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This paper deals with the following nonlocal doubly degenerate parabolic system

ut − div
(∣∣∇um

∣∣p−2∇um) = a

∫
Ω

uα1 (x, t)vβ1 (x, t)dx,

vt − div
(∣∣∇vn

∣∣q−2∇vn) = b

∫
Ω

uα2 (x, t)vβ2 (x, t)dx

with null Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ R
N , where

m,n � 1, p,q > 2, αi, βi � 0, i = 1,2 and a,b > 0 are positive constants. We first get
the non-existence result for a related elliptic systems of non-increasing positive solutions.
Secondly by using this non-existence result, blow-up estimates for above non-Newton
polytropic filtration systems with the homogeneous Dirichlet boundary value conditions
are obtained. Then under appropriate hypotheses, we establish local theory of the solutions
and prove that the solution either exists globally or blows up in finite time. In the special
case, β1 = n(q − 1) − β2, α2 = m(p − 1) − α1, we also give a criterion for the solution to
exist globally or blow up in finite time, which depends on a, b and ζ(x), ϑ(x) as defined
in the main results.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following nonlocal doubly degenerate parabolic system,

ut − �m,pu = a

∫
Ω

uα1(x, t)vβ1(x, t)dx, (x, t) ∈ ΩT ,

vt − �n,q v = b

∫
Ω

uα2(x, t)vβ2(x, t)dx, (x, t) ∈ ΩT ,

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ],
u(x,0) = u0(x), v(x,0) = v0(x), x ∈ Ω, (1.1)

where for k > 0, γ > 2 and N � 1,
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�k,γ Θ = ∇ · (∣∣∇Θk
∣∣γ −2 · ∇Θk), ∇Θk = kΘk−1(Θx1 , . . . ,ΘxN ),

Ω ⊂ R
N (N � 1) is a bounded domain with appropriately smooth boundary ∂Ω; m,n � 1, p,q > 2, αi, βi � 0, i = 1,2,

ΩT = Ω × (0, T ] and a, b are positive constants and u0, v0 satisfy compatibility and the following conditions:

(H) um
0 ∈ C(Ω) ∩ W 1,p

0 (Ω), vn
0 ∈ C(Ω) ∩ W 1,q

0 (Ω) and ∇um
0 · ν < 0,

∇vn
0 · ν < 0 on ∂Ω, where ν is unit outer normal vector on ∂Ω.

Parabolic systems like (1.1) arise in many applications in the fields of mechanics, physics and biology like, for instance, the
description of turbulent filtration in porous media, the theory of non-Newtonian fluids perturbed by nonlinear terms and
forced by rather irregular period in time excitations, the flow of a gas through a porous medium in a turbulent regime or the
spread of biological (see [1–4] and the references given therein); in general, doubly nonlinear parabolic equations are used
to model processes obeying a nonlinear Darcy law (see [5,6] and the references given therein). In the non-Newtonian fluids
theory, the pair (p,q) is a characteristic quantity of medium. Media with (p,q) > (2,2) are called dilatant fluids and those
with (p,q) < (2,2) are called pseudo-plastics. If (p,q) = (2,2), they are called Newtonian fluids. When (p,q) = (2,2) and
(m,n) > (1,1) the connection with the flow in porous media is by now classical. When (m,n) � (1,1) and (p,q) > (2,2),
the system models the non-stationary, polytropic flow of a fluid in a porous medium whose tangential stress has a power
dependence on the velocity of the displacement under polytropic conditions (non-Newtonian elastic filtration); it has been
intensively studied (see [7–9] and references therein). We refer to [10] for further information on these phenomena. Recently
a connection has been revealed with soil science; specifically with flows in reservoirs exhibiting fractured media (see [11]).

The problems with nonlinear reaction term and nonlinear diffusion include blow-up and global existence conditions of
solutions, blow-up rates and blow-up sets, etc. (see the surveys [12,13]). Here, we say solution blows up in finite time if
the solution becomes unbounded (in the sense of maximum norm) at that time. System (1.1) has been studied by many
authors. For p = q = 2, m = n = 1, it is a classical reaction–diffusion system of Fujita type (see [14,15] for nonlinear boundary
conditions, see [16] for local nonlinear reaction terms, see [9,17] for nonlocal nonlinear reaction terms).

In the last three decades, many authors have studied the following degenerate parabolic problem:

ut − div
(|∇u|p−2∇u

) = f (u), (x, t) ∈ Ω × (0, T ],
u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ],
u(x,0) = u0(x), x ∈ Ω (1.2)

under different conditions. In [1,17–23], the existence, uniqueness, extinction phenomenon and regularity of solutions were
obtained. If f (u) = uq , q > 1, the results in [14,24–27] read: (1) the solution u exists globally if q < p − 1; (2) u blows up in
finite time if q > p −1 and u0(x) is sufficiently large. Li and Xie [17] studied the following Eq. (1.2) with f (u) = ∫

Ω
uq(x, t)dx

under null Dirichlet conditions and obtained that the solution either exists globally or blows up in finite time. Under
appropriate hypotheses, they had local theory of the solution and obtained that the solution either exists globally or blows
up in finite time.

Li et al. in [28] deal with the following reaction–diffusion system:

ut − �u =
∫
Ω

f
(

v(y, t)
)

dy, x ∈ Ω, t > 0,

vt − �v =
∫
Ω

g
(
u(y, t)

)
dy, x ∈ Ω, t > 0

with initial and boundary conditions. They proved that there exists a unique classical solution and the solution either exists
globally or blows up in finite time. Furthermore, they obtained the blow-up set and asymptotic behavior provided that the
solution blows up in finite time.

For p-Laplacian systems, Cui and Yang [29] and Li [30] studied the following equations:

ut − div
(|∇u|p−2∇u

) =
∫
Ω

vα dx, (x, t) ∈ Ω × (0, T ],

vt − div
(|∇v|q−2∇v

) =
∫
Ω

uβ dx, (x, t) ∈ Ω × (0, T ],

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ],
u(x,0) = u0(x), v(x,0) = v0(x), x ∈ Ω, (1.3)

which derive some estimates near the blow-up point for positive solutions and non-existence of positive solutions of the
relate elliptic systems, with global existence and blow-up of solutions for (1.3).
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Very recently, Zhang and Yang [31] further studied the solutions for system (1.1) with m = n = 1. They first got the
non-existence result for a related elliptic systems of non-increasing positive solutions and by using this result, blow-up
estimates for above p-Laplacian systems with the homogeneous Dirichlet boundary value conditions were obtained. Then
under appropriate hypotheses, they established local theory of the solutions and obtained that the solutions either exist
globally or blow up in finite time. Zhou and Mu [32] and Yang and Lu [33] dealt with the global existence and blow-up
properties of the system (1.1) coupled with nonlocal source with α1 = β2 = 0.

This paper extends their results of the references cited above essentially to non-Newton polytropic filtration system (1.1).
Therefore, this paper is also an extension of the above results. Due to the nonlinear diffusion terms and doubly degeneration
for u = 0, |∇u| = 0 or v = 0, |∇v| = 0, we have some new difficulties to be overcome. Noticing that the system (1.1) includes
the Newtonian filtration system (p = 2) and the non-Newtonian filtration system (m = 1) formally, so the method for it
should be synthetic. In fact, we can use the methods for the above two systems to deal with it. Since we know that the
blow-up rate is the key element in studying the blow-up properties, such as blow-up set, asymptotic behaviors, and similar
solution, see Refs. [34,35]. To understand the blow-up behavior, the first step usually consists in deriving a bound for blow-
up rate. To our knowledge there are no results on the blow-up rate estimates for system (1.1). Motivated by the results of the
above cited papers, we use the non-existence result of the related elliptic system to establish the blow-up estimates for the
doubly degenerate parabolic system (1.1) when a = b = 1. Then under appropriate hypotheses, we established local theory of
the solutions. The method we used is the so-called ‘test function method’ and some modifications and adaptations of ideas
from [31] and [9]. Our proof is based on argument by the different method of regularization, which involves considering the
regularized problem firstly and making a priori estimates for the non-negative approximate solutions by carefully choosing
special test functions and a scaling argument, then obtaining the results based on the estimates by a standard limiting
process.

At last, we investigate the influence of nonlinear power exponents on the existence and non-existence of global solutions
of the system (1.1). By supposing the initial data (u0(x), v0(x)) satisfies the conditions (H) and using upper- and lower-
solution methods, when we allow the nonlinear diffusion terms, we obtain the solution of problem (1.1) blows up in finite
time if one of the following conditions holds:

(i) β1α2 > [m(p − 1) − α1][n(q − 1) − β2] and the initial data is sufficiently large;
(ii) β1α2 = [m(p − 1) − α1][n(q − 1) − β2] and Ω contains a sufficiently large ball.

And the solution of problem (1.1) exists globally if one of the following conditions holds:

(i) β1α2 < [m(p − 1) − α1][n(q − 1) − β2];
(ii) β1α2 = [m(p − 1) − α1][n(q − 1) − β2] and the measure of the domain (‖Ω‖) is small;

(iii) β1α2 > [m(p − 1) − α1][n(q − 1) − β2] and the initial values are small.

Because equations in (1.1) are doubly degenerate, we will use the method of generalized regularization to establish the
existence of weak solutions to the initial boundary value problem. In order to apply monotonicity, we establish the com-
parison principle for system (1.1) by choosing suitable test function and Gronwall’s inequality. Then by the first eigenvalue
and its corresponding eigenfunction to the nonlinear operator on some domain, we construct a positive supersolution. By
the first eigenvalue and its corresponding eigenfunctions to the eigenvalue problem for the non-Newtonian filtration system,
we construct a positive subsolution. By choosing suitable domains and positive constants for supersolution and subsolution,
we can obtain a pair of well-ordered positive supersolution and subsolution. Using comparison principle, we achieve our
purpose and obtain the global existence and blow-up of solutions to the problem (1.1).

The main results of the present paper is to extend the results of [31–33] to more generalized cases and this paper
is organized as follows. In Section 2, we investigate the global non-existence for the related elliptic system. Section 3 is
devoted to blow-up estimate for system (1.1). In Section 4, we give the local existence and uniqueness of system (1.1). In
Sections 5 and 6, we give the global existence and blow-up property of solutions to (1.1). Finally, in Section 7, we consider
a special case of problem (1.1) and also give a criterion for the solution to exist globally or blow up in finite time, which
depends on a, b and ζ(x), ϑ(x) as defined in our main results.

2. Non-existence for positive radial solutions of the elliptic system

In order to establish the blow-up estimates for the doubly degenerate parabolic system (1.1) when a = b = 1, we first
consider radially symmetric solutions of the related elliptic system

−�m,pu = a

∫
Ω

uα1(x, t)vβ1(x, t)dx, x ∈ RN ,

−�n,q v = b

∫
uα2(x, t)vβ2(x, t)dx, x ∈ RN , (2.4)
Ω
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where N � 3. In this section, we derive some sufficient conditions under which the system (2.4) has no positive radially
symmetric solution. Suppose that u(x) = u(|x|) = u(r), v(x) = v(|x|) = v(r), and a = b = 1. We have the following theorems.
And the proof of the theorems is based upon a little modification of methods of Zhang and Yang [31] used to prove
Theorems 2.1 and 2.2 (for brevity, we will omit the details of the proof).

Theorem 2.1. Assume that

(i) α1 > m(p − 1) (or β2 > n(q − 1)) with p,q > 1, m,n � 1, α2, β1 � 0;
(ii) max{p,q} < N < max{A, B}, where

A = mn(p + 1)(p − 1)(q − 1) + np(α1 − p + 1)(q − 1) + qmβ1(p − 1)

mβ1(p − 1) + n(α1 − p + 1)(q − 1)
,

B = mn(q + 1)(p − 1)(q − 1) + mq(β2 − q + 1)(q − 1) + pnα2(q − 1)

nα2(q − 1) + m(β2 − q + 1)(p − 1)
.

Then system (2.4) has no positive radially symmetric solution.

Theorem 2.2. Suppose that

(i) α1,α2, β1, β2 � 0, m,n � 1, p > 1, q > 1;
(ii) α2β1 > 0, mnα2β1 > (m(p − 1) − α1)(n(q − 1) − β2).

If one of the following conditions is satisfied:

(g1) α1 < m(p − 1) and β2 < n(q − 1), max{p,q} < N � max{E, F },
(g2) α1 � m(p − 1) and β2 � n(q − 1), max{p,q} < N < max{E, F },

where

E = m(p + 1)[(p − 1)(n(q − 1) − β2) + β1(q + 1)]
α2β1 − [(m(p − 1) − α1)(n(q − 1) − β2)] + p,

F = n(q + 1)[(q − 1)(m(p − 1) − α1) + α2(p + 1)]
α2β1 − [(m(p − 1) − α1)(n(q − 1) − β2)] + q,

then system (2.4) has no radially symmetric positive solution.

3. Blow-up estimate of doubly degenerate system (1.1)

Since we know that the blow-up rate is the key element in studying the blow-up properties, such as blow-up set,
asymptotic behavior, and similar solution, to understand the blow-up behavior, the first step usually consists in deriving a
bound for blow-up rate. The blow-up rate for positive solutions of the variational system (1.1) with m = n = 1 was obtained
by Yang in [31]. To our knowledge there are no results on the blow-up rate estimates for system (1.1). Motivated by the
results of the above cited papers, we use the non-existence result of the elliptic system (2.4) obtained in Section 2 to
establish the blow-up estimates for the doubly degenerate parabolic system (1.1) when a = b = 1. The main result of the
present section is to generalize the results in Ref. [31].

Theorem 3.1. Let (u, v) be a solution of (1.1). Assume that

(i) u(·, t), v(·, t) are non-negative, radially symmetric, and radially decreasing functions of r = |x|;
(ii) ut(x, t), vt(x, t) attain the maxima at x = 0 for every t ∈ (0, T );

(iii) ut(x, t) � 0, vt(x, t) � 0 for (x, t) ∈ Q T = B R × (0, T );
(iv) u, v have a blow-up time T < +∞;
(v) αi + βi > max{m(p − 1),n(q − 1)} with αi , βi � 0, i = 1,2, m,n � 1, p > 1, q > 1;

(vi) min{m(pβ2 −qβ1)−mnp(q − 2),n(qα1 − pα2)} > max{mnq(p − 1),mnp} or max{m(pβ2 −qβ1),n(qα1 − pα2)−mnq(p −
2)} < min{mnq,mnp(q − 1)};

(vii) there are positive constants k1 , k2 and η < T such that for t ∈ (η, T ),

k2
(
u(0, t)

) δ2(m+mδ1−δ1)

δ1(n+nδ2−δ2) � v(0, t) � k1
(
u(0, t)

) δ2(m+mδ1−δ1)

δ1(n+nδ2−δ2) , (3.5)

where
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δ1 = mβ1q + (n(q − 1) − β2)mp

β1(pα2 + mq(p − 2)) + p(α1 − m)(n(q − 1) − β2)
, (3.6)

δ2 = nα2 p + (m(p − 1) − α1)nq

α2(qβ1 + np(q − 2)) + q(β2 − n)(m(p − 1) − α1)
. (3.7)

If one of the following conditions is satisfied:

(g1) N = 2, m,n � 1, p,q > 1, αi, βi � 0, i = 1,2;
(g2) α1 > m(p − 1) or β2 > n(q − 1), 2 � max{p,q} < N < max{A, B};
(g3) α1 < m(p − 1) and β2 < n(q − 1), with 2 � max{p,q} < N � max{E, F };
(g4) α1 � m(p − 1) and β2 � n(q − 1), with 2 � max{p,q} < N < max{E, F },

where A, B, E, F are defined in Theorems 2.1 and 2.2, then there are positive constants c1 , c2 and t1 ∈ (0, T ) such that

u(x, t) � u(0, t) � c1(T − t)
− δ1

m+mδ1−δ1 , v(x, t) � v(0, t) � c2(T − t)
− δ2

n+nδ2−δ2 ,

for (x, t) ∈ Q T \ Q t1 .

Remark 3.1. From the definitions of δ1 and δ2, we see that the conditions αi + βi > max{m(p − 1),n(q − 1)} with αi, βi � 0,
i = 1,2 and min{m(pβ2 − qβ1) − mnp(q − 2),n(qα1 − pα2)} > max{mnq(p − 1),mnp} or max{m(pβ2 − qβ1),n(qα1 − pα2) −
mnq(p − 2)} < min{mnq,mnp(q − 1)} are natural for the discussion of the blow-up rate estimate.

Remark 3.2. Conditions (i)–(iii) in Theorem 3.1 are reasonable if we impose appropriate assumptions on the initial data
u0(x) and v0(x), e.g., positivity, radial symmetry, and a suitable decreasing property with

�m,pu + a

∫
Ω

uα1(x, t)vβ1(x, t)dx � 0, �n,q v + b

∫
Ω

uα2(x, t)vβ2(x, t)dx � 0.

Remark 3.3. Clearly, condition (vii) seems too strong. If p = q = 2, m = n = 1, α1 + β1 = α2 + β2, from Lemma 3.2 in
Ref. [36], we know that k2u(x, t)δ2/δ1 � v(x, t) � k1u(x, t)δ1/δ2 for (x, t) ∈ Q T \ Q t0 with some t0 ∈ (0, T ). If p �= 2, q �= 2 or
m �= 1, n �= 1 or α1 + β1 �= α2 + β2, we do not know whether or not condition (vii) holds. We hope this condition can be
substantially improved in the future. This is an open problem.

From [33], we give the following Lemma 3.1.

Lemma 3.1. Assume that conditions (v) and (vi) in Theorem 3.1 hold. Then we have

min(δ1, δ2) > 0.

Proof of Theorem 3.1. Define g(t) = [um(0, t)]1/τ1 , h(t) = [vn(0, t)]1/τ2 for t ∈ (0, T ), where

τ1 = mβ1q + (n(q − 1) − β2)mp

α2β1 − (m(p − 1) − α1)(n(q − 1) − β2)
,

τ2 = nα2 p + (m(p − 1) − α1)nq

α2β1 − (m(p − 1) − α1)(n(q − 1) − β2)
.

By putting ω1(t) = (um(r/γ (t), t))/γ (t)τ1 , ω2(t) = (vn(r/γ (t), t))/γ (t)τ2 , γ (t) = g(t)+ h(t), r = |x|, using the symmetry and
assumptions (ii)–(iii) in Theorem 3.1, it follows that

0 �
(
Φp

(
ω′

1

))′ + N − 1

r
Φp

(
ω′

1

) +
r∫

0

ω
α1
m

1 ω
β1
n

2 � ut(0, t)

γ (t)p+(p−1)τ1
+ vt(0, t)

γ (t)q+(q−1)τ2
, (3.8)

0 �
(
Φq

(
ω′

2

))′ + N − 1

r
Φq

(
ω′

2

) +
r∫

0

ω
α2
m

1 ω
β2
n

2 � ut(0, t)

γ (t)p+(p−1)τ1
+ vt(0, t)

γ (t)q+(q−1)τ2
, (3.9)

for any t ∈ (0, T ) and r ∈ [0, Rγ (t)).
Since u(x, t), v(x, t) achieve their maxima at x = 0, we easily see that ω1 and ω2 are bounded. Indeed,

0 � ω1(r, t) � um(0, t)
τ1

� 1, 0 � ω2(r, t) � vn(0, t)
τ2

� 1. (3.10)

γ (t) γ (t)
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Multiplying (3.8) by w1,r (where w1,r express partial derivation of ω1 for r), and then integrating with respect to r on
(0, r), we have

p − 1

p
|ω1,r |p + ω1

r∫
0

ω
α1
m

1 (s)ω
β1
n

2 (s)ds −
r∫

0

ω1,rω
α1
m

1 (s)ω
β1
n

2 (s)ds � 0. (3.11)

From (3.11) and ω1,r � 0, it follows that

|ω1,r | �
(

mK1 p

(p − 1)(α1 + m)

)1/p

(3.12)

for t ∈ (0, T ) and r ∈ [0, Rγ (t)). Similarly, we get

|ω2,r | �
(

nK2q

(q − 1)(β2 + n)

)1/q

(3.13)

for t ∈ (0, T ) and r ∈ [0, Rγ (t)), where K1, K2 are positive constants.
Now we proceed by contradiction to claim that

lim inf
t→T

ut(0, t)

γ (t)p+(p−1)τ1
+ vt(0, t)

γ (t)q+(q−1)τ2
= C > 0. (3.14)

Otherwise, suppose that there exists a sequence {tn} ⊂ (0, T ) with tn → T such that

lim inf
t→T

ut(0, t)

γ (t)p+(p−1)τ1
+ vt(0, t)

γ (t)q+(q−1)τ2
= 0.

By using Ascoli–Arzelà theorem, there exists a sequence (still denote by {tn}) such that

ω1(·, tn) → ω1(·), ω2(·, tn) → ω2(·), as n → ∞, (3.15)

hold uniformly on a compact subset of [0,∞). Now in the sense of distributions

0 �
(
Φp

(
ω′

1

))′ + N − 1

r
Φp

(
ω′

1

) +
r∫

0

ω
α1
m

1 ω
β1
n

2 = 0,

0 �
(
Φp

(
ω′

1

))′ + N − 1

r
Φp

(
ω′

1

) +
r∫

0

ω
α1
m

1 ω
β1
n

2 = 0. (3.16)

The absolute continuity of ω1, ω2 implies ω1, ω2 are C1(0,∞). By the local existence and uniqueness of initial value
problem for (3.16) and using the argument in [37], we conclude that ω1,ω2 > 0 on (0,∞) with ω′

1(0) = ω′
2(0) = 0.

If N = 2, p > 2, we proceed as follow. From (3.16), we infer that rΦp(ω′
1), rΦq(ω

′
2) are decreasing and that there exist

M > 0 and r0 > 0 such that

rΦp
(
ω′

1

)
� M, for r ∈ (r0,∞).

The last inequality implies that

ω1(s) � ω1(s) − ω1(t) = (−M)
1

p−1

t∫
s

r− 1
p−1 dr = (−M)

1
p−1

(
t

p−2
p−1 − s

p−2
p−1

)
(3.17)

for r0 � s � t . Letting t → +∞ in (3.17), we obtain a contraction.
If N = 2, p = 2, proceeding similarly as above implies that

ω1(s) > ω1(s) − ω1(t) > (−M)[ln t − ln s]
for r0 � s � t . Letting t → +∞ in the equality, we obtain a contraction.

Finally, if N > max{p,q} � 2 holds, we know from Theorems 2.1 and 2.2 that system (3.16) has no positive solutions. We
conclude that (3.14) is true. It follows from (3.14) that there exists t1 ∈ (0, T ) such that for any t ∈ (t1, T ) we have

0 � ut(0, t)

γ (t)p+(p−1)τ1
+ vt(0, t)

γ (t)q+(q−1)τ2
� ut(0, t)

m(1+δ1)

δ1

+ vt(0, t)
n(1+δ2)

δ2

. (3.18)

u(0, t) v(0, t)
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Integrating (3.18) on (t, s) ⊂ (t1, T ) and then letting s → T , we obtain

c(T − t) � δ1

m + mδ1 − δ1
u(0, t)

− m+mδ1−δ1
δ1 + δ2

n + nδ2 − δ2
v(0, t)

− n+nδ2−δ2
δ2 . (3.19)

By using condition (vi) and (3.19), we have

u(x, t) � u(0, t) � c1(T − t)
− δ1

m+mδ1−δ1 , for any (x, t) ∈ Q T \ Q t1 .

In the same way we have the blow-up estimate for v . The proof is complete. �
4. Local existence and uniqueness of system (1.1)

In order to study the globally existing and blowing-up solutions to problem (1.1), we need to firstly study the existence
of local-in-time weak solutions of (1.1) under appropriate hypotheses in this section. For the Newtonian filtration system
(p = 2) and the evolution p-Laplacian equation (m = 1), the analog problem was studied in [28,31]. Noticing that the
system (1.1) includes the Newtonian filtration system (p = 2) and the non-Newtonian filtration system (m = 1) formally, so
the method for it should be synthetic. Whereas the equations in (1.1) are degenerate for u = 0, |∇u| = 0 or v = 0, |∇v| = 0,
there exist some new difficulties to be overcome. Our proof is based on argument by the different method of regularization,
which involves considering the regularized problem firstly and making a priori estimates for the non-negative approximate
solutions by carefully choosing special test functions and a scaling argument, then obtaining the results based on the
estimates by a standard limiting process. From a physical point of view, we need only to consider the non-negative solutions.
Moreover, if we assume that u0(x), v0(x) � 0 in Ω , by Lemma 4.1 (see it below), we can obtain that (u(x, t), v(x, t)) � (0,0)

a.e. in (Ω × (0, T )) × (Ω × (0, T )). Thus we only consider the non-negative solutions in later sections.
As it is well known that doubly degenerate equations need not have classical solutions, we give a precise definition of a

weak solution for problem (1.1). Let ΩT = Ω × (0, T ], ST = ∂Ω × [0, T ], T > 0.

Definition 4.1. A pair of functions (u, v) is called a solution of the problem (1.1) on Ω T × Ω T if and only if

um(x, t) ∈ C
(
0, T ; L∞(Ω)

) ∩ Lp(
0, T ; W 1,p

0 (Ω)
)
,

vn(x, t) ∈ C
(
0, T ; L∞(Ω)

) ∩ Lq(0, T ; W 1,q
0 (Ω)

)
,(

um)
t ∈ L2(0, T ; L2(Ω)

)
,

(
vn)

t ∈ L2(0, T ; L2(Ω)
)
,

u(x,0) = u0(x), v(x,0) = v0(x)

and the equalities∫
Ω

u(x, t2)ψ1(x, t2)dx −
∫
Ω

u(x, t1)ψ1(x, t1)dx

=
t2∫

t1

∫
Ω

uψ1t dx dt −
t2∫

t1

∫
Ω

∣∣∇um
∣∣p−2∇um · ∇ψ1dx dt + a

t2∫
t1

∫
Ω

ψ1(x, t)

(∫
Ω

uα1 vβ1 dx

)
dx dt, (4.20)

∫
Ω

v(x, t2)ψ2(x, t2)dx −
∫
Ω

v(x, t1)ψ2(x, t1)dx

=
t2∫

t1

∫
Ω

vψ2t dx dt −
t2∫

t1

∫
Ω

∣∣∇vn
∣∣q−2∇vn · ∇ψ2 dx dt + b

t2∫
t1

∫
Ω

ψ2(x, t)

(∫
Ω

uα2 vβ2 dx

)
dx dt (4.21)

hold for all 0 < t1 < t2 < T , where ψ1(x, t),ψ2(x, t) ∈ C1,1(Q T ) such that ψ1(x, T ) = ψ2(x, T ) = 0 and ψ1(x, t) = ψ2(x, t) = 0
on ST .

Similarly, to define a subsolution (u(x, t), v(x, t)) we need only to require that ψ1(x, t) � 0, ψ2(x, t) � 0, (u(x,0),

v(x,0)) � (u0(x), v0(x)) on Ω × Ω , (u(x, t), v(x, t)) � (0,0) on ST × ST and the equalities in (4.20) and (4.21) are replaced
by �. A supersolution can be defined similarly.

Definition 4.2. We say the solution (u, v) of the problem (1.1) blows up in finite time if there exists a positive constant
T � < ∞, such that

lim
�−

(∣∣u(·, t)
∣∣

L∞(Ω)
+ ∣∣v(·, t)

∣∣
L∞(Ω)

) = +∞.

t→T
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We say the solution (u, v) exists globally if

sup
t∈(0,+∞)

(∣∣u(·, t)
∣∣

L∞(Ω)
+ ∣∣v(·, t)

∣∣
L∞(Ω)

)
< +∞.

By a modification of the method given in [7,31], we obtain the following results.

Theorem 4.1. Suppose that (u0, v0) � (0,0) and satisfies the conditions (H), then there exists a constant T0 > 0 such that the
problem (1.1) admits a unique solution (u, v) ∈ Q T0 × Q T0 , um ∈ C(0, T ; L∞(Ω)) ∩ L p(0, T ; W 1,p

0 (Ω)), vn ∈ C(0, T ; L∞(Ω)) ∩
Lq(0, T ; W 1,q

0 (Ω)).

We first give a comparison lemma for the non-degenerate parabolic system, which plays a crucial role in the proof of
our results.

Lemma 4.1 (Comparison principle). Suppose that (u(x, t), v(x, t)) and (u(x, t), v(x, t)) are the lower and upper solution of problem
(1.1) on Ω T × Ω T , respectively. Then (u(x, t), v(x, t)) � (u(x, t), v(x, t)) a.e. on Ω T × Ω T .

Proof of this lemma is similar to that given in [38,1,7], we omit it here.

Proof of Theorem 4.1. Consider the following approximate problems for the problem (1.1):

uit − div
((∣∣∇um

i

∣∣2 + εi
) p−2

2 ∇um
i

) = a

∫
Ω

uα1
i vβ1

i dx, (x, t) ∈ ΩT ,

vit − div
((∣∣∇vn

i

∣∣2 + σi
) q−2

2 ∇vn
i

) = b

∫
Ω

uα2
i vβ2

i dx, (x, t) ∈ ΩT ,

ui(x, t) = εi, vi(x, t) = σi, (x, t) ∈ ST ,

ui(x,0) = u0εi (x) + εi, vi(x,0) = v0σi (x) + σi, x ∈ Ω. (4.22)

Here εi , σi are strictly decreasing sequences, 0 < εi, σi < 1, and εi → 0+, σi → 0+ as i → +∞. u0εi , v0σi ∈ C∞
0 (Ω) are ap-

proximation functions for the initial data u0(x) and v0(x), respectively. |u0εi + εi |L∞(Ω) � |u0 + 1|L∞(Ω) , |∇um
0εi

|L∞(Ω) �
|∇um

0 |L∞(Ω) , for all εi , and (u0εi + εi)
m → um

0 strongly in W 1,p
0 (Ω); |v0σi + σi |L∞(Ω) � |v0 + 1|L∞(Ω) , |∇vn

0σi
|L∞(Ω) �

|∇vn
0|L∞(Ω) , for all σi , and (v0σi + σi)

n → vn
0 strongly in W 1,q

0 (Ω).
(4.22) is a non-degenerate problem for each fixed εi and σi ; it is easy to prove that it admits a unique classic solution

(ui, vi) by using the Schauder’s fixed point theorem and (ui, vi) � (εi, σi) > (0,0) by the classical theory for parabolic
equations (see [39]).

To find limit functions (u(x, t), v(x, t)) of the sequence (ui, vi), we divide our proof into four steps:

Step 1: There exist a small constant T0 > 0 and a positive constant M1, independent of i, such that

|ui|L∞(ΩT0 ), |vi |L∞(ΩT0 ) � M1. (4.23)

To this end, we consider the following Cauchy problem:

dU1

dt
= a|Ω|Uα1

1 V β1
1 ,

dV 1

dt
= b|Ω|Uα2

1 V β2
1 ,

U1(0) = |u0 + 1|L∞(Ω), V 1(0) = |v0 + 1|L∞(Ω), (4.24)

dU2

dt
= −a|Ω|Uα1

2 V β1
2 ,

dV 2

dt
= −b|Ω|Uα2

2 V β2
2 ,

U2(0) = −|u0 + 1|L∞(Ω), V 2(0) = −|v0 + 1|L∞(Ω). (4.25)

It is easy to verify that there exists a constant t0 ∈ (0, T ) such that (4.24) and (4.25) admit a solution (U1(t), V 1(t)) and
(U2(t), V 2(t)) on [0, t0], respectively, moreover, the t0 depends only on |u0 + 1|L∞(Ω), |v0 + 1|L∞(Ω) . By a comparison prin-
ciple for the approximate problem (see [21,39]), we get

∣∣ui(x, t)
∣∣, ∣∣vi(x, t)

∣∣ � max
{

U1(t), V 1(t),−U2(t),−V 2(t)
}
.

Setting T0 = t0/2 and M1 = max{U1(t), V 1(t),−U2(t),−V 2(t)} we draw our conclusion.
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Step 2: There exists a constant M2 > 0, independent of i, such that

∣∣∇um
i

∣∣
L p(ΩT0 )

,
∣∣∇vn

i

∣∣
Lq(ΩT0 )

� M2. (4.26)

In fact, multiplying the first equation in (4.22) by um
i , the second equation in (4.22) by vn

i and integrating the results over
ΩT0 we have

1

m + 1

∫
Ω

um+1
i (x, T0)dx +

T0∫
0

∫
Ω

(∣∣∇um
i

∣∣2 + εi
) p−2

2
∣∣∇um

i

∣∣2
dx dt

=
∫ ∫

ST

(∣∣∇um
i

∣∣2 + εi
) p−2

2 ∇um
i · −→n um

i dx dt + 1

m + 1

∫
Ω

(
u0εi (x) + εi

)m+1
dx

+ a

T0∫
0

(∫
Ω

um
i (x, t)dx

)(∫
Ω

uα1 vβ1 dx

)
dt,

1

n + 1

∫
Ω

vn+1
i (x, T0)dx +

T0∫
0

∫
Ω

(∣∣∇vn
i

∣∣2 + σi
) q−2

2
∣∣∇vn

i

∣∣2
dx dt

=
∫ ∫

ST

(∣∣∇vn
i

∣∣2 + σi
) q−2

2 ∇vn
i · −→n vn

i dx dt + 1

n + 1

∫
Ω

(
v0σi (x) + σi

)n+1
dx

+ b

T0∫
0

(∫
Ω

vn
i (x, t)dx

)(∫
Ω

uα2 vβ2 dx

)
dt.

By |u0εi + εi |L∞(Ω) � |u0 + 1|L∞(Ω) , |v0σi + σi |L∞(Ω) � |v0 + 1|L∞(Ω) , and (4.23) we get

T0∫
0

∫
Ω

∣∣∇um
i

∣∣p
dx dt � |Ω|

m + 1
|u0 + 1|m+1

L∞(Ω) + aT0|Ω|2Mm+α1+β1
1 � M2u,

T0∫
0

∫
Ω

∣∣∇vn
i

∣∣q
dx dt � |Ω|

n + 1
|v0 + 1|n+1

L∞(Ω) + bT0|Ω|2Mn+α2+β2
1 � M2v .

Setting

M2 = max{M2u, M2v},
we draw our conclusion.

Step 3: There exists a constant M3 > 0, independent of i, such that

∣∣(um
i

)
t

∣∣
L2(ΩT0 )

,
∣∣(vn

i

)
t

∣∣
L2(ΩT0 )

� M3. (4.27)

To do so, multiplying the first equation in (4.22) by (um
i )t , the second equation in (4.22) by (vn

i )t and integrating the results
over ΩT0 we get

T0∫
0

∫
Ω

mum−1
i (uit)

2(x, t)dx dt = −
T0∫

0

∫
Ω

(∣∣∇um
i

∣∣2 + εi
) p−2

2 ∇um
i · ∇(

um
i

)
t dx dt

+ a

T0∫ ∫ (
um

i

)
t(x, t)

(∫
uα1 vβ1 dx

)
dx dt,
0 Ω Ω
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T0∫
0

∫
Ω

nvn−1
i (vit)

2(x, t)dx dt = −
T0∫

0

∫
Ω

(∣∣∇vn
i

∣∣2 + σi
) q−2

2 ∇vn
i · ∇(

vn
i

)
t dx dt

+ b

T0∫
0

∫
Ω

(
vn

i

)
t(x, t)

(∫
Ω

vα2 vβ2 dx

)
dx dt.

By Hölder’s inequality, |u0εi + εi |L∞(Ω) � |u0 + 1|L∞(Ω) , |v0σi + σi |L∞(Ω) � |v0 + 1|L∞(Ω) , inequality (4.23) and the equalities

T0∫
0

∫
Ω

(∣∣∇um
i

∣∣2 + εi
) p−2

2 ∇um
i · ∇(

um
i

)
t dx dt = 1

p

∫
Ω

(∣∣∇um
εi

(x, T0)
∣∣2 + εi

) p
2 dx − 1

p

∫
Ω

(∣∣∇um
0εi

∣∣2 + εi
) p

2 dx,

T0∫
0

∫
Ω

(∣∣∇vn
i

∣∣2 + σi
) q−2

2 ∇vn
i · ∇(

vn
i

)
t dx dt = 1

q

∫
Ω

(∣∣∇vn
σi

(x, T0)
∣∣2 + σi

) q
2 dx − 1

q

∫
Ω

(∣∣∇vn
0σi

∣∣2 + σi
) q

2 dx,

we obtain

T0∫
0

∫
Ω

mum−1
i (uit)

2(x, t)dx dt

� − 1

p

∫
Ω

(∣∣∇um
εi

(x, T0)
∣∣2 + εi

) p
2 dx + 1

p

∫
Ω

(∣∣∇um
0εi

∣∣2 + εi
) p

2 dx + 1

2

T0∫
0

∫
Ω

mum−1
i (uit)

2(x, t)dx dt

+ 2a2

T0∫
0

∫
Ω

mum−1
i

(∫
Ω

uα1
i vβ1

i dx

)2

dx dt,

T0∫
0

∫
Ω

nvn−1
i (vit)

2(x, t)dx dt

� −1

q

∫
Ω

(∣∣∇vn
σi

(x, T0)
∣∣2 + σi

) q
2 dx + 1

q

∫
Ω

(∣∣∇vn
0σi

∣∣2 + σi
) q

2 dx + 1

2

T0∫
0

∫
Ω

nvn−1
i (vit)

2(x, t)dx dt

+ 2b2

T0∫
0

∫
Ω

nvn−1
i

(∫
Ω

uα2
i vβ2

i dx

)2

dx dt.

So

T0∫
0

∫
Ω

mum−1
i (uit)

2(x, t)dx dt � C,

T0∫
0

∫
Ω

nvn−1
i (vit)

2(x, t)dx dt � C .

Using (4.23) and Young’s inequality, we get

∣∣(um
i

)
t

∣∣
L2(ΩT0 )

=
T0∫

0

∫
Ω

mum−1
i

[
mum−1

i (uit)
2(x, t)

]
dx dt � M3,

∣∣(vn
i

)
t

∣∣
L2(ΩT0 )

=
T0∫

0

∫
Ω

nvn−1
i

[
nvn−1

i (vit)
2(x, t)

]
dx dt � M3

for some M3 > 0.
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Therefore, by virtue of (4.23), (4.26) and (4.27) and the Ascoli–Arzelà theorem, we can choose a subsequence, still
denoted by {(ui, vi)} for convenience, such that

ui → u, vi → v a.e. for (x, t) ∈ ΩT0 , (4.28)

∇um
i → ∇um weakly in Lp(

0, T0; Lp(Ω)
)
, (4.29)

∇vn
i → ∇vn weakly in Lq(0, T0; Lq(Ω)

)
, (4.30)(

um
i

)
t → um

t ,
(

vn
i

)
t → vn

t weakly in L2(0, T0; L2(Ω)
)
, (4.31)∣∣∇um

i

∣∣p−2(
um

i

)
xi

→ wi weakly in L
p

p−1
(
0, T0; L

p
p−1 (Ω)

)
, (4.32)

∣∣∇vn
i

∣∣q−2(
vn

i

)
xi

→ zi weakly in L
q

q−1
(
0, T0; L

q
q−1 (Ω)

)
. (4.33)

Step 4: We show that wi = |∇um|p−2(um)xi and zi = |∇vn|q−2(vn)xi .
Multiplying the first equation in (4.22) by ψ1(um

i − um), the second equation in (4.22) by ψ2(vn
i − vn) and integrating

the results over Q T0 , we have

T0∫
0

∫
Ω

ψ1
(
um

i − um)
uit dx dt +

T0∫
0

∫
Ω

ψ1
(∣∣∇um

i

∣∣2 + εi
) p−2

2 ∇um
i · ∇(

um
i − um)

dx dt

+
T0∫

0

∫
Ω

(
um

i − um)(∣∣∇um
i

∣∣2 + εi
) p−2

2 ∇um
i · ∇ψ1dx dt

= a

T0∫
0

∫
Ω

ψ1
(
um

i − um)(∫
Ω

uα1
i vβ1

i dx

)
dx dt,

T0∫
0

∫
Ω

ψ2
(

vn
i − vn)vit dx dt +

T0∫
0

∫
Ω

ψ2
(∣∣∇vn

i

∣∣2 + σi
) q−2

2 ∇vn
i · ∇(

vn
i − vn)dx dt

+
T0∫

0

∫
Ω

(
vn

i − vn)(∣∣∇vn
i

∣∣2 + σi
) q−2

2 ∇vn
i · ∇ψ2 dx dt

= b

T0∫
0

∫
Ω

ψ2
(

vn
i − vn)(∫

Ω

uα2
i vβ2

i dx

)
dx dt.

Using (4.23), (4.28) and (4.31) we get

lim
n→∞

T0∫
0

∫
Ω

ψ1
∣∣∇um

i

∣∣p−2∇um
i · ∇(

um
i − um)

dx dt = 0,

lim
n→∞

T0∫
0

∫
Ω

ψ2
∣∣∇vn

i

∣∣q−2∇vn
i · ∇(

vn
i − vn)dx dt = 0,

where ψ1,ψ2 ∈ C1,1(ΩT0 ), ψ1,ψ2 � 0.
The left arguments are as same as those of Theorem 1 in [9], so we omit them.
We complete the existence part by a standard limiting process.
The uniqueness of the solution is obvious. In fact, assume that (u1, v1), (u2, v2) are two non-negative solutions of (1.1);

using Lemma 4.1 repeatedly, we can get u1 = u2, v1 = v2 a.e. in Ω × [0, T0]. �
5. Global existence of a solution

In this section, we investigate the global existence property of the solutions to problem (1.1) and prove Theorem 5.1. The
main method is constructing a globally upper solution and using comparison principle to achieve our purpose.
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Theorem 5.1. Suppose that the initial data (u0(x), v0(x)) satisfies the conditions (H), then the solution of problem (1.1) exists globally
if one of the following conditions holds:

(i) β1α2 < [m(p − 1) − α1][n(q − 1) − β2];
(ii) β1α2 = [m(p − 1) − α1][n(q − 1) − β2] and the measure of the domain (‖Ω‖) is small;

(iii) β1α2 > [m(p − 1) − α1][n(q − 1) − β2] and the initial values are small.

In order to study the globally existing solutions to problem (1.1), we need to study the following elliptic system

−�k,γ Θ = 1, x ∈ Ω,

Θ = 1, x ∈ ∂Ω, (5.34)

where �k,γ Θ is defined in (1.1), and we obtain the following lemma.

Lemma 5.1. Problem (5.34) has a unique solution Θ(x), and satisfies the following relations,

Θ(x) > 1 in Ω, ∇Θ · ν < 0 on ∂Ω, sup
x∈Ω

Θ = M < +∞,

where M is a positive constant.

Proof of this lemma is similar to that given in [32], we omit it here.

Proof of Theorem 5.1. Let ϕ(x) and ψ(x) be the unique solutions of the following elliptic problem{−�m,pϕ = 1, x ∈ Ω,

ϕ = 1, x ∈ ∂Ω,

{−�n,qψ = 1, x ∈ Ω,

ψ = 1, x ∈ ∂Ω.

Then from Lemma 5.1, we obtain the following relations

ϕ(x),ψ(x) > 1 in Ω, ∇ϕ · ν,∇ψ · ν < 0 on ∂Ω, (5.35)

M = max
{

sup
x∈Ω

ϕ, sup
x∈Ω

ψ
}

< +∞, (5.36)

where M > 0 is a positive constant.
Let u(x, t) = Λ1ϕ(x), v(x, t) = Λ2ψ(x), where Λ1,Λ2 > 0 will be determined later. Then with a direct computation we

obtain

ut − �m,pu = Λ
m(p−1)
1 , vt − �n,q v = Λ

n(q−1)
2 ,

and

a

∫
Ω

uα1 vβ1 dx � a‖Ω‖Λα1
1 Λ

β1
2 Mα1+β1 , b

∫
Ω

uα2 vβ2 dx � b‖Ω‖Λα2
1 Λ

β2
2 Mα2+β2 .

So, (u(x, t), v(x, t)) is an upper solution of problem (1.1), if

Λ
m(p−1)
1 � a‖Ω‖Λα1

1 Λ
β1
2 Mα1+β1 , Λ

n(q−1)
2 � b‖Ω‖Λα2

1 Λ
β2
2 Mα2+β2 ,

u(x, t)|∂Ω � 0, v(x, t)|∂Ω � 0,

u(x,0) = u0(x), v(x,0) = v0(x). (5.37)

Next we prove (5.37) in three cases.
(i) When β1α2 < [m(p − 1) − α1][n(q − 1) − β2], if we choose Λ1, Λ2 large enough such that

Λ1 > max
{

max
x∈Ω

u0(x),
(
ab

β1
n(q−1)−β2 ‖Ω‖1+ β1

n(q−1)−β2 M
α1+β1+ (α2+β2)β1

n(q−1)−β2
) 1

m(p−1)−α1− α2β1
n(q−1)−β2

}
,

Λ2 > max
{

max
x∈Ω

v0(x),
(
a

α2
m(p−1)−α1 b‖Ω‖1+ α2

m(p−1)−α1 M
α2+β2+ (α1+β1)α2

m(p−1)−α1
) 1

n(q−1)−β2− α2β1
m(p−1)−α1

}
,

then (5.37) holds.
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(ii) When β1α2 = [m(p − 1) − α1][n(q − 1) − β2], we can choose Λ1, Λ2 large enough such that

Λ1 > max
x∈Ω

u0(x), Λ2 > max
x∈Ω

v0(x),

and ‖Ω‖ small enough such that

‖Ω‖ � min
{(

ab
β1

n(q−1)−β2 M
α1+β1+ (α2+β2)β1

n(q−1)−β2
)−1/(1+ β1

n(q−1)−β2
)
,
(
a

α2
m(p−1)−α1 bM

α2+β2+ (α1+β1)α2
m(p−1)−α1

)−1/(1+ α2
m(p−1)−α1

)}
,

then (5.37) holds.
(iii) When β1α2 > [m(p − 1) − α1][n(q − 1) − β2], we can take Λ1, Λ2 small enough such that

Λ1 �
(
ab

β1
n(q−1)−β2 ‖Ω‖1+ β1

n(q−1)−β2 M
α1+β1+ (α2+β2)β1

n(q−1)−β2
) −1

α2β1
n(q−1)−β2

−[m(p−1)−α1]
,

Λ2 �
(
a

α2
m(p−1)−α1 b‖Ω‖1+ α2

m(p−1)−α1 M
α2+β2+ (α1+β1)α2

m(p−1)−α1
) −1

α2β1
m(p−1)−α1

−[n(q−1)−β2]
.

Furthermore, if the initial data is sufficiently small such that u0(x) < Λ1 and v0(x) < Λ2, then (5.37) holds. The proof of
Theorem 5.1 is complete. �
6. Blow-up of a solution

In this section, we investigate the blow-up property of the solutions to problem (1.1) and prove Theorem 6.1. The main
method is constructing a blowing-up lower solution and using the comparison principle to achieve our purpose.

Theorem 6.1. Suppose the initial data (u0(x), v0(x)) satisfies the conditions (H), then the solution of problem (1.1) blows up in finite
time if one of the following conditions holds:

(i) β1α2 > [m(p − 1) − α1][n(q − 1) − β2] and the initial data is sufficiently large;
(ii) β1α2 = [m(p − 1) − α1][n(q − 1) − β2] and Ω contains a sufficiently large ball.

Proof. (i) When β1α2 > [m(p − 1) − α1][n(q − 1) − β2], and the initial data is large enough, set

u(x, t) = (τ − t)−γ1 V 1(ξ), ξ = |x|(τ − t)−σ1 , V 1(ξ) =
(

1 + A

2
− ξ2

2A

)1/m

+
,

v(x, t) = (τ − t)−γ2 V 2(η), η = |x|(τ − t)−σ2 , V 2(η) =
(

1 + A

2
− η2

2A

)1/n

+
,

where γi, σi > 0 (i = 1,2), A > 1 and 0 < τ < 1 are parameters to be determined. It is easy to see that u(x, t), v(x, t) blow
up at time τ , so it is enough to prove that (u(x, t), v(x, t)) is a lower solution of problem (1.1). If we choose τ small enough
such that

supp u(·, t) = B
(
0, R(τ − t)σ1

) ⊂ B
(
0, Rτσ1

) ⊂ Ω,

supp v(·, t) = B
(
0, R(τ − t)σ2

) ⊂ B
(
0, Rτσ2

) ⊂ Ω,

where R = (A(2 + A))1/2, then u(x, t)|∂Ω = 0, v(x, t)|∂Ω = 0. Next if we choose the initial data large enough such that

u0(x) � 1

τγ1
V 1

( |x|
τσ1

)
, v0(x) � 1

τγ2
V 2

( |x|
τσ2

)
,

then (u(x, t), v(x, t)) is a lower solution of problem (1.1) if

ut − �m,pu � a

∫
Ω

uα1(x, t)vβ1(x, t)dx, (x, t) ∈ Ω × (0, τ ], (6.38)

vt − �n,q v � b

∫
uα2(x, t)vβ2(x, t)dx, (x, t) ∈ Ω × (0, τ ]. (6.39)
Ω
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After a direct computation, we obtain

ut = γ1 V 1(ξ) + σ1ξ V ′
1(ξ)

(τ − t)γ1+1
, vt = γ2 V 2(η) + σ2ηV ′

2(η)

(τ − t)γ2+1
,

∇um = x

A(τ − t)mγ1+2σ1
, −�um = N

A(τ − t)mγ1+2σ1
,

∇vn = x

A(τ − t)mγ2+2σ2
, −�vn = N

A(τ − t)mγ2+2σ2
, (6.40)

and

−�m,pu = ∣∣∇um
∣∣p−2

�um + (p − 2)
∣∣∇um

∣∣p−4(∇um)τ · (Hx
(
um)) · ∇um

= ∣∣∇um
∣∣p−2

�um + (p − 2)
∣∣∇um

∣∣p−4
N∑

j=1

N∑
i=1

∂um

∂xi

∂2um

∂xi∂x j

∂um

∂x j
, (6.41)

−�n,q v = ∣∣∇vn
∣∣q−2

�vn + (q − 2)
∣∣∇vn

∣∣q−4(∇vn)τ · (Hx
(

vn)) · ∇vn

= ∣∣∇vn
∣∣q−2

�vn + (q − 2)
∣∣∇vn

∣∣q−4
N∑

j=1

N∑
i=1

∂vn

∂xi

∂2 vn

∂xi∂x j

∂vn

∂x j
, (6.42)

where Hx(um), Hx(vn) denote the Hessian matrix of um(x, t), vn(x, t), respectively.
Use the notation d(Ω) = diam(Ω), then from (6.41) and (6.42), we obtain

|�m,pu| � N

A(τ − t)mγ1+2σ1

(
d(Ω)

(τ − t)mγ1+2σ1

)p−2

+ (p − 2)

(
d(Ω)

(τ − t)mγ1+2σ1

)p−4( d(Ω)

(τ − t)mγ1+2σ1

)2 N

A(τ − t)mγ1+2σ1

= N(p − 1)(d(Ω))p−2

A(τ − t)(mγ1+2σ1)(p−1)
. (6.43)

Similarly, from (6.41) and (6.42) we obtain

|�n,q v| � N

A(τ − t)nγ2+2σ2

(
d(Ω)

(τ − t)nγ2+2σ2

)q−2

+ (q − 2)

(
d(Ω)

(τ − t)nγ2+2σ2

)q−4( d(Ω)

(τ − t)nγ2+2σ2

)2 N

A(τ − t)nγ2+2σ2

= N(q − 1)(d(Ω))q−2

A(τ − t)(nγ2+2σ2)(q−1)
. (6.44)

Next, we compute the nonlocal term of (6.38) and (6.39)

a

∫
Ω

uα1(x, t)vβ1(x, t)dx

= a

(τ − t)γ1α1+γ2β1

∫
B(0,R(τ−t)σ1 )∩B(0,R(τ−t)σ2 )

V α1
1

( |x|
(τ − t)σ1

)
V β1

2

( |x|
(τ − t)σ2

)
dx

� aM1

(τ − t)γ1α1+γ2β1−N(σ1+σ2)
,

b

∫
Ω

uα2(x, t)vβ2(x, t)dx

= b

(τ − t)γ1α2+γ2β2

∫
B(0,R(τ−t)σ1 )∩B(0,R(τ−t)σ2 )

V α2
1

( |x|
(τ − t)σ1

)
V β2

2

( |x|
(τ − t)σ2

)
dx

� bM2
γ1α2+γ2β2−N(σ1+σ2)

, (6.45)

(τ − t)
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where

M1 =
∫

B(0,R)

V α1
1 V β1

2

(|ξ |)dξ, M2 =
∫

B(0,R)

V α2
1 V β2

2

(|η|)dη.

If 0 � ξ,η � A, then 1 � V 1(ξ) � (1 + A/2)1/m , 1 � V 2(η) � (1 + A/2)1/n and V ′
1(ξ) � 0, V ′

2(η) � 0. Combining the above
inequalities and the definition of M1 and M2, we obtain

M1 =
∫

B(0,R)

V α1
1 V β1

2

(|ξ |)dξ �
∫

B(0,A)

V α1
1 V β1

2

(|ξ |)dξ �
∥∥B(0, A)

∥∥,

M2 =
∫

B(0,R)

V α2
1 V β2

2

(|η|)dη �
∫

B(0,A)

V α2
1 V β2

2

(|η|)dη �
∥∥B(0, A)

∥∥. (6.46)

Then from (6.40)–(6.46) we obtain

ut − �m,pu − a

∫
Ω

uα1(x, t)vβ1(x, t)dx

�
γ1(1 + A

2 )1/m

(τ − t)γ1+1
+ N(p − 1)(d(Ω))p−2

A(τ − t)(mγ1+2σ1)(p−1)
− a‖B(0, A)‖

(τ − t)γ1α1+γ2β1−N(σ1+σ2)
, (6.47)

vt − �n,q v − b

∫
Ω

uα2(x, t)vβ2(x, t)dx

�
γ2(1 + A

2 )1/n

(τ − t)γ2+1
+ N(q − 1)(d(Ω))q−2

A(τ − t)(nγ2+2σ2)(q−1)
− b‖B(0, A)‖

(τ − t)γ1α2+γ2β2−N(σ1+σ2)
. (6.48)

If ξ,η � A, since m,n � 1, we obtain V 1(ξ) � 1, V 2(η) � 1 and V ′
1(ξ) � −1/m, V ′

2(η) � −1/n. Combining the above in-
equalities (6.40)–(6.46), and M1 � 0, M2 � 0, we obtain

ut − �m,pu − a

∫
Ω

uα1(x, t)vβ1(x, t)dx �
γ1 − 1

m σ1 A

(τ − t)γ1+1
+ N(p − 1)(d(Ω))p−2

A(τ − t)(mγ1+2σ1)(p−1)
, (6.49)

vt − �n,q v − b

∫
Ω

uα2(x, t)vβ2(x, t)dx �
γ2 − 1

n σ2 A

(τ − t)γ2+1
+ N(q − 1)(d(Ω))q−2

A(τ − t)(nγ2+2σ2)(q−1)
. (6.50)

If 0 � ξ � A and η � A, we have that (6.47) and (6.50) hold. If ξ � A and 0 � η � A, we have that (6.48) and (6.49) hold.
So, from the above discussions, (6.38) and (6.39) hold if the right-hand sides of (6.47)–(6.50) are non-positive.
Since p,q > 2, m,n � 1 and β1α2 > [m(p − 1) − α1][n(q − 1) − β2] > (α1 − 1)(β2 − 1), we can choose two constants

σ1, σ2 > 0 small enough such that

(β1 − β2 + 1)[N(σ1 + σ2) + 1]
β1α2 − (α1 − 1)(β2 − 1)

<
1 − 2σ1(p − 1)

m(p − 1) − 1
,

(α2 − α1 + 1)[N(σ1 + σ2) + 1]
β1α2 − (α1 − 1)(β2 − 1)

<
1 − 2σ2(q − 1)

n(q − 1) − 1
.

Then we can choose two constants γ1, γ2 such that

(β1 − β2 + 1)[N(σ1 + σ2) + 1]
β1α2 − (α1 − 1)(β2 − 1)

< γ1 <
1 − 2σ1(p − 1)

m(p − 1) − 1
,

(α2 − α1 + 1)[N(σ1 + σ2) + 1]
β1α2 − (α1 − 1)(β2 − 1)

< γ2 <
1 − 2σ2(q − 1)

n(q − 1) − 1
,

that is

(mγ1 + 2σ1)(p − 1) < γ1 + 1 < γ1α1 + γ2β1 − N(σ1 + σ2),

(mγ2 + 2σ2)(q − 1) < γ2 + 1 < γ1α2 + γ2β2 − N(σ1 + σ2).

Furthermore, if we choose A > max{1,mγ1/σ1,nγ2/σ2}, then for τ > 0 sufficiently small, the right-hand sides of (6.47)–
(6.50) are non-positive, so (6.38) and (6.39) hold, and we obtain Theorem 6.1(i).
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(ii) When β1α2 = [m(p −1)−α1][n(q −1)−β2] and Ω contains a sufficiently large ball, we assume that 0 ∈ Ω and a ball
B(0, R) ⊂⊂ Ω . Then we only need to show that the radial solution of problem (1.1) on (B(0, R) × [0, T ]) × (B(0, R) × [0, T ])
blows up in finite time.

Since p,q > 2, m,n � 1 and β1α2 = [m(p − 1) − α1][n(q − 1) − β2], we can choose two constants σ1, σ2 > 0 such that

β1

m(p − 1) − α1
= σ1

σ2
= n(q − 1) − β2

α2
,

that is

σ1α1 + σ2β1 = m(p − 1)σ1, σ1α2 + σ2β2 = n(q − 1)σ2.

Firstly, let us consider the following elliptic problem on (0, R),⎧⎪⎨
⎪⎩

− d

dr

(
rN−1

∣∣∣∣dϕm

dr

∣∣∣∣
p−2 dϕm

dr

)
= rN−1,

ϕ′(0) = 0, ϕ(R) = 0,

⎧⎪⎨
⎪⎩

− d

dr

(
rN−1

∣∣∣∣dψn

dr

∣∣∣∣
q−2 dψn

dr

)
= rN−1,

ψ ′(0) = 0, ψ(R) = 0.

Then it is easy to show

ϕ(r) =
(

p − 1

p

)1/m(
1

N

)1/m(p−1)(
R p/(p−1) − r p/(p−1)

)1/m
,

ψ(r) =
(

q − 1

q

)1/n( 1

N

)1/n(q−1)(
Rq/(q−1) − rq/(q−1)

)1/n
.

By assumption (H) on initial data, we can choose s0 > 0 small enough that

u0(r) � sσ1
0 ϕ(r), v0(r) � sσ2

0 ψ(r), ∀r ∈ [0, R).

Next, let us consider the following Cauchy problem with s(0) = s0,

s′(t) = min

{
ac1 − 1

σ1M1
,

bc2 − 1

σ2M2

}
sΥ (t),

Υ = min
{
m(p − 1)σ1 − σ1 + 1,n(q − 1)σ2 − σ2 + 1

}
,

where for R large enough and ω(N) as the volume of the unit ball in N-dimensional space,

c1 =
∫

B(0,R)

ϕα1ψβ1
(|x|)dx

=
R∫

0

dr

∫
∂ B(0,r)

ϕα1ψβ1(r)dσ

=
R∫

0

Nω(N)ϕα1(r)ψβ1(r)rN−1 dr

= Nω(N)

(
p − 1

p

) α1
m

(
1

N

) α1
m(p−1)

(
q − 1

q

) β1
n

(
1

N

) β1
n(q−1)

·
R∫

0

(
R

p
p−1 − r

p
p−1

) α1
m

(
R

q
q−1 − r

q
q−1

) β1
n rN−1 dr >

1

a
,

c2 =
∫

B(0,R)

ϕα2ψβ2
(|x|)dx

=
R∫

dr

∫
ϕα2ψβ2(r)dσ
0 ∂ B(0,r)
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=
R∫

0

Nω(N)ϕα2(r)ψβ2(r)rN−1 dr

= Nω(N)

(
p − 1

p

) α2
m

(
1

N

) α2
m(p−1)

(
q − 1

q

) β2
n

(
1

N

) β2
n(q−1)

·
R∫

0

(
R

p
p−1 − r

p
p−1

) α2
m

(
R

q
q−1 − r

q
q−1

) β2
n rN−1 dr >

1

b
,

M1 =
(

p − 1

p

) 1
m
(

1

N

) 1
m(p−1)

R
p

m(p−1) , M2 =
(

q − 1

q

) 1
n
(

1

N

) 1
n(q−1)

R
q

n(q−1) .

Since Υ > 1, then there exists a constant τ � such that limt→τ � s(t) = +∞.
Finally, we construct u(r, t) = sσ1ϕ(r) and v(r, t) = sσ2ψ(r), then (u(r, t), v(r, t)) blows up in finite time. So it is enough

to prove that (u(r, t), v(r, t)) is a lower solution of problem (1.1) on (B(0, R)×[0, T ])× (B(0, R)×[0, T ]). Let us make some
simple computations:

�m,pu = ∇ ·
(∣∣(um)

r

∣∣p−2(
um)

r

x

r

)

=
N∑

i=1

(∣∣(um)
r

∣∣p−2(
um)

r

xi

r

)
xi

= (∣∣(um)
r

∣∣p−2(
um)

r

)
r + ∣∣(um)

r

∣∣p−2(
um)

r

N − 1

r

= r1−N(
rN−1

∣∣(um)
r

∣∣p−2(
um)

r

)
r := �(u),

�n,q v = r1−N(
rN−1

∣∣(vn)
r

∣∣q−2(
vn)

r

)
r := �(v).

Then problem (6.41) becomes the following equations,

ut − �(u) − a

∫
Ω

uα1(x, t)vβ1(x, t)dx

= σ1ϕsσ1−1s′(t) + sm(p−1)σ1(t) − ac1sσ1α1+σ2β1

= ϕsσ1−1(σ1s′(t) + ϕ−1sm(p−1)σ1−σ1+1(t) − ac1ϕ
−1sσ1α1+σ2β1−σ1+1)

= ϕsσ1−1(σ1s′(t) − (ac1 − 1)ϕ−1sm(p−1)σ1−σ1+1(t)
)

� ϕsσ1−1(σ1s′(t) − (ac1 − 1)M−1
1 sm(p−1)σ1−σ1+1(t)

)
< 0, ∀(r, t) ∈ B(0, R) × (0, τ ),

vt − �(v) − b

∫
Ω

uα2(x, t)vβ2(x, t)dx

= σ2ψsσ2−1s′(t) + sn(q−1)σ2(t) − bc2sσ1α2+σ2β2

= ψsσ2−1(σ2s′(t) + ψ−1sn(q−1)σ2−σ2+1(t) − bc2ψ
−1sσ1α2+σ2β2−σ2+1)

= ψsσ2−1(σ2s′(t) − (bc2 − 1)ψ−1sn(q−1)σ2−σ2+1(t)
)

� ψsσ2−1(σ2s′(t) − (bc2 − 1)M−1
2 sn(q−1)σ2−σ2+1(t)

)
< 0, ∀(r, t) ∈ B(0, R) × (0, τ ),

rN−1
∣∣(um)

r

∣∣p−2(
um)

r

∣∣
r=0 = 0, rN−1

∣∣(vn)
r

∣∣q−2(
vn)

r

∣∣
r=0 = 0, ∀t ∈ [0, τ ],

u(R, t) = sσ1ϕ(R) = 0, v(R, t) = sσ2ψ(R) = 0, ∀t ∈ [0, τ ],
u(r,0) = sσ1

0 ϕ(r) � u0(r), v(r,0) = sσ2
0 ψ(r) � v0(r), ∀r ∈ [0, R].

So, (u(r, t), v(r, t)) is a lower solution of problem (6.41) on (B(0, R) ×[0, T ])× (B(0, R) ×[0, T ]), we obtain Theorem 6.1(ii).
The proof of Theorem 6.1 is complete. �
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7. The special case β1 = n(q − 1) − β2, α2 = m(p − 1) − α1

In this section we consider problem (1.1) for a special case β1 = n(q − 1) − β2, α2 = m(p − 1) − α1; similar to Sections 5
and 6, we prove Theorem 7.1 by constructing special upper and lower solutions.

Theorem 7.1. Suppose the initial data (u0(x), v0(x)) satisfies the conditions (H) and that α2 = m(p − 1) − α1 , β1 = n(q − 1) − β2 .

(i) If λμ � (ab)−1 , then the solution of problem (1.1) exists globally;
(ii) If λμ > (ab)−1 , α1 < 1, β2 < 1, then the solution of problem (1.1) blows up in finite time, where

λ =
∫
Ω

ζα1(x)ϑβ1(x)dx, μ =
∫
Ω

ζα2(x)ϑβ2(x)dx,

and ζ(x), ϑ(x) are the unique solutions of the following elliptic equation (see [14,32]),

{−�m,pζ = 1, x ∈ Ω,

ζ = 0, x ∈ ∂Ω,

{−�n,qϑ = 1, x ∈ Ω,

ϑ = 0, x ∈ ∂Ω.

7.1. Global existence

In this section we prove the conclusion (i) of Theorem 7.1 Since λμ � (ab)−1, we can take two positive constants Λ1, Λ2
large enough such that

aμ �
Λ

m(p−1)−α1
1

Λ
n(q−1)−β2
2

� (bλ)−1, Λ1ζ(x) � u0(x), Λ2ϑ � v0(x).

Set u(x, t) = Λ1ζ(x), v(x, t) = Λ2ϑ(x), then we show that (u(x, t), v(x, t)) is an upper solution of problem (1.1), which exists
globally. After a simple computation, we obtain

ut − �m,pu − a

∫
Ω

uα1(x, t)vβ1(x, t)dx

= Λ
m(p−1)
1 − aμΛ

α1
1 Λ

n(q−1)−β2
2 = Λ

α1
1

[
Λ

m(p−1)−α1
1 − aμΛ

n(q−1)−β2
2

]
� 0,

vt − �n,q v − b

∫
Ω

uα2(x, t)vβ2(x, t)dx

= Λ
n(q−1)
2 − bλΛ

m(p−1)−α1
1 Λ

β2
2 = Λ

β2
2

[
Λ

n(q−1)−β2
2 − bλΛ

m(p−1)−α1
1

]
� 0.

Noting that u(x, t) = v(x, t) = 0 on ∂Ω × [0,∞), we obtain that (u(x, t), v(x, t)) is an upper solution of problem (1.1). Then
conclusion (i) of Theorem 7.1 holds.

7.2. Blow-up

In this section we prove conclusion (ii) of Theorem 7.1. First, we introduce the following useful lemma.

Lemma 7.1. Suppose that the initial data (u0(x), v0(x)) satisfies the assumption (H) and λμ > (ab)−1 , then there exist two positive
constants σ1 , σ2 such that

u(x, t) � σ1ζ(x), v(x, t) � σ2ϑ(x), ∀(x, t) ∈ Q T .

Proof of Theorem 7.1(ii). Since λμ > (ab)−1, we can take two appropriate σ1, σ2 positive constants such that

aμ �
σ

m(p−1)−α1
1

σ
n(q−1)−β2
2

� (bλ)−1, σ1ζ(x) � u0(x), σ2ϑ(x) � v0(x).

Let u(x, t) = σ1ζ(x), v(x, t) = σ2ϑ(x), then we will show (u(x, t), v(x, t)) is a lower solution of problem (1.1). After a simple
computation, we obtain
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ut − �m,pu − a

∫
Ω

uα1(x, t)vβ1(x, t)dx

= σ
m(p−1)
1 − aμσ

α1
1 σ

n(q−1)−β2
2 = σ

α1
1

[
σ

m(p−1)−α1
1 − aμσ

n(q−1)−β2
2

]
� 0,

vt − �n,q v − b

∫
Ω

uα2(x, t)vβ2(x, t)dx

= σ
n(q−1)
2 − bλσ

m(p−1)−α1
1 σ

β2
2 = σ

β2
2

[
σ

n(q−1)−β2
2 − bλσ

m(p−1)−α1
1

]
� 0.

Noting that u(x, t) = v(x, t) = 0, we obtain that (u(x, t), v(x, t)) is a lower solution of problem (1.1). The proof of Lemma 7.1
is complete.

Now we can prove Theorem 7.1(ii). For Ω1 ⊂⊂ Ω , let us consider the following elliptic equation,{−�m,pζ1 = 1, x ∈ Ω1,

ζ1 = 0, x ∈ ∂Ω1,

{−�n,qϑ1 = 1, x ∈ Ω1,

ϑ1 = 0, x ∈ ∂Ω1.

Then the comparison principle asserts that ζ(x)|Ω1 � ζ1(x), ϑ(x)|Ω1 � ϑ1(x). Take

μ1 =
∫
Ω

ζ
α1
1 ϑ

β1
1 (x)dx, λ1 =

∫
Ω

ζ
α2
1 ϑ

β2
1 (x)dx.

Since λμ > (ab)−1 and ζ(x)|∂Ω = 0, ϑ(x)|∂Ω = 0, we can choose some Ω1 such that λ1μ1 > (ab)−1. From Lemma 7.1, we
can see u(x, t)|Ω1 � σ1ζ1(x), v(x, t)|Ω1 � σ2ϑ1(x).

Next let us take a domain Ω2 ⊂⊂ Ω1 and use the notation

ε = min
{

inf
x∈Ω2

σ1ζ1(x), inf
x∈Ω2

σ2ϑ1(x)
}

> 0.

Then,

u(x, t)|Ω2
� σ1ζ1(x)|Ω2

� ε, v(x, t)|Ω2
� σ2ϑ1(x)|Ω2

� ε.

So, the above discussion ensures that the solution (u(x, t), v(x, t)) of problem (1.1) is an upper solution of the following
problem in (Ω2 × [0, T ]) × (Ω2 × [0, T ]),

ut − �m,pu = a

∫
Ω

uα1(x, t)vβ1(x, t)dx, (x, t) ∈ Ω2 × (0, T ],

vt − �n,q v = b

∫
Ω

uα2(x, t)vβ2(x, t)dx, (x, t) ∈ Ω2 × (0, T ],

u(x, t) = v(x, t) = ε, (x, t) ∈ ∂Ω2 × (0, T ],
u(x,0) = ε, v(x,0) = ε, x ∈ Ω2. (7.51)

Denote ℘ = max{supx∈Ω2
ζ1(x), supx∈Ω2

ϑ1(x)}, and consider the following Cauchy problem,

℘s′
1(t) + sα1

1

[
sm(p−1)−α1

1 − aμ1sn(q−1)−β2
2

] = 0, s1(0) = ε/℘,

℘s′
2(t) + sβ2

2

[
sn(q−1)−β2

2 − bλ1sm(p−1)−α1
1

] = 0, s2(0) = ε/℘. (7.52)

Multiplying the first equation of (7.52) by bλ1 + 1, the second equation of (7.52) by aμ1 + 1 and combining them together,
we obtain

℘
bλ1 + 1

1 − α1

(
s1−α1

1

)′
(t) + ℘

aμ1 + 1

1 − β2

(
s1−β2

2

)′
(t) = (abλ1μ1 − 1)

(
sm(p−1)−α1

1 + sn(q−1)−β2
2

)
.

Since m(p−1)−α1
1−α1

> 1, n(q−1)−β2
1−β2

> 1 and abλ1μ1 > 1, there exists a constant T ′ < +∞ such that

lim
t→T ′

(
s1−α1

1 (t) + s1−β2
2 (t)

) = +∞.

Noticing α1 < 1, β2 < 1, we obtain that

lim′
(
s1(t) + s2(t)

) = +∞.

t→T
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Set ũ(x, t) = s1(t)ζ1(x), ṽ(x, t) = s2(t)ϑ1(x), then (ũ(x, t), ṽ(x, t)) blows up in finite time. So, the solution of problem (7.52)
blows up in finite time if (ũ(x, t), ṽ(x, t)) is a lower solution of problem (7.52). After a simple computation, we obtain

ũt − �m,pũ − a

∫
Ω

ũα1(x, t)ṽβ1(x, t)dx

= ζ1(x)s′
1(t) + sm(p−1)

1 − aμ1sα1
1 sn(q−1)−β2

2

� ℘s′
1(t) + sα1

1

[
sm(p−1)−α1

1 − aμ1sn(q−1)−β2
2

] = 0, ∀(x, t) ∈ Ω2 × (0, T ],
ṽt − �n,q ṽ − b

∫
Ω

ũα2(x, t)ṽβ2(x, t)dx

= ϑ1(x)s′
2(t) + sn(q−1)

2 − bλ1sm(p−1)−α1
1 sβ2

2

� ℘s′
2(t) + sβ2

2

[
sn(q−1)−β2

2 − bλ1sm(p−1)−α1
1

] = 0, ∀(x, t) ∈ Ω2 × (0, T ],
ũ(x, t) = s1(t)ζ1(x) = 0, ṽ(x, t) = s2(t)ϑ2(x) = 0, ∀(x, t) ∈ ∂Ω2 × (0, T ],
ũ(x,0) = s1(0)ζ1(x) � ε, ṽ(x,0) = s2(0)ϑ2(x) � ε, ∀x ∈ Ω2.

So, (ũ(x, t), ṽ(x, t)) is a lower solution of problem (7.52). Then the conclusion of Theorem 7.1(ii) holds. The proof of
Theorem 7.1 is complete. �
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