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1. Introduction and statement of results

Let Si : R
d → R

d (i = 1,2, . . . , N) be contracting similarities with contraction ratios ri ∈ (0,1) and let (p1, . . . , pN ) be
a probability vector (i.e. 0 < pi < 1 for all i and

∑N
i=1 pi = 1). It follows from [7] that there is a unique non-empty and

compact subset K of R
d and a unique Borel probability measure μ on R

d such that

K =
⋃

i

Si(K ), (1.1)

and

μ =
∑

i

piμ ◦ S−1
i . (1.2)

The set K is called the self-similar set associated with the list (S1, . . . , SN ) and the measure μ is called the self-similar
measure associated with the list (S1, . . . , SN , p1, . . . , pN ). It is well known that the support of μ equals K . We say the list
(S1, . . . , SN ) satisfies the open set condition (OSC) if there exists a non-empty, bounded and open set U such that Si(U ) ⊂ U
for all i and Si(U ) ∩ S j(U ) = ∅ for all i 	= j.

For r > 0 and a real number q, write

Iμ(r;q) =
∫
K

μ
(

B(x, r)
)q−1

dμ(x). (1.3)

The lower and upper Lq-spectra of μ are now defined by
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τμ(q) = lim inf
r↘0

log Iμ(r;q)

− log r
,

τμ(q) = lim sup
r↘0

log Iμ(r;q)

− log r
.

The main significance of the Lq-spectra is their relationship with multifractal analysis, cf. [2–4,6,5,10–15] and the references
therein. Arbeiter and Patzschke [1] proved a beautiful result providing a formula for the Lq-spectra of self-similar measures
satisfying the OSC. Before stating their result we introduce the following definition. Define the function β(q) : R → R by

N∑
i=1

pq
i rβ(q)

i = 1. (1.4)

We can now state Arbeiter and Patzschke’s result.

Theorem A. (See [1].) Assume that the OSC is satisfied. Then the Lq-spectra τμ(q) and τμ(q) are given by τμ(q) = τμ(q) = β(q) for
all q ∈ R.

Unfortunately, it is very difficult to determine the Lq-spectra of self-similar measures not satisfying the OSC and, as a
result of this, previous work analyzing the multifractal structure of self-similar (or self-conformal) measures not satisfying
the OSC has almost entirely concentrated on the following two different aspects. Namely, firstly, analyzing general self-
similar measures assumed to satisfy separation conditions more general than the OSC. For examples, in [6,8,10] measures
satisfying the “weak separation condition” (WSC) (which is weaker than the OSC) are investigated. Secondly, analyzing the
multifractal structure of specific self-similar measures or families of self-similar measures not satisfying the OSC, see, for
example, [4,5] and the references therein.

However, the scope of this paper is different. Indeed, instead of computing the Lq-spectra of specific families of self-
similar measures, we are interested in obtaining non-trivial bounds of the Lq-spectra of arbitrary self-similar measures
without any separation conditions. In fact, this line of investigation was initiated in [12] where Olsen obtained non-trivial
bounds for the Lq-spectra of arbitrary self-similar measures without any separation conditions for q � 1, and the main
purpose of this paper is to extend the analysis from [12] to q < 1. However, before we do this, it is instructive to recall the
main result from [12].

We start by introducing some notation. Let

Σn = {1, . . . , N}n, Σ∗ =
⋃

n

Σn, ΣN = {1, . . . , N}N,

i.e. Σn is the family of all finite strings i = i1 . . . in of length n with i j ∈ {1, . . . , N}, Σ∗ and ΣN denote the family of all finite
strings i = i1 . . . in and the family of all infinite strings i = i1i2 . . . with i j ∈ {1, . . . , N}, respectively. For i = i1 . . . in ∈ Σn , we
will write |i| = n for the length of i. For i = i1i2 . . . ∈ ΣN and a positive integer n, let i|n = i1 . . . in denote the truncation of i
to the nth place. Furthermore, for i = i1 . . . in ∈ Σn , we write S i = Si1 ◦ · · · ◦ Sin and K i = S i K . Also, write pi = pi1 . . . pin and
ri = ri1 . . . rin for i = i1 . . . in ∈ Σn . We can now state the main result from Olsen [12].

Theorem B. (See [12].) For a positive integer n, let

In =
{

I ⊆ Σn
∣∣∣ ⋂

i∈I

Ki 	= ∅
}

(observe that In is non-empty since {i} ∈ In for all i ∈ Σn). There exists a unique sn ∈ R such that

1 = max
I∈In

∑
i∈I

pir
−sn
i .

Let s = supn sn. For all q ∈ R with q � 1, we have

β(q) � τμ(q) � τμ(q) � s(1 − q).

Unfortunately, when q � 1, almost nothing is known about the Lq-spectra of self-similar measures without any separation
conditions. It is clear that if q � 1, then the Lq-spectra are extremely sensitive to small variations in the distribution of μ.
This makes the problem of analyzing the Lq-spectra for q � 1 much more difficult than for q � 1. In particular, we note that
the approach from [12] cannot be applied in this case. The purpose of this paper is to provide non-trivial bounds for the
Lq-spectra of self-similar measures without any separation conditions for q � 1. More precisely, we have the following result.
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Fig. 1. The graph of the function q → β(q) is shown as a solid curve, and the graph of the function q → s(1 − q) is shown as a dashed line. It follows from
Theorem B and Theorem 1.1 that the Lq -spectra τμ(q) and τμ(q) lie in the shaded region bounded by s(1 − q) and β(q).

Theorem 1.1. Let s ∈ R be defined as in Theorem B. For all q ∈ R with q � 1, we have

s(1 − q) � τμ(q) � τμ(q) � β(q).

Fig. 1 above illustrates the statements in Theorem B and Theorem 1.1.
It follows from Theorem 1.1 that if K is not a singleton, then τμ(q) > 0 for q < 1. More precisely, we have Proposition 1.2

below.

Proposition 1.2. Let s be as in Theorem B. If K is not a singleton, then s > 0. In particular, if K is not a singleton, then

0 < s(1 − q) � τμ(q)

for all q < 1.

The proof of Proposition 1.2 is similar to Proposition 2.2 in [12] and is therefore omitted. From Proposition 1.2, we can
see that the lower bound for τμ(q) provided by Theorem 1.1 is non-trivial.

If all the contraction ratios r1, . . . , rN coincide and equal r ∈ (0,1), then Theorem 1.1 can be simplified. Indeed, in this
case, it is clear that

sn = 1

n log r
log

(
max
I∈In

∑
i∈I

pi

)
,

and we obtain the following corollary from Theorem 1.1.

Corollary 1.3. Assume that r1 = · · · = rN = r. Write

s = sup
n

1

n log r
log

(
max
I∈In

∑
i∈I

pi

)
.

For all q � 1, we have

s(1 − q) � τμ(q) � τμ(q) � β(q).

The paper is organized as follows. In Section 2 we illustrate Theorem 1.1 by two examples, namely, we discuss the
Lq-spectra of the (2,3)-Bernoulli convolution and the λ-Cantor measure. In Section 3, as an application of our results, we
obtain a non-trivial upper bound for the multifractal spectra of an arbitrary self-similar measure. In Section 4 we prove
Theorem 1.1. Finally, in Section 5 we discuss how our results can be extended to the mixed multifractal setting.
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2. Examples

In this section we illustrate Theorem 1.1 by two examples.

Example 2.1 (The (2,3)-Bernoulli convolution). The (2,3)-Bernoulli convolution is defined as follows. Define S1, S2, S3 : R → R

by Si(x) = 1
2 x+ i−1

4 and let (p1, p2, p3) = ( 1
3 , 1

3 , 1
3 ). The (2,3)-Bernoulli convolution is defined as the self-similar measure μ

associated with the probabilistic iterated function system (S1, S2, S3; p1, p2, p3), cf. [5,12]. By Corollary 1.3, we see that

s = sup
n

sn = sup
n

−1

n log 2
log

(
max
I∈In

∑
i∈I

pi

)

= sup
n

−1

n log 2
log

(
max
I∈In

(#I)3−n)

= log 3

log 2
− 1

log 2
inf

n

1

n
log max

I∈In
(#I),

where #A denotes the cardinality of A. A simple calculation shows that β(q) = log 3
log 2 (1 − q), and we therefore conclude from

Theorem 1.1 that if q � 1, then

(
log 3

log 2
− 1

log 2
inf

n

1

n
log max

I∈In
(#I)

)
(1 − q) � τμ(q) � τμ(q) � log 3

log 2
(1 − q).

In particular, for example, we see that maxI∈I2 (#I) = 5. Hence, if q � 1, then

0 <

(
log 3

log 2
− log 5

log 4

)
(1 − q) � τμ(q) � τμ(q) � log 3

log 2
(1 − q).

Example 2.2 (The λ-Cantor measure). For λ ∈ [0,1], the λ-Cantor measure is defined as follows. Define S1, S2, S3 : R → R

by S1(x) = 1
3 x, S2(x) = 1

3 x + λ
3 , S3(x) = 1

3 x + 2
3 and let (p1, p2, p3) = ( 1

3 , 1
3 , 1

3 ). The λ-Cantor measure is defined as the
self-similar measure μλ associated with the probabilistic iterated function system (S1, S2, S3; p1, p2, p3). Let us denote the
corresponding self-similar set by Eλ .

When λ = 0, the set Eλ equals the classical Cantor middle-third set. Define S ′
1, S ′

2 : R → R by S ′
1(x) = 1

3 x, S ′
2(x) = 1

3 x+ 2
3 .

Let (p′
1, p′

2) = ( 2
3 , 1

3 ), and let ν denote the self-similar measure corresponding to the probabilistic iterated function system
(S ′

1, S ′
2; p′

1, p′
2). Then μλ coincides with ν . Obviously, (S ′

1, S ′
2) satisfies the OSC and the Lq-spectrum of μλ = ν can therefore

be found using Theorem A.
When λ = 1, the set Eλ equals [0,1] and μλ coincides with Lebesgue measure on [0,1]. Hence, for λ = 1 it is not

interesting to study the Lq-spectrum of μλ since it is trivial.
Now we will focus our attention on the case λ ∈ (0,1). Obviously, in this case, the OSC is not satisfied, and we will now

use Theorem 1.1 to obtain non-trivial bounds for the Lq-spectra of the λ-Cantor measure. By Corollary 1.3, we see that

s = sup
n

sn = sup
n

−1

n log 3
log

(
max
I∈In

∑
i∈I

pi

)

= sup
n

−1

n log 3
log

(
max
I∈In

(#I)3−n)
= 1 − 1

log 3
inf

n

1

n
log max

I∈In
(#I).

A simple calculation shows that β(q) = (1 − q), and we therefore conclude from Theorem 1.1 that if q � 1, then

(
1 − 1

log 3
inf

n

1

n
log max

I∈In
(#I)

)
(1 − q) � τμλ

(q) � τμλ(q) � (1 − q).

In particular, for example, we see that maxI∈I2 (#I) = 4. Hence, if q < 1, then

0 <

(
1 − log 2

log 3

)
(1 − q) � τμλ

(q) � τμλ(q) � (1 − q).
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3. An application: non-trivial upper bounds for the multifractal spectra of arbitrary self-similar measures

As an application of Theorem 1.1, we will now obtain a non-trivial upper bound for the multifractal spectra of an arbitrary
self-similar measure. Recall that the main significance of the Lq-spectra is their relationship with the multifractal spectra,
which we will define below. For a probability measure μ on R

d , we define the Hausdorff multifractal spectrum function,
f H,μ , of μ by

f H,μ(α) = dimH

{
x ∈ K

∣∣∣ lim
r↘0

logμ(B(x, r))

log r
= α

}
,

for α � 0, where dimH denotes the Hausdorff dimension. We define the packing multifractal spectrum function, f P ,μ , of μ
similarly, namely, we let

f P ,μ(α) = dimP

{
x ∈ K

∣∣∣ lim
r↘0

logμ(B(x, r))

log r
= α

}
,

for α � 0, where dimP denotes the packing dimension. In the 1980s it was conjectured in the physics literature that
for “good” measures the following result, known as the Multifractal Formalism, holds: the multifractal spectra equal the
Legendre transform of the Lq-spectra. During the 1990s there has been an enormous interest in the mathematical literature
in verifying the Multifractal Formalism and computing the multifractal spectra of measures, and within the last 15 years
the multifractal spectra of various classes of measures in Euclidean space R

d exhibiting some degree of self-similarity have
been computed rigorously, cf. [3] and the references therein.

For example, the following result due to Arbeiter and Patzschke [1] provides a formula for the multifractal spectra of a
self-similar measure satisfying the OSC. To state this result, we recall that the Legendre transform ϕ∗ of a function ϕ : R → R

is defined by

ϕ∗(x) = inf
y

(
xy + ϕ(y)

)
.

Also, write

αmin = min
i

log pi

log ri
, αmax = max

i

log pi

log ri
.

We can now state Arbeiter and Patzschke’s result.

Theorem C. (See [1].) Let μ be the self-similar measure satisfying (1.2) and assume that the OSC is satisfied.

(1) We have

f H,μ(α) = f P ,μ(α) = τ ∗
μ(α) = τ ∗

μ(α) = β∗(α)

for all α ∈ [αmin,αmax].
(2) We have{

x ∈ K
∣∣∣ lim

r↘0

logμ(B(x, r))

log r
= α

}
= ∅

for all α /∈ [αmin,αmax].

As an application of Theorem 1.1, we now obtain an upper bound for the multifractal spectra of an arbitrary self-similar
measure not satisfying any separation condition. In particular, we emphasize that the upper bound in Corollary 3.1 does not
require the OSC is satisfied.

Corollary 3.1. Let μ be the self-similar measure satisfying (1.2). Write t =
∑

i pi log pi∑
i ri log pi

. Then we have

f H,μ(α) � f P ,μ(α) � f (α),

where f : [s,αmax] → R is defined by

f (α) =
{

min(α,d) for α ∈ [s, t];
min(β∗(α),d) for α ∈ [t,αmax].
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Fig. 2. The graph of the function α → β∗(α) is shown as a solid curve and the geometrical significance of the numbers s, t , αmin and αmax are illustrated.
The graph of the function f defined in Corollary 3.1 is shown as a bold solid curve. It follows from Corollary 3.1 that f (α) is an upper bound for the
multifractal spectrum f P ,μ(α).

Proof. Define b : R → R by b(q) = max(s(1 − q), β(q)), i.e., b(q) = β(q) for q � 1 and b(q) = s(1 − q) for q > 1. Since
f H,μ(α) � f P ,μ(α) � τ ∗

μ(α) for all α (see [3]) and τμ(q) � b(q) (by Theorem B and Theorem 1.1), we conclude that
f H,μ(α) � f P ,μ(α) � b∗(α). Finally, since −β ′(1) = t , it is not difficult to see that b∗(α) = α for α ∈ [s, t] and b∗(α) = β∗(α)

for α ∈ [t,αmax]. This together with the fact that f P ,μ(α) � d, gives the desired result. �
Fig. 2 above illustrates the statement in Corollary 3.1.
We note that the upper bound in Corollary 3.1 can be strictly bigger than f P ,μ(α). Indeed, as an example of this we

recall the following result due to Hu and Lau [10]. Namely, for i = 1,2,3,4 define Si : R → R by Si = 1
3 x + 2

3 (i − 1) and
pi = 2−3

( m
i−1

)
, and let μ be the corresponding self-similar measure satisfying (1.2). In this case the OSC is not satisfied, and

it follows from [10] that{
x ∈ K

∣∣∣ lim
r↘0

logμ(B(x, r))

log r
= α

}
= ∅

for all α ∈ (α0,αmax) ⊆ (s,αmax), where α0 = 3 log 2
log 3 − log((7+√

13)/2)
2 log 3 . In particular, this shows that f H,μ(α) = f P ,μ(α) = 0 for

α ∈ (α0,αmax), whereas the upper bound in Corollary 3.1 is strictly positive for α ∈ (α0,αmax).

4. Proof of Theorem 1.1

The purpose of this section is to prove Theorem 1.1. In order to prove Theorem 1.1 we must show that if q � 1, then

τμ(q) � β(q) (4.1)

and

s(1 − q) � τμ(q). (4.2)

Proof of inequality (4.1). Firstly, we introduce two quantities that are related to the upper Lq-spectrum, namely, the upper
covering Rényi dimension, τ c

μ(q), and upper packing Rényi dimension, τ
p
μ(q). The main reason for introducing the Rényi

dimensions is that they are easier to work with.
For a probability measure μ on R

d with support equal to K , the upper covering Rényi dimension and the upper packing
Rényi dimension of μ are defined as follows. Recall that a finite or countable family (B(xi, r))i of balls is called a centered
cover of K if K ⊂ ⋃

i B(xi, r) and xi ∈ K for all i, and that a finite or countable family (B(xi, r))i of balls is called a centered
packing of K if B(xi, r) ∩ B(x j, r) = ∅ for all i 	= j and xi ∈ K for all i. For r > 0 and q ∈ R, write

Mc
μ(r;q) = inf

{∑
μ

(
B(xi, r)

)q
∣∣∣ (

B(xi, r)
)

i is a centered cover of K

}
, (4.3)
i
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and

M p
μ(r;q) = sup

{∑
i

μ
(

B(xi, r)
)q

∣∣∣ (
B(xi, r)

)
i is a centered packing of K

}
. (4.4)

Then, the upper covering Rényi dimension, τ c
μ(q), and upper packing Rényi dimension, τ

p
μ(q) are defined by

τ c
μ(q) = lim sup

r↘0

log Mc
μ(r;q)

− log r
, (4.5)

and

τ
p
μ(q) = lim sup

r↘0

log M p
μ(r;q)

− log r
, (4.6)

respectively. The numbers of τ c
μ(q), τ

p
μ(q) and τμ(q) do not necessarily coincide. However, certain inequalities are always

satisfied; this is the content of Lemma 4.1 and Lemma 4.2. These inequalities allow us to work with the more manageable
upper packing Rényi dimensions when proving (4.1).

Lemma 4.1. (See [14, Proposition 2.19 and Proposition 2.20].) Let μ be a Borel probability measure on R
d. Then τ c

μ(q) � τ
p
μ(q) for all

q ∈ R.

Lemma 4.2. Let μ be a Borel probability measure on R
d. Then τμ(q) � τ c

μ(q) for all q � 1.

Proof. Let (B(xi, r))i be a centered cover of suppμ (here and below we write suppμ for the support of μ). Since for any
x ∈ B(xi, r), the ball B(x,2r) contains the ball B(xi, r), we have for q � 1,

Iμ(2r;q) =
∫

suppμ

μ
(

B(x,2r)
)q−1

dμ(x) �
∑

i

∫
B(xi ,r)

μ
(

B(x,2r)
)q−1

dμ(x)

�
∑

i

∫
B(xi ,r)

μ
(

B(xi, r)
)q−1

dμ(x)

=
∑

i

μ
(

B(xi, r)
)q−1

μ
(

B(xi, r)
)

=
∑

i

μ
(

B(xi, r)
)q

.

Since this is true for all centered covers of suppμ, we obtain Iμ(2r;q) � Mc
μ(r;q). This clearly implies that τμ(q) �

τ c
μ(q). �

Next, recall the definitions of Σn , Σ∗ and ΣN from Section 1, namely,

Σn = {1, . . . , N}n, Σ∗ =
⋃

n

Σn, ΣN = {1, . . . , N}N.

It is well known that μ(S i K ) = pi for all i ∈ Σ∗ if the OSC is satisfied, cf. [9]. However, we always have the inequality in
Lemma 4.3.

Lemma 4.3. For i ∈ Σ∗ , we have μ(S i(K )) � pi .

Proof. Iterating the equality

μ =
N∑

i=1

piμ ◦ S−1
i ,

we have

μ =
∑
|j|=n

pjμ ◦ S−1
j

for all n. Hence, for i ∈ Σ∗ with |i| = n,
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μ
(

S i(K )
) =

∑
i

piμ ◦ S−1
i

(
S i(K )

) +
∑

j 	=i,|j|=n

pjμ ◦ S−1
j

(
S i(K )

)

= pi +
∑

j 	=i,|j|=n

pjμ ◦ S−1
j

(
S i(K )

)
� pi.

This completes the proof of Lemma 4.3. �
The next lemma is a standard result.

Lemma 4.4. Fix q ∈ [0,1]. Let m ∈ N and a1, . . . ,am � 0. Then (
∑

i ai)
q �

∑
i aq

i .

Now we state our main technical lemma.

Lemma 4.5. Let μ be the self-similar measure satisfying (1.2) and let β(q) be as in (1.4). Then

τ
p
μ(q) � β(q)

for q � 1.

Proof. Let rmin = mini ri and rmax = maxi ri . The proof of Lemma 4.5 is divided into the following two cases.

Case 1: q � 0. Let ε > 0. We will now show that there is a constant c > 0 such that

M p
μ(r;q) � cr−(β(q)+ε) (4.7)

for all r with 0 < r < rmin.

We therefore fix r with 0 < r < rmin and let (B(xi, r))i∈I be a centered packing of K . Next, we observe that it is well
known that K = ⋃

i∈ΣN

⋂
n K i|n . It follows from this that for each x ∈ K there is an infinite string i ∈ ΣN such that x ∈ K i|n

for all n. In particular, we conclude that for each i ∈ I there is a (not necessary unique) finite string ii ∈ Σ∗ such that

xi ∈ Kii ,

and

diam(Kii ) � r < diam(Kii |(|ii |−1)).

Fix i ∈ I . Since xi ∈ K ii and diam(K ii ) � r, we deduce that K ii ⊆ B(xi, r), and so, using the fact q � 0, we have

μ
(

B(xi, r)
)q � μ(Kii )

q. (4.8)

Also, since r < diam(K ii |(|ii |−1)) and β(q) + ε > β(q) � 0 (because q � 0), we deduce that

rβ(q)+ε � diam(Kii |(|ii |−1))
β(q)+ε

� 1

rβ(q)+ε
min

diam(Kii )
β(q)+ε. (4.9)

Combining (4.8), (4.9) and Lemma 4.3 gives∑
i∈I

μ
(

B(xi, r)
)q �

∑
i∈I

μ(Kii )
q

� 1

rβ(q)+ε
min

r−(β(q)+ε)
∑
i∈I

μ(Kii )
q diam(Kii )

β(q)+ε

� diam(K )

rβ(q)+ε
min

r−(β(q)+ε)
∑
i∈I

pq
ii

rβ(q)+ε
ii

= c0r−(β(q)+ε)
∞∑

k=1

∑
i∈I,|ii |=k

pq
ii

rβ(q)+ε
ii

, (4.10)

where c0 = diam(K )
β(q)+ε .
rmin
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Next, we prove that if i1, i2 ∈ I , then the following holds:

i1 	= i2 ⇒ ii1 	= ii2 . (4.11)

Indeed, otherwise there is i1, i2 ∈ I with i1 	= i2 such that ii1 = ii2 . This implies that xi1 ∈ K ii1
= K ii2

⊆ B(xi2 , r), and so
B(xi1 , r) ∩ B(xi2 , r) 	= ∅, contradicting the fact that (B(xi, r))i∈I is a packing. This proves (4.11).

It follows immediately from (4.11) that∑
i∈I,|ii |=k

pq
ii

rβ(q)+ε
ii

�
∑

i∈Σ∗,|i|=k

pq
i rβ(q)+ε

i . (4.12)

Write u = ∑N
i=1 pq

i rβ(q)+ε
i and observe that

u =
N∑

i=1

pq
i rβ(q)+ε

i <

N∑
i=1

pq
i rβ(q)

i = 1.

Combining (4.10), (4.12) and using the fact that u < 1, we now conclude that

∑
i∈I

μ
(

B(xi, r)
)q � c0r−(β(q)+ε)

∞∑
k=1

∑
i∈I,|ii |=k

pq
ii

rβ(q)+ε
ii

� c0r−(β(q)+ε)

∞∑
k=1

∑
i∈Σ∗,|i|=k

pq
i rβ(q)+ε

i

� c0r−(β(q)+ε)

∞∑
k=1

(
N∑

i=1

pq
i rβ(q)+ε

i

)k

= c0r−(β(q)+ε)

∞∑
k=1

uk

= c0
u

1 − u
r−(β(q)+ε)

= cr−(β(q)+ε), (4.13)

where c = c0
u

1−u .
Finally, taking supremum in (4.13) over all packings (B(xi, r))i∈I gives

M p
μ(r;q) � cr−(β(q)+ε)

for all r with 0 < r < rmin. This proves (4.7).

It follows immediately from (4.7) that τ
p
μ(q) = lim supr↘0

log M p
μ(r;q)

− log r � β(q) + ε. Letting ε ↘ 0 gives the desired result.
This completes the proof of Case 1.

Case 2: 0 � q � 1. Define V : (0,∞) → R by

V (r) = M p
μ(r;q)rβ(q).

Let (B(xi, r))i∈I be a centered packing of K . It follows from (1.2) and Lemma 4.4 that

μ
(

B(xi, r)
)q =

(
N∑

j=1

p jμ
(

S−1
j

(
B(xi, r)

)))q

=
(

N∑
j=1

p jμ

(
B

(
S−1

j xi,
r

r j

)))q

�
N∑

j=1

pq
jμ

(
B

(
S−1

j xi,
r

r j

))q

,

and so
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∑
i

μ
(

B(xi, r)
)q

rβ(q) �
∑

i

N∑
j=1

pq
jμ

(
B

(
S−1

j xi,
r

r j

))q

rβ(q)

=
N∑

j=1

pq
jr

β(q)

j

∑
i

μ

(
B

(
S−1

j xi,
r

r j

))q( r

r j

)β(q)

. (4.14)

Next we prove that:

(
B

(
S−1

j xi,
r

r j

))
i∈I

is a packing. (4.15)

Indeed, otherwise there are i1, i2 ∈ I with i1 	= i2 and x ∈ B(S j xi1 ,
r
r j

) ∩ B(S j xi2 ,
r
r j

). This implies that |S−1
j xi1 − S−1

j xi2 | �
|S−1

j xi1 −x|+|x− S−1
j xi2 | � 2r

r j
, whence |xi1 −xi2 | � 2r, contradicting the fact that (B(xi, r))i∈I is a packing. This proves (4.15).

It follows immediately from (4.15) that

∑
i

μ

(
B

(
S−1

j xi,
r

r j

))q

� M p
μ

(
r

r j
;q

)
. (4.16)

Combining (4.14) and (4.16) gives

∑
i

μ
(

B(xi, r)
)q

rβ(q) �
N∑

j=1

pq
jr

β(q)

j

∑
i

μ

(
B

(
S−1

j xi,
r

r j

))q( r

r j

)β(q)

�
N∑

j=1

pq
jr

β(q)

j M p
μ

(
r

r j
;q

)(
r

r j

)β(q)

=
N∑

j=1

pq
jr

β(q)

j V

(
r

r j

)
. (4.17)

Finally, taking supremum in (4.17) over all packings (B(xi, r))i∈I , we now obtain

V (r) = M p
μ(r;q)rβ(q) �

N∑
j=1

pq
jr

β(q)

j V

(
r

r j

)
. (4.18)

Next, we note if a and b are real numbers with a � b, then it follows from (4.18) that

sup
a�r<b

V (r) � sup
a�r<b

N∑
j=1

pq
jr

β(q)

j V

(
r

r j

)

�
N∑

j=1

pq
jr

β(q)

j sup
a�r<b

V

(
r

r j

)

=
N∑

j=1

pq
jr

β(q)

j sup
a
r j

�r< b
r j

V (r)

�
N∑

j=1

pq
jr

β(q)

j sup
a

rmax
�r< b

rmin

V (r)

= sup
a

rmax
�r< b

rmin

V (r). (4.19)

Write k0 for the unique positive integer such that rk0
max � rmin < rk0−1

max . Fix λ > 0 and a positive integer l with l > k0. Using
(4.19) and the fact that rl

maxλ � rl−1
maxλ � rk0

maxλ � rminλ < λ, we now conclude that
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sup
rl

maxλ�r�λ

V (r) = max
(

sup
rl

maxλ�r�rminλ

V (r), sup
rminλ�r�λ

V (r)
)

� max
(

sup
rl−1

maxλ�r�λ

V (r), sup
rminλ�r�λ

V (r)
)

= sup
rl−1

maxλ�r�λ

V (r). (4.20)

Repeated application of (4.20) shows that if k > k0, then

sup
rk

maxλ�r�λ

V (r) � sup
rk−1

maxλ�r�λ

V (r)

� sup
rk−2

maxλ�r�λ

V (r)

...

� sup
r

k0
maxλ�r�λ

V (r),

and so

sup
0�r�λ

V (r) = sup
k>k0

sup
rk

maxλ�r�λ

V (r)

� sup
k>k0

sup
r

k0
maxλ�r�λ

V (r)

= sup
r

k0
maxλ�r�λ

V (r). (4.21)

Writing λ0 = diam(K )

r
k0
max

and putting λ = λ0 in (4.21) now yields

sup
0<r�λ0

V (r) � sup
r

k0
maxλ0�r�λ0

V (r)

= sup
diam(K )�r�λ0

V (r)

= sup
diam(K )�r�λ0

M p
μ(r;q)rβ(q). (4.22)

Since M p
μ(r;q) = 1 for r > diam(K ) and rβ(q) � λ

β(q)

0 for r � λ0 (because β(q) � 0), we deduce from (4.22) that

sup
0<r�λ0

V (r) � c

where c = λ
β(q)

0 , and so M p
μ(r;q)rβ(q) = V (r) � c for all 0 < r � λ0, i.e., M p

μ(r;q) � cr−β(q) for all 0 < r � λ0. We conclude

immediately from this that τ
p
μ(q) = lim supr↘0

log M p
μ(r;q)

− log r � β(q). This completes the proof of Case 2. �
We can now prove inequality (4.1).

Proof of (4.1). This follows by combining Lemma 4.1, Lemma 4.2 and Lemma 4.5. �
Proof of inequality (4.2). To prove inequality (4.2), we need the following result from [12]. Define M : (0,∞) → R by
M(r) = supx∈K μ(B(x, r)).

Lemma 4.6. (See [12, Proposition 4.3].) Fix a positive integer n. There exists a constant c > 0 such that

M(r) � crsn

for all r > 0.
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We can now prove inequality (4.2).

Proof of (4.2). Fix r > 0. Using Lemma 4.6 and the fact that q � 1, we have

Iμ(r;q) =
∫
K

μ
(

B(x, r)
)q−1

dμ(x) �
∫
K

(
crsn

)q−1
dμ(x)

= (cr)sn(q−1).

This clearly implies that sn(1 −q) � τμ(q). Since this is true for all n, we can conclude that s(1 −q) � τμ(q). This completes
the proof of (4.2). �
5. Mixed multifractal setting

In [12], Olsen generalized Theorem B to the mixed multifractal setting. Let us recall the definition of mixed Lq-spectra.
Fix a positive integer k, and let p j = (p j,i)

N
i=1 be a probability vector for j = 1, . . . ,k. Let μ j denote the self-similar measure

associated with the probabilistic iterated function system (S1, . . . , SN ;p j), i.e. μ j satisfies

μ j =
N∑

i=1

p j,iμ j ◦ S−1
i .

Let K denote the common support of the measures μ1, . . . ,μk . Finally, we define β : R
k → R by

N∑
i=1

pq1
1,i . . . pqk

k,ir
β(q)

i = 1

for q = (q1, . . . ,qk) ∈ R
k . Obviously, this definition reduces to (1.4) for k = 1. Now the mixed Lq-spectra of the list μ =

(μ1, . . . ,μk) are defined as follows. Let Dk denote the diagonal ray in R
k , i.e.

Dk = {
(x, . . . , x) ∈ R

k
∣∣ x ∈ R

}
.

If E is a subset of R
k and r > 0, we write B(E, r) for the r neighborhood of E , i.e. B(E, r) = {x ∈ R

k | dist(x, E) < r}. The
lower and upper mixed Lq-spectra, denoted τμ(q) and τμ(q), of μ = (μ1, . . . ,μk) are now defined by

τμ(q) = lim inf
r↘0

log Iμ(r;q)

− log r
,

τμ(q) = lim sup
r↘0

log Iμ(r;q)

− log r
,

where

Iμ(r;q) =
∫

K k∩B(Dk,r)

μ1
(

B(x1, r)
)q1−1

. . .μk
(

B(xk, r)
)qk−1

d(μ1 × · · · × μk)(x1, . . . , xk).

We write x � y for x = (x1, . . . , xk),y = (y1, . . . , yk) ∈ R
k if xi � yi for all i. We also write pi,i = pi,i1 . . . pi,in for all i =

i1 . . . i1 ∈ Σn , and put 0 = (0, . . . ,0) ∈ R
k and 1 = (1, . . . ,1) ∈ R

k . Let 〈·|·〉 denote the usual inner product in R
k . With minor

modifications of the proof of Theorem 1.1, we obtain the following theorem, which generalizes Theorem 1.1 to the mixed
multifractal setting.

Theorem 5.1. For a positive integer n, let

In =
{

I ⊆ Σn
∣∣∣ ⋂

i∈I

Ki 	= ∅
}

(observe that In is non-empty since {i} ∈ In for all i ∈ Σn). There exists a unique sn ∈ R such that

1 = max
I∈In

∑
i∈I

pi,ir
−sn
i .

Let s = supn sn and s = (s, . . . , s) ∈ R
k. For all q ∈ R

k with q � 1, we have

〈s|1 − q〉 � τμ(q) � τμ(q) � β(q).
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