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The initial boundary value problem for an integro-differential equation with strong
damping in Ω × (0,∞):

utt − M
(‖∇u‖2

2

)
�u +

t∫
0

g(t − s)�u(s)ds − �ut = f (u),

is considered, where Ω is a bounded domain with a smooth boundary ∂Ω . The asymptotic
behavior of solutions is discussed under some conditions on g. Decay estimates of the
energy function of solutions are also given, via an integral inequality introduced by
Komornik (1994) [11].
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1. Introduction

In this paper we consider the initial boundary value problem for the following nonlinear integro-differential equation:

utt − M
(‖∇u‖2

2

)
�u +

t∫
0

g(t − s)�u(s)ds − �ut = f (u), in Ω × (0,∞), (1.1)

with initial conditions

u(x,0) = u0(x), ut(x,0) = u1(x), x ∈ Ω, (1.2)

and boundary condition

u(x, t) = 0, x ∈ ∂Ω, t � 0, (1.3)

where Ω ⊂ RN , N � 1, is a bounded domain with a smooth boundary ∂Ω so that Divergence theorem can be applied.
Here, M is a positive C1-function and g represents the kernel of the memory term they will be specified later (see assump-
tions (A1), (A2)). f is a nonlinear function like f (u) = |u|p−2u, p > 2.

Before going further, Eq. (1.1) without the viscoelastic term, that is g ≡ 0, for the case that M ≡ 1, Eq. (1.1) becomes
a nonlinear wave equation which has been extensively studied and several results concerning existence and nonexistence
have been established [1,3,4,8,10,12,14]. When M is not a constant function, a special case of Eq. (1.1) is Kirchhoff equation
which has been introduced in order to describe the nonlinear vibrations of an elastic string. Kirchhoff [9] was the first one
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to study the oscillations of stretched strings and plates. In this case the existence and nonexistence of solutions have been
discussed by many authors and the references cited therein [5,6,16–20].

For Eq. (1.1) with g �= 0, in the case that M ≡ 1, Eq. (1.1) becomes a semilinear viscoelastic equation. Cavalcanti et al.
[2] treated (1.1) with damping term a(x)ut , here a(x) may be null on a part of the boundary. By assuming the kernel g in
the memory term decays exponentially, they obtained an exponentially decay rate of the energy. On the other hand, Jiang
and Rivera [7] proved, in the framework of nonlinear viscoelasticity, the exponential decay of the energy provided that the
kernel g decays exponentially without imposing damping term. In the case that M is not a constant function, Eq. (1.1) is a
model to describe the motion of deformable solids as hereditary effect is incorporated. This equation was first studied by
Torrejon and Young [23] who proved the existence of weakly asymptotic stable solution for large analytical datum. Later,
Rivera [15] showed the existence of global solutions for small datum and the total energy decays to zero exponentially
under some restrictions. Recently, Wu and Tsai [22] discuss the global as well as energy decay of Eq. (1.1) for f is a power
like function. In that paper, the following assumption on the nonnegative kernel g′(t) � −rg(t), ∀t � 0 for some r > 0 was
assumed. This motivates us to consider the problem of how to obtain the energy decay of the solution when we replace the
above assumption by g′(t) � 0, for t � 0.

In this paper we show that under some conditions on g the solution is global in time and the energy decays exponen-
tially. In this way, we can extend the result of [22] to a weaker condition on g and the result of [24] to nonconstant M(s).
The content of this paper is organized as follows. In Section 2, we give some lemmas and assumptions which will be used
later, and then state the local existence Theorem 2.3. In Section 3, we first define an energy function E(t) in (3.4) and
show that it is a nonincreasing function of t . Then, the results of global existence and decay properties of the solutions of
(1.1)–(1.3) are given in Theorem 3.5.

2. Preliminary results

In this section, we shall give some lemmas and assumptions which will be used throughout this work. Let W m,p(Ω)

be the usual Sobolev space. Specially, W m,2(Ω) and W 0,p(Ω) will be marked by Hm(Ω) and L p(Ω), respectively. And we
denote ‖ · ‖p to be L p-norm for 1 � p � ∞. H1

0(Ω) is the closure of C∞
0 (Ω) with respect to the norm ‖u‖H1

0
= ‖∇u‖2.

Lemma 2.1. (See Sobolev–Poincaré inequality [13].) If 2 � p � 2N
N−2 , then

‖u‖p � cs‖∇u‖2,

for u ∈ H1
0(Ω) holds with some constant cs.

Lemma 2.2. (See [11].) Let h : [0,∞) → [0,∞) be a nonincreasing function and assume that there exists a constant r > 0 such that

∞∫
t

h(s)ds � rh(t), ∀t ∈ [0,∞).

Then we have

h(t) � h(0)exp

(
1 − t

r

)
, ∀t � r.

We state the general hypotheses on M , g and f :

(A1) M(s) is a positive C1-function for s � 0 satisfying M(s) = m0 + bsγ , m0 > 0, b � 0, γ � 1 and s � 0.
(A2) g ∈ C1([0,∞)) is a nonnegative and nonincreasing function satisfying

m0 −
∞∫

0

g(s)ds = l > 0. (2.1)

(A3) f (0) = 0 and there is a positive constant k1 such that∣∣ f (u) − f (v)
∣∣ � k1|u − v|(|u|p−2 + |v|p−2),

for u, v ∈ R and 2 < p � 2(N−1)
N−2 (∞, if N � 2).

Now, we are ready to state the local existence of problem (1.1)–(1.3), whose proof can be found in [21,22].

Theorem 2.3. Suppose that (A1), (A2) and (A3) hold, and that u0 ∈ H1
0(Ω)∩ H2(Ω), u1 ∈ L2(Ω), then there exists a unique solution u

of (1.1)–(1.3) satisfying

u ∈ C
([0, T ]; H1(Ω) ∩ H2(Ω)

)
and ut ∈ C

([0, T ]; L2(Ω)
) ∩ L2([0, T ]; H1(Ω)

)
.
0 0
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Moreover, at least one of the following statements holds true:

(i) T = ∞,
(ii) ‖ut(t)‖2

2 + ‖�u(t)‖2
2 → ∞ as t → T − .

3. Global existence and energy decay

In this section, we consider the global existence and energy decay of solutions for a kind of problem (1.1) with initial
and boundary conditions (1.2) and (1.3), respectively:

utt − M
(‖∇u‖2

2

)
�u +

t∫
0

g(t − s)�u(s)ds − �ut = |u|p−2u, (3.1)

where 2 < p � 2(N−1)
N−2 and M(s) = m0 + bsγ , m0 > 0, b � 0, γ � 1 and s � 0. In order to state our results, we define

I(t) ≡ I
(
u(t)

) =
(

m0 −
t∫

0

g(s)ds

)∥∥∇u(t)
∥∥2

2 + (g 
 ∇u)(t) − ∥∥u(t)
∥∥p

p, (3.2)

J (t) ≡ J
(
u(t)

) = 1

2

(
m0 −

t∫
0

g(s)ds

)∥∥∇u(t)
∥∥2

2 + 1

2
(g 
 ∇u)(t)

+ b

2(γ + 1)

∥∥∇u(t)
∥∥2(γ +1)

2 − 1

p

∥∥u(t)
∥∥p

p, (3.3)

and the energy function by

E(t) = 1

2
‖ut‖2

2 + J (t), (3.4)

where

(g 
 ∇u)(t) =
t∫

0

g(t − s)

∫
Ω

∣∣∇u(s) − ∇u(t)
∣∣2

dx ds,

for u(t) ∈ H1
0(Ω), t � 0.

Remark 3.1. From the definition of E(t) by (3.4), m0 − ∫ t
0 g(s)ds � m0 − ∫ ∞

0 g(s)ds = l by (A2) and by Lemma 2.1, we have

E(t) � 1

2

(
m0 −

t∫
0

g(s)ds

)∥∥∇u(t)
∥∥2

2 + 1

2
(g 
 ∇u)(t) − 1

p
‖u‖p

p

� 1

2

(
l
∥∥∇u(t)

∥∥2
2 + (g 
 ∇u)(t)

) − B p
1 l

p
2

p
‖∇u‖p

2

� G
[(

l
∥∥∇u(t)

∥∥2
2 + (g 
 ∇u)(t)

) 1
2
]
, (3.5)

t � 0, where

G(λ) = 1

2
λ2 − B p

1

p
λp and B1 = cs√

l
.

It is easy to verify that G(λ) has a maximum at λ1 = B
− p

p−2
1 and the maximum value is

E1 = p − 2

2p
B

− 2p
p−2

1 .

Before we prove our main result, we need the following lemmas.
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Lemma 3.2. (See [22].) E(t) is a nonincreasing function on [0, T ) and

E ′(t) = −‖∇ut‖2
2 + 1

2

(
g′ 
 ∇u

)
(t) − 1

2
g(t)

∥∥∇u(t)
∥∥2

2. (3.6)

Lemma 3.3. Let u be the solution of (3.1), (1.2) and (1.3) with initial data satisfy E(0) < E1 and l
1
2 ‖∇u0‖2 < λ1 , then(

l
∥∥∇u(t)

∥∥2
2 + (g 
 ∇u)(t)

) 1
2 < λ1, (3.7)

for t ∈ [0, T ).

Proof. From the definition of G(λ), we see that G(λ) is increasing in (0, λ1) and decreasing in (λ1,∞), and G(λ) → −∞,
as λ → ∞. We establish (3.7) by contradiction. Suppose (3.7) does not hold, then, it follows from the continuity of u(t) that
there exists t0 ∈ (0, T ) such that(

l
∥∥∇u(t0)

∥∥2
2 + (g 
 ∇u)(t0)

) 1
2 = λ1.

By (3.5), we observe that

E(t0) � G
[(

l
∥∥∇u(t0)

∥∥2
2 + (g 
 ∇u)(t0)

) 1
2
]

= G(λ1)

= E1,

which contradicts E(t) � E(0) < E1, t � 0. Hence, we get(
l
∥∥∇u(t)

∥∥2
2 + (g 
 ∇u)(t)

) 1
2 < λ1,

for t ∈ [0, T ). �
Remark 3.4. From (3.7) and λ1 = B

− p
p−2

1 = l
p

2(p−2) c
−p
p−2
s , we have l‖∇u(t)‖2

2 � l‖∇u(t)‖2
2 + (g 
 ∇u)(t) < λ2

1 = l
p

p−2 c
−2p
p−2
s , which

implies that

I(t) =
(

m0 −
t∫

0

g(s)ds

)∥∥∇u(t)
∥∥2

2 + (g 
 ∇u)(t) − ∥∥u(t)
∥∥p

p

�
(

m0 −
∞∫

0

g(s)ds

)∥∥∇u(t)
∥∥2

2 + (g 
 ∇u)(t) − ∥∥u(t)
∥∥p

p

� l
∥∥∇u(t)

∥∥2
2 − cp

s

∥∥∇u(t)
∥∥p

2

� 0.

Further, by (3.2) and (3.3), we obtain

J (t) � 1

2

(
m0 −

t∫
0

g(s)ds

)
‖∇u‖2

2 + 1

2
(g 
 ∇u)(t) − 1

p
‖u‖p

p

= p − 2

2p

[(
m0 −

t∫
0

g(s)ds

)
‖∇u‖2

2 + (g 
 ∇u)(t)

]
+ 1

p
I(t),

from which, the assumption (A2), the definition of E(t) by (3.4) and E(t) � E(0) by Lemma 3.2, we deduce that

l‖∇u‖2
2 �

(
m0 −

t∫
0

g(s)ds

)
‖∇u‖2

2 � 2p

p − 2
J (t) � 2p

p − 2
E(t) � 2p

p − 2
E(0). (3.8)

In addition, it follows from Lemma 2.1 and (3.8) that

‖u‖p
p � cp

s ‖∇u‖p
2 � cp

s
(

2p
E(0)

) p−2
2

l‖∇u‖2
2 = αl‖∇u‖2

2 � 2pα
E(t), for t ∈ [0, T ), (3.9)
l l(p − 2) p − 2
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where α = cp
s
l (

2p
l(p−2)

E(0))
p−2

2 . Here, we also note that E(0) < E1 if and only if

α = cp
s

l

(
2p

l(p − 2)
E(0)

) p−2
2

< 1. (3.10)

Theorem 3.5 (Global existence and energy decay). Suppose that (A2), E(0) < E1 and l
1
2 ‖∇u0‖2 < λ1 hold, then problem (3.1), (1.2)

and (1.3) admits a global solution u if u0 ∈ H1
0(Ω) ∩ H2(Ω) and u1 ∈ L2(Ω). Furthermore, if E(0) is small enough and

m0 >

(
1 + 5p

2(p − 2)

) ∞∫
0

g(s)ds, (3.11)

then we have the following decay estimates:

E(t) � E(0)e1−τ1t on [0,∞),

where τ1 is given in (3.29).

Proof. First, we show that T = ∞. Multiplying (3.1) by −2�u, and integrating it over Ω , we get

d

dt

{
‖�u‖2

2 − 2
∫
Ω

ut�u dx

}
+ 2M

(‖∇u‖2
2

)‖�u‖2
2

� 2‖∇ut‖2
2 − 2

∫
Ω

|u|p−2u�u dx + 2

t∫
0

g(t − τ )

∫
Ω

�u(τ )�u(t)dx dτ .

Since

t∫
0

g(t − τ )

∫
Ω

�u(τ )�u(t)dx dτ � 2η
∥∥�u(t)

∥∥2
2 + ‖g‖L1

2η

t∫
0

g(t − τ )
∥∥�u(τ )

∥∥2
2 dτ ,

we obtain

d

dt

{
‖�u‖2

2 − 2
∫
Ω

ut�u dx

}
+ (

2M
(‖∇u‖2

2

) − 2η
)‖�u‖2

2 � 2‖∇ut‖2
2 + ‖g‖L1

2η

t∫
0

g(t − τ )
∥∥�u(τ )

∥∥2
2 dτ

− 2
∫
Ω

|u|p−2u�u dx, (3.12)

where 0 < η � ‖g‖L1

2 . Multiplying (3.12) by ε, 0 < ε � 1, and multiplying (3.6) by 2, and then adding them together, we
obtain

d

dt
E∗(t) + 2(1 − ε)‖∇ut‖2

2 + 2ε
(
M

(‖∇u‖2
2

) − η
)‖�u‖2

2

� −2ε

∫
Ω

|u|p−2u�u dx + ε
‖g‖L1

2η

t∫
0

g(t − τ )
∥∥�u(τ )

∥∥2
2 dτ , (3.13)

where

E∗(t) = 2E(t) − 2ε

∫
Ω

ut�u dx + ε‖�u‖2
2.

By Young’s inequality, we get∣∣∣∣2ε

∫
Ω

ut�u dx

∣∣∣∣ � 2ε‖ut‖2
2 + ε

2
‖�u‖2

2.

Noting that J (t) � 0 by Remark 3.4, then, from the definition of E(t), we have

‖ut‖2 � 2E(t). (3.14)
2
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Hence, choosing ε = 2
5 , we see that

E∗(t) � 1

5

(‖ut‖2
2 + ‖�u‖2

2

)
. (3.15)

Moreover, we note that

2

∣∣∣∣
∫
Ω

|u|p−2u�u dx

∣∣∣∣ = 2(p − 1)

∫
Ω

|u|p−2|∇u|2 dx � 2(p − 1)‖u‖p−2
(p−2)θ1

‖∇u‖2
2θ2

,

where 1
θ1

+ 1
θ2

= 1, so that, we put θ1 = 1 and θ2 = ∞, if N = 1; θ1 = 1 + ε1 (for arbitrary small ε1 > 0), if N = 2; and

θ1 = N
2 , θ2 = N

N−2 , if N � 3. Then, by Poincaré inequality, l‖∇u‖2
2 � 2p

p−2 E(0) by (3.8) and by (3.15), we have

2

∣∣∣∣
∫
Ω

|u|p−2u�u dx

∣∣∣∣ � 2cp
s (p − 1)‖∇u‖p−2

2 ‖�u‖2
2 � c1 E∗(t), (3.16)

where c1 = 10cp
s (p − 1)(

2p
l(p−2)

E(0))
p−2

2 . Substituting (3.16) into (3.13), and then integrating it over (0, t), we obtain

E∗(t) + 4

5

(
m0 − η − ‖g‖2

L1

4η

) t∫
0

∥∥�u(s)
∥∥2

2 ds � E∗(0) +
t∫

0

c1 E∗(s)ds. (3.17)

Taking η = ‖g‖L1

2 in (3.17), and then by Gronwall’s Lemma, we deduce

E∗(t) � E∗(0)exp(c1t),

for any t � 0. Therefore by (3.15) and Theorem 2.3, we have T = ∞.
Next, we want to derive the decay rate of energy function for problem (3.1). Multiplying (3.1) by u and integrating it

over Ω × [t1, t2], we have

t2∫
t1

[
M

(‖∇u‖2
2

)‖∇u‖2
2 − ‖u‖p

p
]

dt = −
t2∫

t1

∫
Ω

utt u dx dt −
t2∫

t1

∫
Ω

∇ut · ∇u dx dt

−
t2∫

t1

∫
Ω

t∫
0

g(t − s)u(t)�u(s)ds dx dt.

Then, through integrating by parts, we obtain

t2∫
t1

[
M

(‖∇u‖2
2

)‖∇u‖2
2 − ‖u‖p

p
]

dt = −
∫
Ω

ut u dx|t2
t1

+
t2∫

t1

‖ut‖2
2 dt −

t2∫
t1

∫
Ω

∇ut · ∇u dx dt

−
t2∫

t1

∫
Ω

t∫
0

g(t − s)u(t)�u(s)ds dx dt. (3.18)

It follows from (3.4) that

2

t2∫
t1

E(t)dt + 2 − p

p

t2∫
t1

‖u‖p
p dt � −

∫
Ω

ut u dx|t2
t1

+ 2

t2∫
t1

‖ut‖2
2 dt −

t2∫
t1

∫
Ω

∇ut · ∇u dx dt −
t2∫

t1

t∫
0

g(s)ds
∥∥∇u(t)

∥∥2
2 dt

+
t2∫

t1

(g 
 ∇u)(t)dt −
t2∫

t1

∫
Ω

t∫
0

g(t − s)u(t)�u(s)ds dx dt. (3.19)

Since
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−
∫
Ω

t∫
0

g(t − s)u(t)�u(s)ds dx = 1

2

[ t∫
0

g(t − s)
(∥∥∇u(t)

∥∥2
2 + ∥∥∇u(s)

∥∥2
2

)
ds −

t∫
0

g(t − s)
∥∥∇u(s) − ∇u(t)

∥∥2
2 ds

]

= 1

2

[ t∫
0

g(t − s)
∥∥∇u(t)

∥∥2
2 ds +

t∫
0

g(t − s)
∥∥∇u(s)

∥∥2
2 ds − (g 
 ∇u)(t)

]
,

hence, (3.19) becomes

2

t2∫
t1

E(t)dt + 2 − p

p

t2∫
t1

‖u‖p
p dt � −

∫
Ω

ut u dx|t2
t1

+ 2

t2∫
t1

‖ut‖2
2 dt −

t2∫
t1

∫
Ω

∇ut · ∇u dx dt

− 1

2

t2∫
t1

t∫
0

g(s)ds
∥∥∇u(t)

∥∥2
2 dt + 1

2

t2∫
t1

(g 
 ∇u)(t)dt

+ 1

2

t2∫
t1

t∫
0

g(t − s)
∥∥∇u(s)

∥∥2
2 ds dt

� −
∫
Ω

ut u dx|t2
t1

+ 2

t2∫
t1

‖ut‖2
2 dt −

t2∫
t1

∫
Ω

∇ut · ∇u dx dt

+ 1

2

t2∫
t1

(g 
 ∇u)(t)dt + 1

2

t2∫
t1

t∫
0

g(t − s)
∥∥∇u(s)

∥∥2
2 ds dt. (3.20)

For the left-hand side of (3.20), since ‖u‖p
p � 2pα

p−2 E(t) by (3.9), we have

2

t2∫
t1

E(t)dt + 2 − p

p

t2∫
t1

‖u‖p
p dt � β1

t2∫
t1

E(t)dt, (3.21)

where β1 = 2 − 2α > 0 (by (3.10)). Next, we shall estimate every term of the right-hand side of (3.20). First, by Hölder
inequality, Young’s inequality and Lemma 2.1, we have∫

Ω

|ut u|dx �
∫
Ω

|u|2 dx +
∫
Ω

|ut |2 dx � c2
s ‖∇u‖2

2 + ‖ut‖2
2.

Then, since l‖∇u‖2
2 � 2p

p−2 E(t) by (3.8), ‖ut‖2
2 � 2E(t) by (3.14) and E(t) is a nonincreasing function by Lemma 3.2, we

obtain∫
Ω

ut u dx|t2
t1

� 2c2 E(t1) (3.22)

and use ‖∇ut‖2
2 � −E ′(t) by (3.6) to get

2

t2∫
t1

‖ut‖2
2 dt � 2c2

s

t2∫
t1

‖∇ut‖2
2 dt � 2c2

s E(t1), (3.23)

where c2 = 2c2
s p

l(p−2)
+ 2. And for the third term, we have

t2∫
t1

∫
Ω

∇ut · ∇u dx dt = 1

2

t2∫
t1

d

dt
‖∇u‖2

2 dt

= 1

2

[∥∥∇u(t2)
∥∥2

2 − ∥∥∇u(t1)
∥∥2

2

]
� 2p

E(t1). (3.24)

l(p − 2)
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To estimate the last term, use Young’s inequality for convolution ‖φ ∗ ψ‖q � ‖φ‖r‖ψ‖s , with 1
q = 1

r + 1
s − 1, 1 � q, r, s � ∞,

noting that if q = 1, then r = 1 and s = 1, we get

t2∫
t1

t∫
0

g(t − s)
∥∥∇u(s)

∥∥2
2 ds dt �

t2∫
t1

g(t)dt

t2∫
t1

∥∥∇u(t)
∥∥2

2 dt

� (m0 − l)

t2∫
t1

∥∥∇u(t)
∥∥2

2 dt

� 2(m0 − l)p

l(p − 2)

t2∫
t1

E(t)dt. (3.25)

As the fifth term, by (3.25) and using l‖∇u(t)‖2
2 � 2p

p−2 E(t) by (3.8) once more, we deduce that

1

2

t2∫
t1

(g 
 ∇u)(t)dt = 1

2

t2∫
t1

t∫
0

g(t − s)
∥∥∇u(s) − ∇u(t)

∥∥2
2 ds dt

� 1

2

t2∫
t1

t∫
0

g(t − s)
(∥∥∇u(s)

∥∥
2 + ∥∥∇u(t)

∥∥
2

)2
ds dt

�
t2∫

t1

t∫
0

g(t − s)
(∥∥∇u(s)

∥∥2
2 + ∥∥∇u(t)

∥∥2
2

)
ds dt

� 4(m0 − l)p

l(p − 2)

t2∫
t1

E(t)dt. (3.26)

Thus, combining (3.21)–(3.26), (3.20) yields

β1

t2∫
t1

E(t)dt � c3 E(t1) + 5(m0 − l)p

l(p − 2)

t2∫
t1

E(t)dt, (3.27)

where c3 = 2c2 + 2c2
s + 2p

l(p−2)
. Then, rewriting (3.27), we have

β2

t2∫
t1

E(t)dt � c3 E(t1), (3.28)

here β2 = β1 − 5(m0−l)p
l(p−2)

= 2 − 2α − 5(m0−l)p
l(p−2)

. Observing that the condition m0 > (1 + 5p
2(p−2)

)
∫ ∞

0 g(s)ds given in (3.11) is

equivalent to 2 − 5(m0−l)p
l(p−2)

> 0, hence, if E(0) is small enough, then not only the condition E(0) < E1 is satisfied, but also

β2 = 2 − 2α − 5(m0−l)p
l(p−2)

= 2 − 5(m0−l)p
l(p−2)

− 2cp
s

l (
2p

l(p−2)
E(0))

p−2
2 > 0 is assured. Now, letting t2 → ∞ in (3.28), we obtain

∞∫
t1

E(t)dt � c3

β2
E(t1), ∀t1 � 0.

Therefore, by Lemma 2.2, we derive that

E(t) � E(0)exp

(
1 − β2t

c3

)
, (3.29)

for t � c3
β2

. �
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