sequence

R j(x) =
2 j−1∑

k=2 j−1

ωk(x).

It is easily seen that

R j(x) =
⎧⎨
⎩

2 j−1, x ∈ G j;
−2 j−1, x ∈ G j−1 \ G j;
0, x ∈ G \ G j−1.

Notice that

R j(x + x0) =
2 j−1∑

j−1

ωk(x)ωk(x0) =
2 j−1∑

j−1

(−1)kωk(x).
k=2 k=2
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For the bounded sequence ϕ(k) = (−1)k , one has

(	 jϕ)∨(x) =
2 j+1−1∑

k=2 j

ϕ(k)ωk(x) = R j+1(x + x0).

Let us calculate supN
∑∞

j=N+1

∫
Gc

N
|(	 jϕ)∨(x)|dx.

We get∫
Gc

N

∣∣(	 jϕ)∨(x)
∣∣dx =

∫
Gc

N

∣∣R j+1(x + x0)
∣∣dx = 1,

because x0 + G j ⊂ Gc
N for every j � N + 1.

Thus supN
∑∞

j=N+1

∫
Gc

N
|(	 jϕ)∨(x)|dx = +∞.

However, using Theorem 3.1 we see that ϕ is a multiplier. Indeed,

∫
Gc

N

∣∣(ϕ − ϕN+1)
∨(x)

∣∣dx =
∫

Gc
N

∣∣∣∣∣
∞∑

j=N+1

2 j+1−1∑
k=2 j

(−1)kωk(x)

∣∣∣∣∣dx

=
∫

Gc
N

∣∣∣∣∣
∞∑

j=N+2

R j(x + x0)

∣∣∣∣∣dx =
mN−1∑

i=0

∫
x0+ei+G N

∣∣∣∣∣
∞∑

j=N+2

R j(t)

∣∣∣∣∣dt,

where G = ⊎mN −1
i=0 ei + G N . Then

∫
Gc

N

∣∣(ϕ − ϕN+1)
∨(x)

∣∣dx =
∫

G N

∣∣∣∣∣
∞∑

j=N+2

R j(t)

∣∣∣∣∣dt

=
∞∑

s=N

∫
Gs\Gs+1

∣∣∣∣∣
∞∑

j=N+2

R j(t)

∣∣∣∣∣dt =
∞∑

s=N+1

∫
Gs\Gs+1

∣∣∣∣∣
s+1∑

j=N+2

R j(t)

∣∣∣∣∣dt,

since R j(t) = 0 for j > s + 1 and t ∈ Gs \ Gs+1, as well as for j � N + 2 and t ∈ G N \ G N+1.
Now,

s+1∑
j=N+2

R j(t) = Rs+1 +
s+∑

j=N+2

R j(t) = −2s +
s∑

j=N+2

2 j−1 = −2N+1

on Gs \ Gs+1.
Hence,

∞∑
s=N+1

∫
Gs\Gs+1

∣∣∣∣∣
s+1∑

j=N+2

R j(t)

∣∣∣∣∣dt =
∞∑

s=N+1

2N+1 1

2s+1
= 1.

Theorem 3.4. Let G be a compact Vilenkin group. Assume that φ ∈ L∞(Γ ) satisfies(
N−1∑
s=0

m
1
p′
s+1 log ps+1

)( ∞∑
k=mN+1

∣∣	φ(k)
∣∣p

) 1
p

= O (1),

for some p ∈ (1,2], where 1
p′ + 1

p = 1 and 	φ(k) = φ(k) − φ(k + 1). Then φ is a multiplier on H1 .

Proof. The proof is based on the estimation of supN

∫
Gc

N
|(φ − φN+1)

∨(x)|dx and application of Theorem 3.1.

Let χmk denote the element of Γk+1 for which χmk (xk) = e
2π i

pk+1 , and put χn := ∏s
k=0 χ

ak
mk

if n = ∑s
k=0 akmk and 0 � ak <

pk+1. We have

∫
Gc

∣∣(φ − φN+1)
∨(x)

∣∣dx =
∫

Gc

∣∣∣∣∣
∞∑

j=N+1

m j+1−1∑
k=m j

φ(k)χk(x)

∣∣∣∣∣dx.
N N
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By Abel partial summation,

m j+1−1∑
k=m j

φ(k)χk(x) =
m j+1−2∑

k=m j

(
φ(k) − φ(k + 1)

)
Dk+1(x),

for every x ∈ Gc
N , because Dm j (x) = Dm j+1 (x) = 0 in this case.

Thus, we obtain

∫
Gc

N

∣∣(φ − φN+1)
∨(x)

∣∣dx =
∫

Gc
N

∣∣∣∣∣
∞∑

j=N+1

m j+1−2∑
k=m j

(
φ(k) − φ(k + 1)

)
Dk+1(x)

∣∣∣∣∣dx

=
N−1∑
s=0

∫
Gs\Gs+1

∣∣∣∣∣
∞∑

j=N+1

m j+1−2∑
k=m j

(
	φ(k)

)
Dk+1(x)

∣∣∣∣∣dx =
N−1∑
s=0

Fs.

From this point on, we follow the argumentation of [2] that resulted in a less restrictive integrability theorem on un-
bounded Vilenkin groups then previously obtained in [1].

Using the formula Dn = χn(
∑N

i=0
Dmi

χ
ai
mi

.
1−χai

mi
1−χmi

), for n = ∑N
i=0 aimi and other known properties of the Dirichlet kernel, the

calculation made in the proof of Theorem 1 in [2] gives that the integrals Fs can be bounded by F (1)
s + F (2)

s , where

F (1)
s =

∫
Gs\Gs+1

∣∣∣∣∣
∞∑

j=N+1

m j+1−2∑
k=m j

(
	φ(k)

) s−1∑
i=0

aimiχk+1(x)

∣∣∣∣∣dx, and

F (2)
s =

∫
Gs\Gs+1

∣∣∣∣∣
∞∑

j=N+1

m j+1−2∑
k=m j

(
	φ(k)

)
ms

1 − χas
ms

1 − χms

χas
msχk+1(x)

∣∣∣∣∣dx.

Two estimations for F (1)
s and F (2)

s , similar to those proved in [2] yield that F (1)
s is bounded by

m
1
p′
s (

∑∞
j=N+1

∑m j+1−2
k=m j

|	φ(k)|p)
1
p , and F (2)

s is bounded by C log ps+1m
1
p′
s+1(

∑∞
j=N+1

∑m j+1−2
k=m j

|	φ(k)|p)
1
p .

This proves the result. �
Corollary 3.5. If φ ∈ L∞(Γ ) on a bounded compact Vilenkin group fulfills the requirement mp−1

N

∑mN+2−1
k=mN+1

|	φ(k)|p = O (1) for some

p ∈ (1,2], then φ ∈ m(H1).

Proof. Obviously,
∑N−1

s=0 m
1
p′
s+1 log ps+1 = O (m

1
p′
N ) in the bounded case. Hence mp−1

N

∑∞
k=mN+1

|	φ(k)|p = O (1) is a sufficient

condition for φ ∈ m(H1) by Theorem 3.4. However,

∞∑
k=mN+1

∣∣	φ(k)
∣∣p =

∞∑
j=N+1

m j+1−1∑
k=m j

∣∣	φ(k)
∣∣p

� C
∞∑

j=N+1

1

mp−1
j−1

� C
1

mp−1
N

∞∑
j=N+1

2−( j−N−1)(p−1) = O

(
1

mp−1
N

)
. �

Remark 3.6. For H1 on bounded Vilenkin groups, Theorem 2 in [3] provides another proof of Theorem 3.1. If the underlying
group is bounded and compact, Theorem 9 in [3] gives our Corollary 3.5.
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