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1. Introduction

We denote by G a locally compact Abelian group that contains a strictly decreasing sequence of open compact subgroups
(Gn)3° _ such that |Jpe . Gn =G, and ;2 _, Gn = {0}. By I" we denote the dual group of G. It is the union of the
increasing sequence of its subgroups I, ={y e I': y(x) =1, Vxe Gp}.

Let w, A be the Haar measures on G and I" respectively. These are chosen so that u(Gg) = A(Ip) =1, and u(Gp) =
()"t =my .

Take a fixed sequence of elements (x;), of G such that x, € G,\Gn+1 for every n € Z. Then every x € G can be expressed
in the form x = Z,.Tj?v, anxp, where apy # 0 if x € Gy \Gpm41. If we put ppy1 =1Gn/Gpy1l, then my = p1p2...pn and m:f1 =
poP—1P—2...P—ny1 forn>1.

The convention G, =G if n <0 is used when G is compact.

The group G is said to be bounded if sup, p, < oo.

Definition 1.1. A complex function a is called an atom on G if

1. supp(a) C y + Gy,
1

2. |lalloo < IenE

3. [ca(x)dx=0.

The atomic Hardy space H! consists of integrable functions f which can be represented as f = Y2, Aiaj, where each
a; is an atom and Y 2, |Ai| < +oo. The norm in H' is given by Il fllgr =infY 72, [Ai], where the infimum is taken over all
such decompositions of f.
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Definition 1.2. For any distribution f, let

1. Mf(x) = supy, | f * (41(Gn)) "1, (%], and
2. Mf(x)=supy, |f * (u(p) 11,1,

where I, is an interval of the form I, = Lﬂf}:a iXp + Gnt1, 0< o < B < pnti-

The spaces H and IEI consist of all distributions f such that Mf € L! resp. Mf € L. The norms are given by || f|ly =
IMfll1 resp. I fllg =IMfll1.

The relationship between these concepts is the matter of our attention in Section 2. In Section 3 we prove a Fourier
multiplier theorem that encompasses several previous theorems of this kind.

2. On the spaces H!, H and H

For a short history of the Hardy spaces over Vilenkin groups one should consult [5]. Onneweer and Quek [10] proved
that H=H' on bounded Vilenkin groups.

The space H was introduced by S. Simon in [11] for compact Vilenkin groups. The maximal function used there is smaller
than M f, but generates the same space. See also [6] and [12] for some further useful insights.

Considering some compact unbounded Vilenkin groups, Gat [7] constructed a function from H that does not belong to H,
concluding that the atomic and maximal function definitions do not agree in this case.

In the following theorem we prove that the situation remains the same in our general setting, i.e. these relations extend
to the case of locally compact groups as well.

Theorem 2.1.

1 H ! = H and the respective norms are equivalent.
2. H C H on unbounded groups.

Proof. 1. It is easily seen that |Mal|; <1 for any atom a. Thus H! ¢ H and g <N flig.

For the converse, we proceed as in the proof of Theorem 3.5 in [10].

Let f € H. For each k € Z we put £, = {x € G: Mf(x) > 2¥}. If y € £2 there exist an n and an interval I, such that
()™ f = 1, (W] > 2% It can be seen that y + Gpq C §2 since t — I, =y — I, for every t € y + Gn4q and for every
interval I,. As it was noticed in [10] there exists an «(y) € Z such that y 4+ Gg(y) C £2¢ but y + Gg(y)—1 € 2. There exists
a maximal interval Iy(y)—1 containing y + Gg(y) and included in y + Gg(y)—1 N $2. We denote these intervals by Iy ; and
their union (J; Ix,; forms the set 2. This union can be taken disjoint because of the maximality of the intervals I} ;.

For every interval Iy ; we consider the interval Tk,,' D I,; chosen so that Tk,,' = y+L+J?=O JXn+Gpyr if I ;= y+L+Jf:1 Jxn+
Gn+1. Then y € Tk,i \ Ir.i, and ,u(ik,i) < 2u(Ig.i). The intervals 7k,,~ remain mutually disjoint because of the maximality of Iy ;.
Moreover, if the interval Iy ; is of the form y + I, then the interval 7,(4,,- must be either of the form y’' + I}, or y + Gp. It is
easily seen that if Iy, ; C I; then also 7k+1,j - Tk,i.

Let £ be the union of the intervals (fk’i),-.

For k,n € Z we define the function g on G by

1 — | n00: X€G\ &
B0 = Pri  xel,

where fn(X) = f % (W(Gn) "6, (%), and P, = (u(ei) ™" fj  fa®)dx.

In order to obtain the conclusion of Theorem 3.5 in [10]; we need to verify the corresponding conditions on the func-
tions gj.

We first check that [g(x)| < 2 for every x € G.

Suppose that ik_,i is an interval of the form y + I, where y € Ij; \ Ix,; and let n < I. Then f; is constant on y + G; and
therefore also on y + I;, where it is obviously bounded by 2¥. Now if n > I, then x4+ G, C I, for every x € I;. Hence

Pz,i=(li(11))7]/fn(y +x) dx
I

=4um»”/Xummr*/fu+w+ode
Gn

I
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= (nGn) ™ / (i)™ / f(y+x+0dxdt

Gn I

-1
= (ua) ™" [ Feods.
Y+
The last expression is bounded by 2% by assumption. ~
We notice that w (), $2x) =0 because of the integrability of M f.
Let bZ,i = (841 — g,’c')lim, Ai = 2KF20(Gy) if Ty is of the form Ty ; =y + Lﬂf:a jXn + Gn+1, and azyi = (Xk,,-)_lbﬁqi. If we

prove that fc b} ;(x)dx =0, we will have all the conditions needed and used in the proof of Theorem 3.5 in [10].
We have

f by (x) dx = f (81 — &) dx= / Sy dX — f fa0) dx

G Ty Ty Iy

= / fn() dx + / gﬂﬂ,i—/fn(X)dx.

T i\S2ks1 T iN2es1 Iki

By assumption, if the intersection T;C,,- N 241 is not empty then it must be equal to some union of mutually disjoint intervals
(Ik41,j)j. If the second integral is split into integrals over the intervals (Ix11 j); each will be of the form

/ Sry1 ) dx = f fn(x)dx,

T+, Ik,

which means that their sum will be

/ g1r<1+1,i = f fn(x)dx,

Tk, iNS2g41 T, iNS2k41

and the result follows.

2. Let G be an unbounded Vilenkin group. We may assume that the sequence (pp), is increasing. Let the sequence of
functions (an)n>o0 be defined as an = mn(1x,4G,,; — 12x,4Gny,)- Obviously the functions a, are atoms and have mutually
disjoint supports.

We consider two cases: when the sequence (pp)y, is such that > o2, pl—n < 400 and when it is such that ) o2 ; p]_n = +o0.

In the first case, the function f defined by f = Zn>0 ap belongs to the space H because Mf(x) =0 if x € G, \ (Gp41 U
Xn 4 Gny1 U 2%y + Gniq) and Mf(x) = my if X € Xy + Gyt U 2%y + Gpyr. It follows that [ Mf(x)dx =312, pz—n < +o00.

In order to see that f does not belong to H we calculate M f. For every x € Gy \ Gny1: M f(x) = my. This implies that
JeMF@dx =332 my (- — =) = 00,

Mp41
For the second case, we take the function f = Zn>0 ;—’;. |

Proposition 2.2. The maximal function M is a bounded operator on L2.

Proof. It is clear that the operator M is strongly bounded in L. By interpolation theorem, we only need to show that M
is weakly bounded in L.

Let felL!, A>0and E={xeG: Mf(x)> A}. Suppose that F is a subset of finite measure of E. If we show that F is
contained in a countable collection of mutually disjoint intervals x; 4 I, such that (;/J(Ini))‘1 | fx f(t)dt]| > X for every i,

then this will imply that

W)Y plln) <271 )7

1

i‘Hni

/ f(r)dr‘@*lnfn].

Xi+In;

We construct the countable collection as follows:

Let x € F. There exists some interval x + I; such that (u(I}))™!| foz f()dt] > A. The collection of such intervals need not
be disjoint but we can extract a countable sub-collection considering only the intersecting intervals that are contained in
some coset x + G,. Namely, in the other cases, two intervals only intersect when one of them is a subset of the other.

Let i; be the smallest index such that the coset x 4+ i1x; + Gn4+1 contains at least one point, say yi, from F. Let I; be
such that (u(I1))!| fy1+h f(®)dt] > A. Continuing this way, let i be the smallest index such that x + ix; + G4+ contains
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an element y; from F and such that x + i»x; + Gp+1 does not intersect y1 + I1, and let I, be the corresponding interval. In
this way we obtain a finite collection of mutually disjoint intervals (y; + I;); that contain all the elements of F in the coset
x4+ Gp and such that (u(I;)~ 1| fyi+u fOdt)>r O

3. Fourier multipliers

The known multiplier theorems for Hardy spaces on bounded Vilenkin groups provide sufficient conditions on the kernel
of the multiplier operator. These were proved in the works of Kitada [8], Onneweer and Quek [9] and then Daly and
Phillips [4]. In this note we give a weaker sufficient condition in the general setting and compare it with Daly-Phillips’
result.

Theorem 3.1. Let ¢ € L°°(I") and supy fov (¢ — N1V ()| dy = 0(1), where pni1 = @1, and A, V denote respectively the

Fourier transform and the inverse Fourier transform. Then ¢ is a multiplier on H', i.e ¢ € m(H).

Proof. In order to prove that ¢ is a multiplier we only need to prove that the operator Tf = (¢ f”)" is bounded on the set
of atoms. Let a be an atom. We can assume that supp(a) C Gy for some N because the multiplier operator T is translation
invariant. We split

/|1\71T(a)(x)|dx:/\MT(a)(x)\der/\MT(a)(x)\dx.

G GN G

By Proposition 2.2 and a standard L? argument, we obtain that the first integral on the right-hand side is bounded
by Cll¢lloo:

/|1\7IT(a)(x)|dx=/|MT(a)(x)|lGN(x)dx
GN

IMT @], 16y 2
C|T@],l1cyl2

1
< Cligllsollall2(p(Gn))?

=1 1
< C||¢||oo(M(GN)) 2 (M(GN))2 =C|¢llco-

To estimate the second integral, we write T(a) in the form

o0 v o0
T(a):(¢aA)V:¢V*a:< > Aj¢) xa= Y (Ajp)" xa,

j=—00 j=—00

<
<

where the equality holds in the sense of distributions. Here Ajp =¢1p,,, —¢1p;.
It was noticed in [4] that (Aj¢)Y xa=0 on Gf, if j < N. Since ¢n41 = Z?’:_w A ¢, we have

T@= Y (Aj)’xa=(¢—¢ns1)" *a, and

j=N+1
-1 -1
(1)~ T@ 11, = (¢ — dn41)" #ax ((In))” 1;, hold on Gf.
This yields the following inequality on G§;:

() ' T(@) % 15,0 < / (@ — dnan)Y O] (wIn) ™ 15, (x = y)|dy.
G

We prove that the expression a (M(ln))”lln (x — y) vanishes if y € Gy.
Namely, if x € G§; and y € Gy, we have

ax (1) 110 =) = (1) [atx-y - o

In

If I, € Gy, then x — y —t € G for every t € I;;. Thus a(x —y —t) =0.
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Consider now the case I, D Gy. Then
/a(x—y—t)dt: / a(t)dt =0,
In x—y—In

because the interval x — y — I, either contains Gy or does not intersect it.
Consequently,

(1) T(@ % 15, < f|<¢ — o) )| |ax (1) 14, x— y)|dy
¢
< /\(as —ows)’ ) supla (1) 11, 00= )| dy
c5, o
= fl(qﬁ — ¢n+1)Y (| MT (@) (x — y) dy,
¢

for every x € GY;.
We have obtained that

/WT(a)(x)|dx:/sulp|T(a)*(M(In))‘11,n(x)\dx
G G5, o
</(/\(cb—¢N+1)V(y)\1\71T(a)(><—y)dy) dx

Gy Ci

2/!(¢—¢N+1)V(y)!</MT(a)(X—y)dX) dy
Gy Gy

< f!(¢> g ()| dy < +oo,
&

which is the desired result. O

The following corollary is an extension of Daly-Phillips multiplier theorem [4, Theorem 3] from bounded to unbounded

Vilenkin groups.
Corollary 3.2. If ¢ € L°°(I") and supy Z?O:NH fov [(Ajp)Y (x)|dx = 0(1), then ¢ € m(HM).

We construct a multiplier that does not satisfy the condition of Daly and Phillips.

% €Ytk where k =

Example 3.3. Let G be the dyadic group and (wy), be the sequence of Walsh functions: wy
Z}’io k]-2j and the dyadic number x = Zjﬁo yj+1x; corresponds to the real number Z}x’:] yj2‘j from the interval [0, 1).

We consider the sequence

201
Rj) = Y ).

k=2J-1

It is easily seen that

2071 xeGj;
Rj(x)=1 —2/71, xe€Gj_1\Gj;
0, XGG\G]‘_].

Notice that
2i1 271
Rjx+x0) = Y ox®@orxo) = Y (~Dfor®).

k=2J-1 k=2J-1
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For the bounded sequence (k) = (—1)¥, one has
20411

AV =Y 9lor(X) =Rj11(x+x0).
k=2J

Let us calculate supy Z]o‘izv+1 fG?v (A @)Y ()] dx.

We get
/|(Aj(p)v(x)|dX:/|Rj+1(X+X0)|dX:1,
Gy Gy

because xo + Gj C Gf, for every j > N4 1.
Thus supy Z;’i,\,ﬂ fov [(Ajp)Y (x)| dx = +oo.
However, using Theorem 3.1 we see that ¢ is a multiplier. Indeed,

oo 20t
/|(¢—¢N+1>V(x>|dx=f Yo D Dio|dx
G G5, j=N+1 k=2i
00 my—1 00
=/ Z Rj(x+x0)|dx = Z Z R;(0)|dt,
Ge, 1 i=N+2 i=0 yo4ei+Gy | J=N+2
where G = E—J?l:”o_] e; + Gy. Then
o0
/I(¢—¢N+1)V(x)|dx=/ > Rj()|dt
Giv GN j=N+2
00 [o's) 00 s+1
=X > Rj|de= > Rj(b)|dt,
=N GGy HIENF2 =N G\Gyy | I=NH2

since R;j(t)=0 for j>s+1and t € Gs\ Gs41,as well as for j > N+2and t € Gy \ GN41.
Now,

s+1 s+ s )

Y RO =R+ Y Rip=-2+ Y 2/7'=-2N"

j=N+2 j=N+2 j=N+2

on Gs\ Gs41.
Hence,

o0 s+1 00 1
. — N+1 _

> o=y

S=N+1G0\G, .,y | i=N+2 s=N+1

Theorem 3.4. Let G be a compact Vilenkin group. Assume that ¢ € L°°(I") satisfies

N-—1 1 o0 %
(stlengsH)( > |A¢(/<)|"> =0(1),

s=0 k:m[\H,]

for some p € (1, 2], where % + % =1and Ap (k) = ¢ (k) — ¢k + 1). Then ¢ is a multiplier on H!.

Proof. The proof is based on the estimation of supy fGfv [(¢ — dpn+1)Y ()| dx and application of Theorem 3.1.

2mi

L3

593

Let xm, denote the element of I'iq for which x, (X)) =ePk+1, and put X, := Hi:o Xmy, ifn= Zi:o agmy, and 0 < qi <

Dk+1.- We have

o Mmjp1—1

> sbx®

j=N+1 k=m;j

/|(¢ — ¢n+1)Y (0] dx = dx.

Gy G
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By Abel partial summation,

mjiq—1 mjpq—2
> p0x0= Y (p(k) —¢k+1))Dr1(x),
k=m; k=m;

for every x € G$;, because Dm; (%) = D, , (x) =0 in this case.
Thus, we obtain

/\(cb —¢N+1)V(X)!dx:/
G

9%

oo Mjp1—2

D) (k) — ¢k + 1)) Diyr(x)|dx

j=N+1 k=m;j

0o Mjp1—2

> > (A¢M)) D

j=N+1 k=m;j

=0 G\Gs1

dx = ZFS'

From this point on, we follow the argumentation of [2] that resulted in a less restrictive integrability theorem on un-
bounded Vilenkin groups then previously obtained in [1].

1—x8.
Using the formula D, = Xn(ZN Dm’ . _;:f ), for n= Zf’zo a;m; and other known properties of the Dirichlet kernel, the

calculation made in the proof of Theorem 1 in [2] gives that the integrals Fs can be bounded by Fs(l) + FS(Z), where

co Mj1—2

FO = 3 (A Zalmzx:<+1(><) and
Gs\Gst1 J=NH1 k=m;
co  Mjt1—2

F® = Z Z Ag (k))m Xms xms Xk+1(0) | dx
Gs\Gss1 j=N+1 k=m;j

Two estimations for F(l) and F(z) similar to those proved in [2] yield that Fsm is bounded by
1

> i1-2 -2 1
ms (Z;’-iNH ZZZ;;] |A¢(k)|P)P and F? is bounded by Clogpsﬂms_H (ZJ N1 me [Ap(Kk)P)?.
This proves the result. O

Corollary 3.5. If € L°°(I") on a bounded compact Vilenkin group fulfills the requirement m ZT”;TV: |A¢ (k)|P = 0 (1) for some
p e (1,2], then p e m(HY).

1 1
Proof. Obviously, ZQ’:_O] m/, ;logpsy1 = 0(mf ) in the bounded case. Hence mllz,_1 Z,é'oszH |[Ap (k)P = 0(1) is a sufficient
condition for ¢ € m(H!) by Theorem 3.4. However,

o0 oo Mjty1— -1
Yo aemP= > > |aeml
k=mn41 j=N+1 k=m;
oo oo
1 1 4 1
—(j=N-D(p-1) _
<C T <C—p D 2 _o< p_1>. O
j=N+11M5_q My j=N+1 my

Remark 3.6. For H! on bounded Vilenkin groups, Theorem 2 in [3] provides another proof of Theorem 3.1. If the underlying
group is bounded and compact, Theorem 9 in [3] gives our Corollary 3.5.
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