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1. Introduction

The Cauchy-Schwarz inequality |(x|y)| < (x|x)% (y|y)% in a semi-inner product space (7, (-|-)) over the complex number
field plays an important role in functional analysis. There are several generalizations and refinements of this classical
inequality in various settings for different objects such as integrals and isotone functionals, see the monograph [1] and
references therein. The notion of Hilbert C*-module is a generalization of that of Hilbert space in which the inner product
takes its values in a C*-algebra instead of the complex numbers. A version of the Cauchy-Schwarz inequality in semi-
inner product C*-modules first appeared in [2] by utilizing the operator norm, afterwards in [3] using the assumption of
commutativity, and in [4] using the assumption of invertibility.

On the other hand, spreading out an idea of Kantorovich inequality, Dragomir [5] proposed several additive and
multiplicative type reverses of the Cauchy-Schwarz inequality in a pre-inner product space. Afterwards some reverse
Cauchy-Schwarz type inequalities in other settings have been investigated: An application of the covariance-variance
inequality to the Cauchy-Schwarz inequality was obtained by Fujii-Izumino-Nakamoto-Seo [6]. A refinement of the
Cauchy-Schwarz inequality involving connections is investigated by Wada [7]. Niculescu [8], Joita [9], Moslehian-Persson
[10] and Arambasi¢-Baki¢-Moslehian [11] have investigated the Cauchy-Schwarz inequality and its various reverses in
the framework of C*-algebras and Hilbert C*-modules. Some operator versions of the Cauchy-Schwarz inequality with
simple conditions for the case of equality are presented by Fujii [ 12]. The authors of [4] gave some reverse Cauchy-Schwarz
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inequalities and presented some Klamkin-Mclenaghan, Shisha-Mond, Cassels and Griiss type inequalities in Hilbert
C*-modules. Other related results may be found in [13,14].

In this paper, by virtue of the operator geometric mean and the polar decomposition, we present a new Cauchy-Schwarz
inequality in the framework of semi-inner product C*-modules over unital C*-algebras and discuss the equality case. We
also give several additive and multiplicative type reverses of it, see also [10]. As an application, we present a Kantorovich
type inequality on a Hilbert C*-module.

2. Preliminaries

Let us fix our notation and terminology. Let </ be a unital C*-algebra with the unit element e and the center Z(.«). For
a € o/, we denote the real part of a by Rea = %(a + a*). An element a € .« is called positive if it is selfadjoint and its

spectrum is contained in [0, co). For a positive element a € «7, a? denotes the unique positive element b € & such that
b? = a.Fora € «,we denote the absolute value of a by |a| = (a*a)%. Ifa € Z(«) is positive, then ai e Z().fa, b € Z()
are positive, then ab is positive and (ab)% — a’b3.

A complex linear space £ is said to be an inner product «7-module (or a pre-Hilbert 7-module) if 2" is a right «7-module
together with a C*-valued map (x, y) — (x,y) : 2 X 2 — « such that

(i) (x,ay + Bz) = alx,y) + Bix,z) %, y,x € 2", a, B € C),

(i) (x,ya) = (x,y)a(x,y € 2", a € &),
(iii) (y,x) = x,¥)" (x,y € 2)),
(iv) (x,x) > 0(x € 2)andif (x,x) = 0,thenx = 0.
We always assume that the linear structures of </ and 2 are compatible. Notice that (ii) and (iii) imply (xa, y) = a*(x, y)
forallx,y € 27, a € «.1f 2 satisfies all conditions for an inner-product .7-module except for the second part of (iv), then
we call 2" a semi-inner product «-module.

In this case, we write || x |:= +/| {(x,x) ||, where the latter norm denotes the C*-norm of <. If an inner-product
</-module 2 is complete with respect to its norm, then 2 is called a Hilbert «7-module. Three typical examples of Hilbert
C*-modules are as follows:

e Every Hilbert space is a Hilbert C-module via (x, y) = (y|x).

e Let o be a C*-algebra. Then 7 is a Hilbert C*-module over itself via (x, y) = x*y (x,y € &).

o Let {5 (/) = {(G)ien : Zfzol afa; norm-convergesin </, a; € «/,i=1,2,...}.Then{;(«) is a Hilbert «/-module under
the natural operations A(a;) + w(b;) = (Aa; + ub;), (a;))a = (a;a) and ((a;), (b)) = ZE’:O] a’b.

1

The theory of Hilbert C*-modules is, however, not trivial, since some fundamental properties of Hilbert spaces such as
adjointability of any bounded linear operator, the Pythagoras equality, triangle inequality for C*-valued norm |x| = (x, x)/?
(x € 27) and decomposition into orthogonal complements are not true in the context of Hilbert C*-modules in general. For
more details on Hilbert C*-modules, see [2].

3. Cauchy-Schwarz inequality and its reverses

Let a and b be positive elements of a C*-algebra 7. Then the operator geometric mean afb is defined by
ath = az (a_%ba_%)%a%
if a is invertible, see [15-17]. The operator geometric mean has the symmetric property: agh = bfia, see [16]. If a commutes

with b, thenaf b = az b%. From this viewpoint, we would expect that the following Cauchy-Schwarz inequality in a semi-
inner product C*-module holds:

[ = 080, y) Ry e 2).

Unfortunately we have a counterexample. If x = (8 (1)) andy = ((2] (1)) in the Hilbert M, (C)-module M, (C), then we have

)l = (3 9)and (x.020y) = (5 ). Therefore, we have |(x, )| £ (x. X145, ).
By virtue of the polar decomposition, we have the following Cauchy-Schwarz inequality in a semi-inner product
C*-module.

Theorem 3.1. Let 2" be a semi-inner product </-module over a unital C*-algebra <. Suppose that x,y € 2 such that
(x,y) = u|(x, y)| is a polar decomposition in </, i.e., u € < is a partial isometry. Then

[(x, y)| < u*{x, x)ui(y, y). (3.1)

Under the assumption that 2 is an inner product <«/-module and (y,y) is invertible, the equality in (3.1) holds if and only if
xu = yb forsomeb € «.



J.I. Fujii et al. /J. Math. Anal. Appl. 394 (2012) 835-840 837

Proof. We may assume that (y, y) is invertible. Then
0 < (xu—y@.y) "y, )u,xu—yy,y) "y, x)u)
= u* (Xv X>u - u*<x7 y) <ya y>_1 <y5 X>u
= u*(x, x)u— X .9 x ) (32)
and we have |(x, y)|{y, ¥) " 1|(x, y)| < u*(x, x)u. Therefore, it follows that

|9 = @ MEE DI TR Y] < 0, 9) U (x, x)u

and hence we obtain the desired inequality (3.1) by the symmetric property of the operator geometric mean.
Under the assumption that 2 is an inner-product «7-module and (y, y) is invertible, suppose that the equality in (3.1)
holds. Then it follows that u* (x, x)u — |{(x, y)|{y,¥) " '|{x, y)| = 0. Since 2" is an inner-product «#-module, it follows from

(3.2) that xu = y{y, y) "y, x)u.
Conversely, suppose that xu = yb for some b € <. Then
U (X, y) (v, )7y, )i = b*(y, y)b = u*(x, X)u,
whence

y, it x xu =y, NEE DI x| =[x ). O

Next, we show several additive and multiplicative reverses of (3.1) by using an idea of [10,4]. For this, we need the
following lemma.

Lemma 3.2. Let 2" be a semi-inner product </-module over a unital C*-algebra < and x,y € 2. Suppose that there exists a
partial isometry u € « such that (x,y) = ul(x,y)| as a polar decomposition of is a polar (x, y). Then the following inequalities
are mutually equivalent for some a, b € Z(</):

(i) Re{yb — xu, xu — ya) > 0;

(if) u™(x, x)u + Re(a"b)(y, y) =< Re(a+ b)|(x, y);
(iii) (xu—yo52, xu — y4dt) < 92y, y).
Proof. Since |(x,y)| = u*(x,y) = (y,x)uand a,b € Z(«), it follows that Re(yb — xu, xu — ya) = Re(a + b)|(x, y)| —

2
u*(x, x)u — Re(@*b) (. y) = L (y,y) — (xu —y b xu —y%h). O

Theorem 3.3. Let 2" be a semi-inner product C*-module over a unital C*-algebra «# and x,y € % . Suppose that (x,y) =
u|(x, y)| is a polar decomposition with a partial isometry u € <7, and that there exist a, b € Z (<) such that (i)of Lemma 3.2 is
valid for x,y € 2 andu,a,b € &.
If Re(a*b) is positive invertible, then
(i) u*(x, x)ut(y,y) < 3Re(a+ b) (Re(a*b))~"?|(x, y)!.
If Re(a*b) is positive invertible and Re(a + b) is invertible, then
(i) u*(x, Y)ut(y,y) — |(x,y)] < 1 ((Re(a + b))* — 4Re(a*b))(Re(a + b)) "' (. y);
(iii) u*(x, )us(y, y) =[x, y)| < ((Re(a +b))> — 4Re(a*b)) (Re(a*b)Re(a + b)) ~"u* {x, x)u.

Proof. (i): Since the arithmetic-geometric mean inequality ah <
[18, Theorem 1.27], It follows from (ii) of Lemma 3.2 that

%b holds for all positive elements a,b € .« in
*(x, Re(a*b)(y,
(Re(a*b))'? u* (x, x)uti(y, y) = u*(x, x)uiRe(a*b)(y,y) < e +26(a —
- Re(a + b)
- 2
and so we have the desired inequality (i).

[(x, )1

(ii): We may assume that (y, y) is invertible. Put X = (y, y)’%u*(x, x)u(y, y)’%. Then (ii) of Lemma 3.2 implies that

(y, y) it (6, x)u — [(x, 9)] < (7, y)2X 2 (y,y)2 — (Re(a + b)) "'u* (x, x)u — Re(a*b) (Re(a + b)) ' (y, y)
= 0.3} (X* = Re(a+b)7'X) (7,)F — Re(@'b) (Re(a+ b))~ (y)

Re(a + b) )2  (Re(a+ b))2) v

[N

— 1 -1 7 —
(. )2 (Re(a + b)) ((X > 2
—Re(a*b) (Re(a + b))~ (y, y)

% ((Re(a + b))> — 4Re(a*b)) (Re(a + b))~ '(y,y).

IA
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(iii): We may assume that u*(x, x)u is invertible. Put Y = (u*(x, x)u)’% (y, y)(u*{x, x)u)’%. Then it follows from (ii) of
Lemma 3.2 that

u (6, Uy, y) — 1%, 9 < W% X2 YE (U (x, x)w 2 — (Re(a+ b))~ (x, x)u
—Re(a*b) (Re(a+ b)) "' (y.y)

2
— —(u* (x, \)u)2Re(a*b) (Re(a + b))~ ((y% _ %Re(a +b) (Re(a*b))l)

- %Re(a + b)z(Re(a*b))‘2> (" (x, )u)? — (Re(a + b))~ "u* (x, X)u

IA

%((Re(a + b))? — 4Re(a*b)) (Re(a*b)Re(a + b)) " 'u*(x, x)u. O

Remark 3.4. We point out that there are some cases where the equalities hold for (i)-(iii) of Theorem 3.3. As a matter of fact,
suppose that there exist x, z € 2" such that (x, x) = (z, z) and (x, z) = 0. For example, let .oz be the unital C*-algebra M, (C)
and let 2" = & as a Hilbert C*-module under (x, y) = x*y for x, y € 2°. Then there exist x, z € 2" such that (x, x) = (z, z)
and (x, z) = 0. For each positive invertible a, b € Z(«/) witha+b = e, we puty = 2x+2z - (b —a) (ab)~ /2. Then it follows
that (x, y) = 2(x, x) = |(x, y)| and moreover (yb — xu, xu — ya) = 0. Since (y, y) = (x, x)(ab)~!, we have

1
uw*(x, X)utly, y) = (x, 08((x, x)(ab) ") = (x, x)(ab)~"/? = E(Gb)fl/zl(x, I

and hence the equality in (i) holds.
To show that the equality in (ii) holds, suppose that there exist y,z € 2 such that (y,y) = (z,z) and (y, z) = 0. For
each positive invertible a, b € Z(«) witha 4+ b = e, we put

1+ 4ab (b — a)[(3a + b) (a+ 3b)]/2
Stz " .

Then it follows that (x,y) = (y, y) - # = |(x,y)| and (yb — xu, xu — ya) = 0. Since (x, x) = %(y, y), we have

1+4ab_ 1—4ab
4 4

1
ut(x, yu{y, y) — [{x, )| = Z<y, neEy,y) — .y - .y

and hence the equality in (ii) holds.
If we puty = x - (e + 4ab) (4ab)~' 4+ z - (b — a)[(3a + b) (a + 3b)]/>(4ab) ! for x, z € 2 such that (x, x) = (z, z) and
(x, z) = 0, and each positive invertible a, b € Z () with a + b = e, then similarly it follows that the equality in (iii) holds.

4. Applications to the Kantorovich inequality

Throughout the final section, let 2" be a Hilbert .«7-module. We define .£(.2") to be the set of all maps T : 2" +— 2 for
which there isamap T* : 2" — 2 such that (Tx,y) = (x, T*y) forx,y € 2. Then £(2") is a C*-algebra. For T € [£(2),
using the closed graph theorem, it is easy to see that T is .«7-linear and bounded. In addition, T is positive if and only if
(x, Tx) > 0forallx € 2.

First of all, by virtue of Theorem 3.1, we obtain the following generalized Cauchy-Schwarz inequality on a Hilbert
C*-module.

Theorem 4.1. Let T be positive in £(2°). Suppose that x,y € 2 such that (x, Ty) = u|(x, Ty)| is a polar decomposition with a
partial isometry u € <. Then

[(x, Ty)| < u™(x, Tx)ufi(y, Ty). (4.1)

Proof. By Theorem 3.1, we have

|(x, Ty)| = [(T"2x, T'?y)| < u™(T"2x, T 2x)ug(T"%y, T'/?y)
= u*(x, TQ)ui(y, Ty). O

By virtue of Theorem 3.3, we similarly have the following multiplicative type reverse of (4.1) in Theorem 4.1.
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Theorem 4.2. Let T be positive in L£L(2"). Suppose that x,y € 2 such that (x, Ty) = u|(x, Ty)| is a polar decomposition with a
partial isometry u € <7, and there exist a, b € Z (/) such that Re(a*b) > 0 and Re(yb — xu, T(xu — ya)) > 0. Then

u* (x, TR uR(y, Ty) < %Re(a 1 b)Re(a*b) 2| {x, Ty)|.

In 1948, Leonid Vital’evich Kantorovich [19] introduced the following inequality
(Hx, X)(H'%,X) < (A1 + An)? /4h1 A

where x = (X1, ..., X;) is a unit vector in C" and H is an n x n positive-definite matrix with eigenvalues A; > --- > 1, > 0.
There are many refinements and extensions of this inequality in the literature, see [20,21] and references therein.
We have the following result by Theorem 3.1.

Theorem 4.3. Let T be positive invertible in L(.2°). Then
(X, %) < (X, TX)E(x, T~ 'x)
forallx € 2.
Proof. For eachx € %/, if we replace x and y with T~%xand T?x in Theorem 3.1 respectively, then we have
(X, %) = (T2x, T 2x) < (T2x, T2X)8(T"2x, T~2x) = (x, TO#(x, T"1x). [
As an application of Theorem 3.3, we obtain the following Kantorovich inequality on a Hilbert C*-module:

Theorem 4.4. Let T be positive invertible in £(.2°) such that al < T < bl for some positive invertible elements a, b € Z(«).
Then

(x, T (x, T 'x) < %(a + b) (ab)™ % (x, x) (4.2)

forallx e 2.

Proof. The assumption al < T < bl implies (T — al) (bI — T)T~! > 0 and hence (T’%xb - T%x, Tix — T’%xa) > 0 for all
x € 2. It follows from (i) of Theorem 3.3 that

(x, T))2(x, T™'x) = (T2x, T20)2(T " 2x, T~ 2)

IA
N | =

(a+b) (ab)~ "2 |(T2x, T"2x)| = %(a +b) (@) (x,x). O

Remark 4.5. We point out that there are some cases where the equality holds in (4.2) of Theorem 4.4. As a matter of fact,
let 27 = & = M,(C) be a Hilbert C*-module over itself via (x, y) = x*y (x,y € M(C)). Since Z(«/) = Cl,let0 <a < b

be positive scalars. Put T = (g 2) ,y = (é g) and z = ((]) 8). Then it follows that T is positive invertible such as
al < T < bl,and we have Ty = yaand Tz = zb, and (y,y) = (z,z) and (y,z) = 0. Putx = %y + %z. Then we have
(x, Tx) = %b(y,y), (x, T7'x) = %(y, y) and (x, x) = (y, y). Hence it follows that

(x, Tx)(x, T_]x) =(a+b) (4ab)_% (y,y) = (@a+b) (4ab)_% (x, X).
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