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Weconsider sets of filter convergence anddivergence to infinity of sequences of continuous
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the full description of such sets for the statistical convergence for metric spaces.
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For a sequence (fn)n of continuous real valued functions defined on a space X one can consider the set C((fn)) = {x ∈

X : limn fn(x) exists}. Hahn and Sierpiński proved that the family of such sets on a metric space X coincides with the family
50

3(X) (Fσδ(X)). Further investigation involved also infinities; the full description of these sets was given by M. A. Lunina in
the following theorem (see [1]).

For a sequence of continuous real functions (fn) we consider seven types of sets of convergence and divergence.

E1((fn)) = {x: (fn(x)) converges},
E2((fn)) = {x: lim fn(x) = −∞},

E3((fn)) = {x: lim fn(x) = +∞},

E4((fn)) = {x:−∞ < lim fn(x) < lim fn(x) < +∞},

E5((fn)) = {x:−∞ = lim fn(x) < lim fn(x) < +∞},

E6((fn)) = {x:−∞ < lim fn(x) < lim fn(x) = +∞},

E7((fn)) = {x:−∞ = lim fn(x) and lim fn(x) = +∞}.

We call (E1, . . . , E7) a Lunina’s 7-tuple if there exists a sequence of real-valued continuous functions (fn) such that E i
=

E i((fn)) for i = 1, 2, . . . , 7.

Theorem 1 (Lunina [1]). Suppose that a metric space X is a union of 7 disjoint sets E1, E2, . . . , E7. Then (E1, . . . , E7) is a
Lunina’s 7-tuple iff E1, E2, E3 are Fσδ in X and E2

∪ E5
∪ E7, E3

∪ E6
∪ E7 are Gδ in X.

In this paper we will investigate analogous relationships for the filter convergence. F ⊂ P(ω) is a filter if F is closed
under taking supersets and finite intersections, ω ∈ F and ∅ ∉ F . We shall use the notation D∗

= {ω \ Z : Z ∈ D},
FIN = {A ⊂ ω : A is finite} and FIN × FIN = {Z ⊂ ω × ω : ∀

∞
n {k : (n, k) ∈ Z} is finite}. The filter FIN∗ is called the Fréchet

filter. Throughout this paper we only consider filters containing the Fréchet filter.
C(X), B(X), Bα(X) will denote the class of continuous functions, Borel functions and functions of Borel class α mapping

the space X into R.
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For a given filter F , x ∈ R and (xn) ∈ Rω we denote

1. F − lim xn = x if for each ϵ > 0 {n ∈ ω : |x − xn| < ϵ} ∈ F ,
2. F − lim xn = ∞ if for eachM ∈ R {n ∈ ω : xn > M} ∈ F ,
3. F − lim xn = −∞ if for eachM ∈ R {n ∈ ω : xn < M} ∈ F .

Next we denote four types of sets of convergence and divergence.

1. CF = {(xn) ∈ R∞
: F − lim xn exists},

2. cF = {(xn) ∈ R∞
: F − lim xn = 0},

3. c∞
F = {(xn) ∈ R∞

: F − lim xn = ∞},
4. c−∞

F = {(xn) ∈ R∞
: F − lim xn = −∞}.

For a topological space X and (fn) ∈ C(X)ω we define

1. CF ((fn)) = {x ∈ X : (fn(x)) ∈ CF },
2. cF ((fn)) = {x ∈ X : (fn(x)) ∈ cF },
3. c∞

F ((fn)) = {x ∈ X : (fn(x)) ∈ c∞
F },

4. c−∞

F ((fn)) = {x ∈ X : (fn(x)) ∈ c−∞

F },

and

1. CF (X) = {CF ((fn)) : (fn) ∈ C(X)ω},
2. cF (X) = {cF ((fn)) : (fn) ∈ C(X)ω},
3. c∞

F (X) = {c∞
F ((fn)) : (fn) ∈ C(X)ω},

4. c−∞

F (X) = {c−∞

F ((fn)) : (fn) ∈ C(X)ω}.

The standard convergence coincides with the convergence with respect to the Fréchet filter FIN∗. One can expect that
for every filter F the sets in CF (X), cF (X), c∞

F (X) and c−∞

F (X) are Borel. Unfortunately, this is not true. There is a canonical
example of a sequence of continuous functions which shows that the sets of convergence do not need to be nice.We identify
P(ω) with the Cantor space and define the continuous functions fn : P(ω) → R by

fn(Z) =


0 if n ∈ Z
n otherwise.

Observe that CF ((fn)) = F and c∞
F ((fn)) = F ∗, so in the case when F is an ultrafilter, i.e. a maximal filter, these sets are not

Borel. In [2] the authors consider Fσ -filters (in fact, ideals but those notions are dual to each other) and proved a Lunina-like
theorem. In this paper we will consider general Borel filters.

Theorem 2 (Dobrowolski et al. [3,4], Solecki [5], Debs and Saint Raymond [6]). If F ∈ 50
α \


β<α 50

β , then CF , cF ∈ 50
α \60

α.

Proof. For the case cF the statement follows from [3, Lemma 4.2]. The result CF ∈ 50
α was proved in [6, Remark 2.11].

From [4, Proposition 3.9] it follows that {(xn) ∈ CF : (xn) is bounded} ∉ 60
α . Since the set of bounded sequences is an

Fσ -set, it follows that CF is not in 60
α . �

Corollary 3. If F ∈ 50
α \


β<α 50

β then c∞
F , c−∞

F ∈ 50
α \ 60

α.

Proof. Observe that the functions H,G : Rω
→ Rω

;H((xn)) = (1/(|xn| + 1/n)) and G((xn)) = (e−xn) are continuous. Since
G−1

[cF ] = c∞
F and H−1

[c∞
F ] = cF , we may use Theorem 2. Similar proof works for c−∞

F . �

Theorem 4. Let X be a metric space. If F ∈ 50
α \


β<α 50

β , then

1. CF (X) ∪ c∞
F (X) ∪ c−∞

F (X) ⊂ 50
α(X).

2. If X is a separable, zero-dimensional metric space, then CF (X) = c∞
F (X) = c−∞

F (X) = 50
α(X).

3. If α = 3 then CF (X) = c∞
F (X) = c−∞

F (X) = 50
α(X).

Proof. 1. The function H : X → Rω given by H(x) = (fn(x)) is continuous, and thus CF ((fn)) = H−1
[CF ], c∞

F ((fn)) =

H−1
[c∞

F ], c−∞

F ((fn)) = H−1
[c−∞

F ].
2. Let E ∈ 50

α(X) be arbitrary. By 50
α-completeness of CF (see [7]), there is a continuous function H : X → Rω with

E = H−1
[CF ]. Then E = CF [(Hn)], where Hn = πn ◦ H . The other cases can be handled by the same argument.

3. For A ∈ 50
3(X) we apply [2, Corollary 4] and Lunina’s Theorem for the 7-tuple (A, ∅, ∅, X \ A, ∅, ∅, ∅) in the case of CF ;

(∅, A, ∅, ∅, X \ A, ∅, ∅) in the case of c∞
F , and (∅, ∅, A, ∅, ∅, X \ A, ∅) in the case of c−∞

F . �

Theorem 5. If F ∈ 50
α \


β<α 50

β , then CF (R) = 50
α(R).
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Proof. It is enough to prove that for each A ∈ 50
α(R) there is a sequence of continuous functions f = (fn)n ∈ (RR)ω such

that CF ((fn)) = A, because the converse inclusion follows from Theorem 2.
The set A has the Baire property so there are Gδ-sets G0,G1 and a meager Fσ -set F such that {G0,G1, F} is a partition of

R,G0 ⊂ A and G1 ∩A = ∅. Since F is meager on the real line, there are compact pairwise disjoint sets Fn with


n Fn = F . We
know that CF ∩[0, 1]ω ∈ 50

α([0, 1]ω)\60
α([0, 1]ω), so by Louveau and Saint-Raymond [8, Theorem 3] there are continuous

functions Hn : Fn → [0, 1]ω such that H−1
n [CF ] = Fn ∩ A. The functions hn

k = πk ◦ Hn are continuous on Fn. Let us extend
i≤k h

i
k from


i≤k Fi to a continuous function gk : R → [0, 1]. Observe that gk|Fn = hn

k for k ≥ n, so CF ((gk)) ∩ Fn = A∩ Fn.
Thus CF ((gk)) ∩ F = A ∩ F .

Claim. There is a sequence of continuous functions bk : R → (0, ∞) such that

1. limk bk(x) = 0, for x ∈ G0;
2. limk bk(x) exists and is greater than 0, for x ∈ F ;
3. limk bk(x) = ∞, for x ∈ G1.

Proof of the claim. Applying Lunina’s Theorem (Theorem 1) for the 7-tuple (F ,G1,G0, ∅, ∅, ∅, ∅) we get a sequence (sk) of
continuous real functions such that sk(x) is convergent (in the standard sense) on F , convergent to ∞ on G1 and convergent
to −∞ on G0. Then bk(x) = esk(x) has the required properties. �

Now let fk = bk · (gk + 1).

1. For x ∈ G0, F − lim fk(x) exists because limk fk(x) = 0 and gk(x) is bounded.
2. For x ∈ G1, F − lim fk(x) = ∞ (so the F -limit does not exist) because limk bk(x) = ∞ and (gk + 1)(x) ≥ 1.
3. For x ∈ A ∩ F , F − lim fk(x) exists because limk bk(x) and F − lim gk(x) exist.
4. For x ∈ F \ A, F − lim fk(x) does not exist because lim bk(x) exists and is greater than zero and F − lim(gk + 1)(x) does

not exist. �

The above proof does not work in general even for the plane because we use the fact that each meager set of the reals is
zero-dimensional and that any meager Fσ -set is the countable union of pairwise disjoint compact sets.

For the standard convergence it is not enough to assume that the sets CFIN∗((fn)), c−∞

FIN∗ ((fn)), c∞

FIN∗((fn)) are pairwise
disjoint Fσδ-sets to get the right example of continuous functions. (See Theorem 1.) We have some additional separation
results, i.e. CFIN∗((fn))∪c−∞

FIN∗ ((fn)) can be separated by an Fσ -set from c∞

FIN∗((fn)). In fact this set is equal to {x : lim sup fn(x) <
∞}. In general the set of points of finite filter upper limit is not of small Borel class. However, in some cases we can give an
upper bound for this Borel class.

For a given class Γ ⊂ P(X) and pairwise disjoint sets A, B ⊂ X we say that A can be Γ -separated from B if there exists
E ∈ Γ with A ⊂ E and E ∩ B = ∅. In [6] the authors defined the rank of a filter:

rk(F ) = min{ξ < ω1 : F is 60
1+ξ -separated from F ∗

}.

Analytic filters have countable rank. The authors prove that if F ∈ 50
α then 1 + rk(F ) < α.

Theorem 6. Assume that F is an analytic filter. Then CF ∪ c−∞

F (CF ∪ c∞
F ) is 60

1+rk(F )-separated but not 50
1+rk(F )-separated

from c∞
F (c−∞

F ).

Proof. Let us consider the sets B0 = {(xn) ∈ [0, 1]ω : F − lim xn = 0}, B1 = {(xn) ∈ [0, 1]ω : F − lim xn = 1},
Ba = {(xn) ∈ [0, 1]ω : 0 < F − lim xn < 1}. First we show that Ba ∪ B1 can be 61+rk(F )-separated from B0. Suppose this
is not true, and fix B ∈ 51+rk(F )(2ω) \ 61+rk(F )(2ω). Then there is a continuous function s : 2ω

→ (Ba ∪ B1) ∪ B0 with
s−1

[Ba ∪ B1] = B (see [8, Theorem 3]). Let h = F − lim sn, where sn = πn ◦ s. By Debs and Saint Raymond [6, Theorem 2.6],
we have h ∈ Brk(F ) which is impossible because h−1

[(0, 1)] = B ∉ 61+rk(F )(2ω). Let h : R → (0, 1) be a decreasing
homeomorphism. Then the preimage by (h∞) of a set separating Ba ∪ B1 from B0 will separate CF ∪ c−∞

F from c∞
F .

Let B′

0 = B0 ∩ (0, 1)ω, B′

1 = B1 ∩ (0, 1)ω, B′
a = Ba ∩ (0, 1)ω . It is enough to show that B′

0 is not 60
1+rk(F )-separated

from B′
a ∪ B′

1. Let A ∈ 60
1+rk(F )(2

ω) \ 50
1+rk(F )(2

ω). We have A =


n An for some An ∈ 50
βn

with βn < 1 + rk(F ). Since
CF ∪ c−∞

F is not 60
βn
-separated from c∞

F , it follows that B′
a ∪ B′

1 is not 60
βn
-separated from B′

0. So there are continuous
functionsΨn : 2ω

→ B′

0 ∪ (B′
a ∪B′

1) such thatΨ −1
n [(B′

a ∪B′

1)] = An. Let φn
k = πk ◦Ψn, where πk is the projection onto the k-th

coordinate. Then for each x, x ∈ An iff F − limk φn
k (x) ≠ 0, and x ∉ An iff F − limk φn

k (x) = 0. Let us define hk = 6∞

i=0
1

2i+1 φ
i
k.

Then F − limk hk(x) exists, 0 < F − limk hk(x) < 1, and F − limk hk(x) ≠ 0 iff x ∈ A. LetΨ = (hk). ThenΨ −1
[B′

a ∪B′

1] = A.
Now, because A is not 50

1+rk(F )-separated from 2ω
\ A, B′

a ∪ B′

1 cannot be 50
1+rk(F )-separated from B′

0. �

As a consequence we get the following result.

Theorem 7. Let X be ametric space and let F ∈ 50
α\


β<α 50

β be a filter. Assume there is (fn) ∈ C(X)ω such that CF ((fn)) = A,
c∞
F ((fn)) = B and c−∞

F ((fn)) = C. Then A, B, C ∈ 50
α , A ∪ B can be 61+rk(F )-separated from C and A ∪ C can be 61+rk(F )-

separated from B.
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This is the best possible result of this type because taking πn : Rω
→ R, πn((xk)) = xn, we have CF ((πn)) = CF ,

c∞
F ((πn)) = c∞

F and c−∞

F ((πn)) = c−∞

F , and Theorems 2 and 6 show that we cannot get better upper bound in general.
For α = 3, the 61+rk(F )-separation simply means Fσ -separation, and the previous result can be reversed.

Theorem 8. Let X be a metric space and let F ∈ 50
3 be a filter. Let A, B, C be pairwise disjoint 50

3 subsets of X. Assume that
A ∪ B can be Fσ -separated from C and A ∪ C can be Fσ -separated from B. Then there is (fn) ∈ C(X)ω such that CF ((fn)) = A,
c∞
F ((fn)) = B and c−∞

F ((fn)) = C.

Proof. We follow the idea of the proof of [2, Corollary 4]. Let E, F be Fσ -sets with (A ∪ B ∪ C) ∩ E = A ∪ B and
(A ∪ B ∪ C) ∩ F = A ∪ C . Then the 7-tuple (A, B, C, E ∩ F \ A, (X \ F \ B) ∩ E, (X \ E \ C) ∩ F , X \ (E ∪ F)) gives a
partition with the following properties: A, B, C ∈ 50

3(X), and the unions of the second, fifth and seventh sets and of third,
sixth and seventh sets are Gδ-sets. By Lunina’s Theorem there is a sequence of continuous functions gn : X → R such that
CFIN∗((gn)) = A, c∞

FIN∗((gn)) = B and c−∞

FIN∗ ((gn)) = C . By Talagrand’s Theorem ([9, Corollary 3.10.2]) there is a function
h : ω → ω with h−1

[M] ∈ F iff M ∈ FIN∗ for each M ⊂ ω. Let the sequence of functions (fn) be defined by fn = gk if
h(n) = k. This sequence has all the required properties. For details see [2]. �

The previous results give in particular a characterization of sets CF ((fn)) c∞
F ((fn)) and c−∞

F ((fn)) for F = {Z ⊂ ω :

limn
|Z∩{0,...,n−1}|

n = 1} the filter of sets of density 1, i.e. for the statistical convergence.
The following proposition provides some generalization but only for two sets and zero-dimensional spaces.

Proposition 9. Let X be a separable, zero-dimensional metric space and let F ∈ 50
α \


β<α 50

β be a filter. Assume that A, B
are disjoint subsets of X such that A, B ∈ 50

α and A can be 61+rk(F )-separated from B. Then there is (fn) ∈ C(X)ω with fn ≥ 0
such that CF ((fn)) = A and c∞

F ((fn)) = B.

Proof. Let D ∈ 50
1+rkF (2ω) be such that D ∩ (A ∪ B) = B. Let Z = {(xn) ∈ (1, 2)ω : F − lim xn = 2}. Since c∞

F ∉ 60
α and

CF ∪ c−∞

F ∈ 50
α , it follows that c∞

F cannot be 60
α-separated from Rω

\ (CF ∪ c∞
F ∪ c−∞

F ). So Z cannot be 60
α-separated from

(1, 2)ω \ CF in (1, 2)ω . Thus there is a continuous function a : X → Z ∪ ((1, 2)ω \ CF ) such that a−1
[Z] = A ∪ B.

There is also a continuous function b : X → CF ∩ (1, 2)ω such that b−1
[Z] = D because D ∈ 50

1+rkF and Z is not
60

1+rk(F )-separated from (CF \ Z) ∩ (1, 2)ω .
Then {x : F − lim(an · bn)(x) exists} = A ∪ B, 1 < (an · bn)(x) < 4 and {x : F − lim(an · bn)(x) = 4} = B. Taking an

increasing bijection φ : (1, 4) → (0, ∞) we can see that the sequence fn = φ ◦ (an · bn) has the required properties. �

Finally we will present some results for sets of F -convergence and F -divergence to infinities for filters which are not
necessarily Borel (for example, for ultrafilters).

Lemma 10. Assume that F − lim fn = f , where fn, f are Borel real functions defined on a Polish space X. Then there is an analytic
filter F ′

⊂ F such that F ′
− lim fn = f .

Proof. Let us first observe that if H ⊂ P(ω) is analytic then the filter generated by H is analytic. This is a consequence of
two simple facts. First, the set H ′

= {A ⊂ ω : (∃B ∈ H)A ⊃ B} is analytic. Second, the filter generated by H is equal to the
set


n≥1 Fn[H

′n
], where Fn : (P(ω))n → P(ω) and Fn(A1, A2, . . . , An) = A1 ∩ A2 ∩ · · · ∩ An are continuous.

Now, let H = {A : (∃x ∈ X)(∃n)A = {k : |fk(x) − f (x)| < 1/n}}. Observe that H is analytic and H ⊂ F . Then the filter F ′

generated by H is analytic, F ′
⊂ F and F ′

− lim fn = f . �

The following result is a generalization of [6, Corollary 7.7]. Denote CF (X) = {f ∈ RX
: (∃(fn) ∈ C(X)ω)(∀x ∈

X)F − lim fn(x) = f (x)}.

Proposition 11. Let X be an uncountable Polish space and let F be a filter. Then CF (X) ∩ B(X) = B1(X) iff F does not contain
an isomorphic copy of (FIN × FIN)∗.

Proof. If F contains a copy of (FIN × FIN)∗ then B2(X) ⊂ CF (X) which is strictly larger than B1(X) on an uncountable
Polish space. Assume that f ∈ CF (X) ∩ B(X) \ B1(X). There is a sequence (fn) ∈ C(X)ω such that F − lim fn = f . By the
previous lemma there is an analytic filter F ′

⊂ F with F ′
− lim fn = f . By Debs and Saint Raymond [6, Theorem 7.5] and

[6, Theorem 2.6], F ′ does contain an isomorphic copy of (FIN × FIN)∗. �

Fact 12 (Folklore). If F is an ultrafilter then for any sequence (fn) ∈ (RX )ω , CF ((fn)) ∪ c∞
F ((fn)) ∪ c−∞

F ((fn)) = X.

Proposition 13. Let X be a Polish space. For each triple of pairwise disjoint sets A, B, C there is a sequence (fn) ∈ C(X)ω and a
filter F such that CF ((fn)) = A, c∞

F ((fn)) = B and c−∞

F ((fn)) = C. Moreover, if A∪ B∪ C = X then we can assume additionally
that F is an ultrafilter.
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Proof. Define the functions j1, j2 : X → R by the following formulas:

j1(x) =


1/3 if x ∈ A,
1 if x ∈ B,
0 if x ∈ C,
1/2 otherwise;

j2(x) =


1/3 if x ∈ A,
1 if x ∈ B,
0 if x ∈ C,
2/3 otherwise.

By Katětov’s Theorem (see [10]), there are filters F1, F2 and sequences of continuous function (gn), (hn) ∈ C(X)ω such that
F1 − lim gn = j1 and F2 − lim hn = j2. We can assume that 0 < gn, hn < 1 for each n. Then we define a filter F by

F = {A ⊂ {1, 2} × ω : {n : (1, n) ∈ A} ∈ F1&{n : (2, n) ∈ A} ∈ F2}.

We put f ′

(i,n) = gn for i = 1, and f ′

(i,n) = hn for i = 2. Then f ′

(i,n)(x) is F -convergent to 1/3 for x ∈ A, F -convergent to 1 for
x ∈ B, F -convergent to 0 for x ∈ C and F -divergent for x ∉ A ∪ B ∪ C . Finally, the functions f(i,n) = k ◦ f ′

(i,n), where k is
an increasing bijection from (0, 1) onto R, have all the required properties. Moreover, if A ∪ B ∪ C = X , then any extension
of the filter F to a ultrafilter together with the same functions have the properties required. This is because convergent
sequences remain convergent when we extend a filter. �

Proposition 14. Let X be a Polish space.

1. There is a coanalytic filter F such that for each triple of pairwise disjoint Borel sets A, B, C there is (fn) ∈ C(X)ω with
CF ((fn)) = A, c∞

F ((fn)) = B and c−∞

F ((fn)) = C.
2. There is an ultrafilter F such that for each triple of pairwise disjoint Borel sets A, B, C with A∪B∪C = X there is (fn) ∈ C(X)ω

such that CF ((fn)) = A, c∞
F ((fn)) = B and c−∞

F ((fn)) = C.

Proof. By Louveau [11, Theorem 2] there is a coanalytic filter H such that each Borel function is the H-limit of a sequence
of continuous functions. Then we can follow the proof of the previous proposition, since the functions j1, j2 are Borel. If we
take F1 = F2 = H , then F will be coanalytic.

To get the second part it is enough to extend F to an ultrafilter. �

There is no filter such that the set of triples in 1. or 2. of the previous Proposition is exactly the set of all triples of pairwise
disjoint Borel sets. Indeed, observe that if F is Borel then all such sets are of limited class, by Theorem 2. If F is not Borel,
then CF ((fn)) = F is not Borel either, where fn : P(ω) → R is the canonical example mentioned in the beginning of the
paper. The following result shows that there are ultrafilters (at least under some additional set theoretic assumptions), for
which we cannot get all triples of Borel sets. Recall that it is consistent that there are ultrafilters which do not contain an
isomorphic copy of (FIN × FIN)∗. (All P-points have this property, see [12]).

Proposition 15. Assume that X is a Polish space and F does not contain an isomorphic copy of (FIN × FIN)∗. Then for any
sequence (fn) ∈ C(X)ω and sets c∞

F ((fn)) = B and c−∞

F ((fn)) = C, if B, C are Borel and B ∪ C = X then B, C ∈ 50
2(X).

Proof. Let (fn) ∈ C(X)ω be a sequence with c∞
F ((fn)) = B and c−∞

F ((fn)) = C . Assume that B, C are Borel and B∪ C = X . Fix
an increasing bijection h : R → (0, 1). Then the sequence h ◦ fn F -converges to the characteristic function χB : X → [0, 1].
Since χB is Borel, it follows from Proposition 11 that it is of Baire class 1, and thus B, C ∈ 50

2(X). �

Problems

1. Is Theorem 5 true for the plane, or in general for all Polish spaces?
2. Can Theorem 8 be reversed for Polish spaces or at least for zero-dimensional spaces?
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