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1. Introduction

The paper studies the existence of positive solutions to the following problem:
—Au:Au—a(x)uz—buv in £2,
—Av:v(u—l—%) in £2, (1.1)
opu=209,v=0 on 452,

where £ C RN is a bounded domain with appropriately smooth boundary 82, v is the outward unit normal vector on
082, 0y = ad—v, A and b are positive constants, and a(x) is a nonconstant, continuous function satisfying one of the following
conditions:

(H1) a(x) > 0 on £2; o
(H2) a(x) =0on D C £2 and a(x) > 0 on 2 \ D, where D is a simply connected domain with smooth boundary.

The system (1.1) models the steady state behavior of a diffusive variable-territory prey-predator ecosystem in a hetero-
geneous environment. We refer the reader to [4] and [5] for more detailed biological background of (1.1). Wang and Pang
[5] studied the existence, uniqueness and stability of positive solutions of (1.1), and raised an open problem [5, Remark 1]
concerning the existence of solutions in the large A regime. In a recent paper [6], the authors improved the existence
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results of [5] significantly, and resolved the open problem partially. However, they were unable to settle the existence/non-
existence question for the complete range of the parameter A. The purpose of this short note is to fill in the gap completely,
and answer the existence question conclusively. In fact, we prove that there exists a critical value A, of A such that positive
solutions exist when A > A, and do not exist when 0 < A < A,.

We first introduce some notation: For any ¥ € C(£2), denote by Af(w) and k?"g(w) the smallest eigenvalue of the
operator —A + ¢ on £2 with the homogeneous Dirichlet and Neumann boundary conditions, respectively. For simplicity,
we write 137 (0) = A{. It is well known that A% (y) and A’l\”‘o(w) exist for any ¥ € C(£2) and are the only eigenvalues whose
corresponding eigenfunctions do not change sign. Moreover, A{Z (y) and Allv‘g (y) are continuous and strictly increasing in
¥ e C(R).

Let us recall the following results [3]:

(1) Let (H1) hold. Then for any A > 0, the problem

—Au=iu—au® in2, du=0 onds, (1.2)

has a unique positive solution, denoted by u;,.

(2) Let (H2) hold. Then (1.2) has a unique positive solution, denoted by uf, if A € (0, k?); and has no positive solution
if 2 >0,

Moreover, by comparison and compactness arguments, one can easily derive that u; and u)? are strictly increasing in
A>0and A € (0, A{’), respectively, moreover, the mappings u, and uf, as functions of A to the function space C1(£2), are
uniformly continuous.

The main result of this paper is as follows:

Theorem 1.1.

(i) Assume that (H1) holds and A > 0. Then there exists a constant A, € [ming a, a), where a = “,]2—‘ f_Q a(x) dx, such that (1.1) admits
at least one positive solution if A € (A4, 00), and has no positive solution if 1 € (0, A4].

(ii) Assume that (H2) holds and A > 0. Then there exists a constant A, € (0, A?) such that (1.1) admits at least one positive solution if
A € (A4, 00), and has no positive solution if A € (0, A4].

2. Proof of the theorem
Lemma 2.1. (See [1].) Let a(x), b(x) € C1(§2) with b(x) > 0 on £2. Then the problem
—Aw = (a(x) —bx)w)w in L2, ow=0 onas,

has a positive solution if and only if)»’lv’g (—a(x)) <0.
Lemma 2.2.

(i) Assume that (H1) holds and X > 0. Then (1.1) admits at least one positive solution if and only if)»’lv"o (1—uy)<0.
(ii) Assume that (H2) holds and A € (0, k?). Then (1.1) admits at least one positive solution if and only 1fk'1V‘Q(l — uf) <0.

Proof. We only prove (ii) since the argument for (i) is similar.
We first prove the necessity assertion. Assume that (1.1) has a positive solution (ug, vg) for some g € (0, A?). From

Lemma 2.1 and the equation of vy, it follows that A’l\”'Q(l —ug) < 0. By the comparison theorem, we find that ug < ufo, and
hence A’l\”g(l — ufo) < A?"Q(l — up) < 0. This establishes the necessity.
Next we prove the sufficiency assertion. Assume that, for some A € (0, A?),

A1 -ud) <o. 21)

As in [5] and [6], we will use the degree theory to prove the existence. Assume that (u,v) is a positive solution of the
following problem with parameter ¢t € [0, 1]:

—Au=Au— a(x)u2 —thuv in 2,

—Av:v(u—l— K) in 2, (2.2)
u

opu=209,v=0 onds2.

Without loss of generality, we assume that a € C!(£2). By the regularity theory of elliptic equations, (u, v) € [C2(£2)]?. Next
we estimate the bounds of (u, v).
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By the bounds (7) and (10) of [6], there exist positive constants Cq, C; independent of ¢t € [0, 1] such that

Ci1 <u<Co, v<Cy, ong2. (2.3)

Below we estimate the positive lower bound for v, for which the condition (2.1) will play an important role. We shall prove
that there exists a positive constant Cy independent of t such that

minv > Co. (2.4)
7]

To see this, suppose, on the contrary, that there exist a sequence {t, € [0, 1]} and solutions (uy, v,) of (2.2) with t =t, such
that

minv, -0 asn— +4oo0. (2.5)
2
By (2.3), we have, for all n > 1,

Ci <up < Cy, vy < Cy, ong2. (2.6)

Thanks to (2.5) and (2.6), we have, by the same argument as in the proof of the limit (13) of [6],

maxvy, - 0 asn— +4o0.
2

Denote vy = vy/||Vnlloo- Then, [|Vnlloe = 1. It follows from (2.6) and the equations of u, and ¥, that {(Aup, Av,)} and

{(un, ¥5)} are bounded sets in [L*°(£2)]%. By the standard elliptic theory, {(un, Vn)} is bounded in [W2P(§2)]? for any
p > 1. Hence, there exist a subsequence of {(uy, vn)}, denoted by itself, and a pair of positive functions (w, V) such that
(Un, ) = (w, ¥) in [C1(£2)]?, ¥ #0, and

—AwW=Aw—a(X)w? in£2, d,w=0 ondas,
—AVv=(w-1)V in$2, dv=0 onas.

Clearly, w = uf. Since ¥ £ 0, by the Harnack inequality ([2]), we have ¥ > 0 on £2. Thus, ¥ is a positive solution of the
problem

—-Aw=(uf -1)w inf2, dw=0 onds,

which implies that A’;’"Q(l - u’f) = 0. This contradicts (2.1). Therefore, (2.4) holds.
Define

O={@u,v)eC(R2 x2); c<u,v<Cl}

where ¢ = % min{Cp, C1}. From the above discussion we see that for all t € [0, 1], (2.2) has no solution on 30.
Denote

A(t;u,v) = (Lf(t,u,v), Lg(u, v)),

where
L=(-A+D7"  ft,u,v)=u+u(r—a®u —thv), g(u,v)=v+v<u—1—5>.

Then A :[0,1] x 2 — C(2) x C(2) is compact, and for (u, v) € O, it is a solution of (2.2) if and only if it is a fixed point
of A(t;-), i.e. (u,v) = A(t; u, v). Thus,
(u,v)#A(t;u,v), Vtel0,1], Y(u,v)e€adO.

Furthermore, the degree deg(I — A(t; -), O, 0) is well defined and independent of t € [0, 1].
When t =0, the problem (2.2) becomes

—Au =\ —ax)u? in £,
v

—Av:v(u—1—7> in £2, (2.7)
u

dpu=209,v=0 onds.
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Again using (2.1), one derives from Lemma 2.1 that (2.7) has a unique positive solution (u,, v4), where u* = u’f and v* is
the unique positive solution of

—Av:v(u*—l—%) in £2, d,v=0 onas.
Hence
deg(I — A(0; -), 0, 0) = index(I — A(0; ), (u*, v¥)).

Moreover, we can prove that (u*,v*) as a solution of (2.7) is non-degenerate and linearly stable. In fact, the linearized
eigenvalue problem of (2.7) at (u*, v¥*) is

—Ah = )\h — 2a(x)u™h + nh in £2,
2 * * 2

—Ak:(u*—l _ )k—i—[v*—i—(v—) :|h+r7k in 2, (2.8)
u* u*

owh=0d,k=0 onos2,

where 1 denotes the eigenvalue and (h, k) the corresponding eigenfunction. By the first equation of (2.7) we see that
)\]Q’N(au* —A)=0.If h £0, from the first equation of (2.8), we have

n> Af’N(Zau* —1)> Af’N(au* —1)=0.

Furthermore, if h =0 and k # 0, it follows from the second equation of (2.7) that Af’N K_: —u*+ 1) =0. By the second
equation of (2.8), we obtain

2v* v*
2,N £2,N
n=A] (_u* —u*+1>>k1 <_u u*+1)_0.

*

In conclusion, we always have n > 0. Consequently,
index(I, A(0; ), (u*, v¥)) =1.

Hence deg(I, A(1;-), 0,0) =1, and thus A(1;-) has at least one fixed point in O. In other words, problem (1.1) has at least
one positive solution. The proof is complete. O

Proof of Theorem 1.1. We only prove (ii), as (i) can be proved similarly.
We recall [6, Theorem 1.1(ii,a)] that, under the condition (H2), there exists a sufficiently small constant € > 0 such that
(1.1) admits at least one positive solution for all A > A? — €. Thus, we only need to consider the case where A € (0, A?). Let

a =inf{x € (0,4P); A2 (1 —uP) <0). (2.9)

By [6, Theorem 1.1(ii)] and Lemma 2.2(ii), we find that A, € (0, A?), and (1.1) has no positive solution for any A € (0, A,).
Next we prove that (1.1) has a positive solution for all A € (A*,A?). Suppose that for some Ao € (A*,A?), (1.1) with
A = Ao has no positive solution. Then, by Lemma 2.2(ii), Allv’g(l — ufo) > 0. Hence, A?”Q(l — uf) >0 for all A € (0, Ap),
which implies Ay < Ay, a contradiction.
Finally, we deal with the case A = A,. By the above arguments, we see that

A1 —ul) >0, Vie(r),
W -uR) <0 vie (]

By continuity, we find that A?’Q(l - uf*) = 0. It follows from Lemma 2.2(ii) that (1.1) with A = A, has no positive solution.
The proof is complete. 0O

We end this paper with the following discussion: From (2.9), one sees that the critical value A, provides a strong link
between Eqs. (1.1) and (2.7), which is the limit of (1.1) as b — 0*. Under this limit, we note that the solution (up, vp) of (1.1)
converges to (u* =u?, v*) of (2.7) in [C!(£2)]?. Moreover, as b — 0T, A’l\”g(l —up) - A’;"g(l —u?). The critical condition
)\2\”9(1 — u’f*) =0 is thus directly related to the persistent solution of the system (2.7). Furthermore, we recall from [5,
Theorem 7] that for b sufficiently small, the positive solution (up, vp) is unique and linearly stable. Thus, no bifurcation

occurs in the regime of small b. However, the general bifurcation picture as A varies from A, is unclear.
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