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a b s t r a c t

This is an extension of the work in Salceanu (2011) [14] to nonautonomous systems of
difference and differential equations on the positive cone of Rm that exhibit a positively
invariant boundary hyperplane X . It is shown that when a compact subset of X , which
attracts all orbits in X , is a robust uniformweak repeller, robust uniform persistence for the
complementary dynamics (i.e., the dynamics inRm

\X) is obtained. Additional assumptions
are made, to deal with the nonautonomous nature of the systems. Some particular cases
that often occur in applications are discussed and then sufficient conditions for the robust
uniform persistence of the disease in two epidemic models from the literature are given.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Since the first papers that addressed the idea of persistence appeared in the late seventies [1,2], the dynamical systems
approach to persistence has provided quite useful tools for dealingwith this important, biologicallymotivatedmathematical
problem, such as average Lyapunov functions [3], normal or external Lyapunov exponents [3–5], invariant probability
measures [3,5–7], or chain recurrence, used in combination with Morse decompositions or acyclicity theory [6,8,9]. One
of the first comprehensive texts on this subject was only recently put together by Smith and Thieme [10]. Thieme [11,12]
gives sufficient conditions forweakly persistent nonautonomous semiflows to be strongly persistent semiflows.Mierczynski
et al. [13] use the idea of unsaturated Morse decomposition of the restriction of the attractor for the skew product semiflow
to the boundary of the state space to obtain persistence results for nonautonomous and random Kolmogorov parabolic
systems. However, as Thieme [12] points out, the persistence theory for nonautonomous systems is still an underdeveloped
area.

In this paper we build on the previous work in [14], where the author used Lyapunov exponents to obtain sufficient
conditions for compact subsets of the boundary of the positive cone Rm

+
to be robust uniform weak repellers and then used

this to obtain robust persistence results for systems of difference and differential equations of the form
xn+1 = f (zn, ξ)
yn+1 = A(zn, ξ)yn

(1.1)

for discrete time, and respectively
x′

= f (z, ξ)
y′

= A(z, ξ)y (1.2)
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for continuous time, where ξ ∈ Rl (for some fixed positive integer l) represents a vector of parameters. We mention
that similar results, but addressing only the discrete time case and uniform persistence (as opposed to robust uniform
persistence), were obtained in [15]. Let φ(t, z) be the solution semiflow generated by (1.1), for t = n ∈ Z+ (Z+ denotes the
set of non-negative integers), or by (1.2), for t ∈ R+ (R+ denotes the set of non-negative real numbers). It was shown in [14]
that, if there exists a closed set B that absorbs all trajectories (corresponding to a fixed ξ = ξ0) and whose restriction to
an arbitrary neighborhood of the set X = {z = (x, y) ∈ Rp

+ × Rq
+ | y = 0} is compact, and if all Lyapunov exponents

λ(z, η) corresponding to z in Ω(M) (the union of omega limit sets of points in M = B ∩ X) and to nonnegative unit
vectors η in Rq

+, are positive, then M is a robust uniform weak repeller (∃ ε > 0 and Ξ a neighborhood of ξ0 such that
lim supt→∞ d(φ(t, z, ξ),M) > ε, ∀z ∈ Rp+q

+ \ X, ξ ∈ Ξ ) and the system is robustly uniformly persistent (∃ ε > 0 and Ξ a
neighborhood of ξ0 such that lim inft→∞ d(φ(t, z, ξ), X) > ε, z ∈ Rp+q

+ \ X, ξ ∈ Ξ ).
Here we take a similar approach and extend the results in [14] to the nonautonomous counterparts of (1.1) and (1.2),

which are
xn+1 = f (n, zn, ξ)
yn+1 = A(n, zn, ξ)yn

(1.3)

and 
x′

= f (t, z, ξ)
y′

= A(t, z, ξ)y (1.4)

respectively. Here the q× qmatrix function A, as well as f , are continuous in t, z and ξ , for t ∈ R+, respectively continuous
in z and ξ , for t ∈ Z+. As before, ξ ∈ Rl denotes a parameter vector. Also, z = (x, y) denotes an element of Rp

+ × Rq
+

(i.e., x ∈ Rp
+, y ∈ Rq

+). In the context of models (1.3) and (1.4), the concepts of uniform weak repeller and robust uniform
persistence are defined in Section 3, similarly as for (1.1) and (1.2).

We point out that (aswe also did in [14])we do not necessarily assume that the absorbing set B is compact. If B is compact,
the system is said to be dissipative, which is, more or less, a standard assumption in the literature.

The paper is organized as follows. In Section 2 we introduce the notation and some basic preliminary results. Section 3
contains our results on robust uniform persistence for the type of models presented in Section 2, together with the main
assumptions. In Section 3.1we give a result that applies particulary to periodic systems. Section 4 contains two applications:
one discrete time model with periodic coefficients, and one continuous time model. For both of these modes we give
sufficient conditions for the persistence of the disease in the host population, as well as for other forms of persistence.

2. Preliminaries

Let T denote either Z+, or R+. When t ∈ Z+, we refer to (1.3), while when t ∈ R+, we refer to (1.4), in which case
we tacitly assume existence and uniqueness of solutions for all t . When t ∈ T, that means we consider both discrete and
continuous cases. Let F(t, z, ξ) denote the right hand side in (1.3) or in (1.4):

F(t, z, ξ) = (f (t, z, ξ), A(t, z, ξ)y).

Let φ(t + s, s, z, ξ) be the (non-autonomous) solution semiflow (or trajectory through (s, z)) generated by (1.3) (for t ∈ Z+)
or by (1.4) (for t ∈ R+). Thus, for all r, s, t ∈ Z+, z ∈ Rp+q

+ and ξ ∈ Rl, we have

φ(s, s, z, ξ) = z, and
φ(t + s + r, r, z, ξ) = φ(t + s + r, s + r, φ(s + r, r, z, ξ), ξ). (2.1)

We say that a certain set S contained in Rp+q
+ is positively invariant if any solution φ(t, s, z, ξ) is contained in S for all

s ≥ 0, t ≥ s, whenever z ∈ S. Hereafter we assume that Rp+q
+ is positively invariant (for all ξ ). We consider our state

space to be a certain positively invariant set Z ⊆ Rp+q
+ .

Let

X = {z = (x, y) ∈ Rp
+ × Rq

+ | y = 0}. (2.2)

Hence X is positively invariant. In what follows we are also tacitly assuming that

Z \ X is positively invariant.

Our primary motivation for considering systems of the form (1.3) or (1.4), is to investigate robust uniform persistence
of the disease/infection in biological populations, in which case the set X consists of all disease-free states, and so it is
positively invariant due to biological reasons (assuming that infection cannot invade the ecosystem). Also in the view of
this interpretation for X , the assumption that Z \ X is positively invariant means that, once present, the infection cannot be
completely eradicated from the host population (in finite time).

Let P(t, s, z, ξ) be the solution matrix for

u′(t) = A(t, φ(t, s, z, ξ), ξ)u(t), t ∈ T, t ≥ s, (2.3)
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satisfying P(s, s, z, ξ) = I (for t ∈ Z+, u′(t)meaning u(t + 1)). Then one can easily check that P has the following (cocycle)
property:

P(s + r + p, r + p, φ(r + p, p, z, ξ), ξ)P(r + p, p, z, ξ) = P(s + r + p, p, z, ξ), (2.4)

for all z ∈ Rp+q, ξ ∈ Rl and all s, r, p ∈ T.
The following lemma, whose proof can be found in the Appendix, gives some useful properties of matrices A and P .

Lemma 2.1. The following hold:

(a) A(n, z, ξ) ≥ 0,∀n ∈ Z+, z ∈ X, ξ ∈ Rl.
(b) aij(t, z, ξ) ≥ 0, t ∈ R, z ∈ X, ξ ∈ Rl, whenever i ≠ j.
(c) P(t + s, s, z, ξ) ≥ 0,∀z ∈ X,∀t, s ∈ T,∀ξ ∈ Rl.

Vector norms are denoted by | · | and matrix norms by ∥ · ∥. d(z1, z2) is the distance (induced by the norm | · |) between
points z1 and z2, while d(z, S) is the distance from point z to set S (with the usual definition). By a neighborhood of a set S
we mean an open set containing S.

3. Robust uniform persistence

In this section we fix a parameter ξ0 ∈ Rl and give a sufficient condition for a compact subset of X to be a robust uniform
weak repeller and then use this to obtain robust uniform persistence (both defined belowwith respect to ξ0). For simplicity
we sometimes write φ(t, s, z) for φ(t, s, z, ξ0) and similarly for other quantities (P, A, etc.).

Definition 3.1. We call S ⊂ X a robust uniform weak repeller if there exists ε > 0 and a neighborhoodΞ of ξ0 such that

lim sup
t→∞

d(φ(t, s, z, ξ), S) > ε, ∀s ∈ T, z ∈ Z \ X, ξ ∈ Ξ .

We occasionally make use of the following notation: if z(t) = φ(t, s, z, ξ), t ≥ s is a solution of (1.3) or (1.4) then let
φ(2)(t, s, z, ξ) := y(t). Note that |φ(2)(t, s, z, ξ)| = d(φ(t, s, z, ξ), X).

Definition 3.2. We say that φ(t, s, z) (or the equation that generates φ) is robustly uniformly persistent if there exists ε > 0
and a neighborhoodΞ of ξ0 such that

lim inf
t→∞

|φ(t, s, z, ξ)(2)| > ε, ∀s ∈ T, z ∈ Z \ X, ξ ∈ Ξ .

Further, we make the following assumptions.

(A1) There exists a closed set B that absorbs all trajectories corresponding to ξ0 (i.e., ∀s ∈ T, z ∈ Z, ∃ t(s, z) such that
φ(t + s, s, z, ξ0) ∈ B,∀t ≥ t(s, z)).

(A2) Let

U = {η ∈ Rq
+ | |η| = 1} and

M = B ∩ X .

Then ∀z ∈ M, η ∈ U, ∃ T > 0, c > 1, s0 ∈ T such that ∀s ≥ s0, ∃ T (s) ∈ (0, T ] satisfying |P(T (s)+ s, s, z)η| > c .
(A3) ∀t0 ∈ T, z ∈ M, ∃ K > 0 such that |φ(t + s, s, z, ξ0)| ≤ K ,∀s ∈ T, t ∈ [0, t0].
(A4) There areVB a neighborhood of B and Ξ a bounded neighborhood of ξ0 such that, for any compact set M ⊂ X , there

exists a constant K > 0 such that:

∥A(t, z, ξ0)∥ ≤ K (3.1)
|F(t, z2, ξ)− F(t, z1, ξ0)| ≤ K(|z2 − z1| + |ξ − ξ0|) (3.2)
∥A(t, z2, ξ)− A(t, z1, ξ0)∥ ≤ K(|z2 − z1| + |ξ − ξ0|), (3.3)

∀t ∈ T, z, z1 ∈ M, z2 ∈ VB, ξ ∈ Ξ .
Moreover, for every neighborhood VB of B, VB ⊆ VB, there exists Ξ a neighborhood of ξ0, Ξ ⊆ Ξ , satisfying the

following: ∀z ∈ Z, s ∈ T, ξ ∈ Ξ , ∃ t(z, s, ξ) ∈ T such that

φ(t + s, s, z, ξ) ∈ VB, ∀ t ≥ t(z, s, ξ). (3.4)

(A5) {z = (x, y) ∈ B | |y| ≤ δ} is bounded (hence compact), for some δ > 0.

Note that (A5) implies thatM (as defined in (A2)) is compact. We emphasize that the set B does not have to be compact,
but only its restriction to a certain neighborhood of X has to be so. Assumption (A2) is our ‘‘key assumption’’ that, together
with (A3) and (A4), make M a robust uniform weak repeller. From this, using (A5), we obtain robust uniform persistence
(Theorem 3.5). Assumptions (3.1)–(3.3) in (A4) are primarily used (in Lemma 3.3) to ensure that continuity ofφ(t+s, s, z, ξ)
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at (z, ξ0), where z ∈ M , is uniform in s ∈ T and t ∈ [0, T ], for some T > 0. In the case when (3.1)–(3.3) hold with M
replaced by X (that is, when they hold for all t ∈ T, z, z1 ∈ X, z2 ∈ VB and ξ ∈ Ξ ), for example when F and A are Lipschitz
in z and (locally Lipschitz in) ξ , assumption (A3) is not needed. However, (A3) holds in most applications (including the
ones presented in Section 4), in which case (A4) is ‘‘more likely’’ to hold (especially in the case when B is compact and F , A
are C1 in z and ξ ). Condition (3.4) prevents B from being ‘‘too sensitive’’ to changes in parameters. Also note that only (A4)
‘‘depends’’ on ξ , while the other assumptions made above are only for the fixed parameter ξ0.

One of our main goals is to get M to be a robust uniform weak repeller. Thus, using assumption (3.4), the semiflow
property (2.1) and that Z \ X is positively invariant, we can assume that, for every VB and Ξ as in (A4), VB \ X is positively
invariant, namely φ(t + s, s, z, ξ) remains in VB \ X , for all z ∈ VB \ X, s, t ∈ T and ξ ∈ Ξ .

Lemma 3.3. Assume (A1)–(A4) hold. Then for every (ẑ, η̂) ∈ M×U there exist ĉ > 1,T > 0, ŝ ∈ T and bounded neighborhoodsW and Ξ of (ẑ, η̂) and ξ0 respectively, such that for all s ≥ ŝ, there is a T (s) ∈ (0,T ] and

|P(T (s)+ s, s, z, ξ)η| > ĉ, ∀ (z, η) ∈ W with z ∉ X, ∀ ξ ∈ Ξ . (3.5)

Proof. Let (ẑ, η̂) ∈ M × U . From (A2), there exist ĉ > 1,T > 0 and s0 ∈ T such that ∀s ≥ s0, ∃ 0 < T (s) ≤T and

|P(T (s)+ s, s, ẑ, ξ0)η̂| > ĉ. (3.6)

Let â ∈ (1, ĉ). LetVB andΞ as in (A4). Nowwewill argue by contradiction and suppose that the conclusion of the lemmadoes
not hold. Then it follows that there exist sequences (sk)k ⊆ T, with 0 < T (sk) ≤T , and (zk, ηk)k ⊂ (Rm

+
\X)×U, (ξk)k≥1 ⊂ Ξ ,

with (zk, ηk) → (ẑ, η̂) and ξk → ξ0 as k → ∞ (hence zk → ẑ and ηk → η̂), such that

|P(T (sk)+ sk, sk, zk, ξk)ηk| ≤ â. (3.7)

On the other hand, from (3.6) we have

|P(T (sk)+ sk, sk, ẑ, ξ0)η̂| > ĉ. (3.8)

Thus,

∆k := |P(T (sk)+ sk, sk, zk, ξk)ηk − P(T (sk)+ sk, sk, ẑ, ξ0)η̂|
≥ |P(T (sk)+ sk, sk, ẑ, ξ0)η̂| − |P(T (sk)+ sk, sk, zk, ξk)ηk|

> ĉ − â > 0, ∀k ∈ Z+. (3.9)

P(t, s, z, ξ)η is the solution of u′
= A(t, φ(t, s, z, ξ), ξ)u, that is equal to η at t = s. Let uk(t) := P(t, sk, zk, ξk)ηk and

ûk(t) := P(t, sk, ẑ, ξ0)η̂.
Assumption (A3) implies that there exists M a compact set, M ⊆ M ⊂ X , such that φ(t + sk, sk, ẑ, ξ0) ∈ M for all k

and all t ∈ (0,T ]. It follows then from (3.2) and Gronwall’s inequality, for t ∈ R+ ∩ (0,T ], or from a simple iteration, for
t ∈ Z+ ∩ (0,T ], that we can make |φ(t + sk, sk, zk, ξk)−φ(t + sk, sk, ẑ, ξ0)| arbitrarily small, starting with a certain k. Then,
using (3.3) we obtain that, for any δ > 0 there exists a N ∈ Z+ such that

∥A(t + sk, φ(t + sk, sk, zk, ξk), ξk)− A(t + sk, φ(t + sk, sk, ẑ, ξ0), ξ0)∥ ≤ δ, ∀k ≥ N, t ∈ [0,T ]. (3.10)

This implies, using (3.1) and the triangle inequality, that there exists K1 > 0 such that

∥A(t + sk, φ(t + sk, sk, zk, ξk), ξk)∥ ≤ K1, ∀k ≥ N, t ∈ [0,T ]. (3.11)

From (3.11) we obtain (using Gronwall’s inequality in the continuous case) that there exists K2 > 0 such that

|uk(t + sk)| ≤ K2, ∀k ≥ N, t ∈ [0,T ]. (3.12)

First we consider the continuous case. Thus, let N ∈ Z+, δ, K1, K2 > 0 for which (3.10)–(3.12) hold. We also assume that
|ηk − η̂| ≤ δ, for all k ≥ N . Then

∆k = |uk(T (sk)+ sk)− ûk(T (sk)+ sk)|

≤ δ +

 T (sk)+sk

sk
|A(τ , φ(τ , sk, zk, ξk), ξk)uk(τ )− A(τ , φ(τ , sk, ẑ, ξ0), ξ0)ûk(τ )|dτ

≤ δ +

 T (sk)+sk

sk
|A(τ , φ(τ , sk, ẑ, ξ0), ξ0)ûk(τ )− A(τ , φ(τ , sk, ẑ, ξ0), ξ0)uk(τ )|dτ

+

 T (sk)+sk

sk
|A(τ , φ(τ , sk, ẑ, ξ0), ξ0)uk(τ )− A(τ , φ(τ , sk, zk, ξk), ξk)uk(τ )|dτ
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≤ δ +

 T (sk)+sk

sk
∥A(τ , φ(τ , sk, ẑ, ξ0), ξ0)∥|ûk(τ )− uk(τ )|dτ

+

 T (sk)+sk

sk
∥A(τ , φ(τ , sk, ẑ, ξ0), ξ0)− A(τ , φ(τ , sk, zk, ξk), ξk)∥|uk(τ )|dτ

≤ δ + K1

 T (sk)+sk

sk
|ûk(τ )− uk(τ )|dτ + δ

 T (sk)+sk

sk
|uk(τ )|dτ

≤ δ + K1

 T (sk)+sk

sk
|ûk(τ )− uk(τ )|dτ + δK2, ∀k ≥ N.

Thus, from Gronwall’s inequality we have

|uk(T (sk)+ sk)− ûk(T (sk)+ sk)| ≤ δ(1 + K2)eK1
T , ∀k ≥ N. (3.13)

We can choose δ sufficiently small such that (3.13) is in contradiction to (3.9).
Now consider the discrete case. We have

P(t + s, s, z) = A(s + t − 1, φ(s + t − 1, s, z)) · · · · · A(s, z). (3.14)

Using (3.10), (3.11) and (3.1), in combination with the following inequality (which holds for any square matrices A1, A2,
B1, B2)

∥A2B2 − A1B1∥ ≤ ∥A2∥∥B2 − B1∥ + ∥A2 − A1∥∥B1∥,

it is a simple exercise to show that∆k can be made arbitrarily small, beginning with some k, which again contradicts (3.9).
This completes our proof. �

With the help of the previous lemma, we give now a sufficient condition forM to be a robust uniform weak repeller, which
will be used later (in Theorem 3.5) to obtain robust uniform persistence, in the sense of Definition 3.2.

Theorem 3.4. Assume (A1)–(A4) hold. Then there exist bounded neighborhoods VM and Ξ0 respectively of M and ξ0, and
c > 1, T > 0, s0 ∈ T such that for all s ≥ s0, z ∈ VM \X and ξ ∈ Ξ0 having the property that φ(t+s, s, z, ξ) ∈ VM ,∀t ∈ [0, t0],
for some t0 > 0, there exist numbers s = ν0, ν1, . . . , νn satisfying:

(10) 0 < νi − νi−1 ≤ T , for all i = 1, . . . , n
(20) νn−1 ≤ t0 + s < νn and
(30) |P(νi, s, z, ξ)y| ≥ c i|y|,∀i ∈ {1, . . . , n}.

In particular, every solution φ(t, s, z, ξ), with z ∈ VM \ X and ξ ∈ Ξ0, leaves VM .

Proof. We apply Lemma 3.3 to each (ẑ, η̂) ∈ M × U and obtain the corresponding ĉ,T , ŝ and neighborhoods W (ẑ, η̂) andΞ . Since M × U is compact, the open cover ∪(ẑ,η̂)∈M×U W (ẑ, η̂) of M × U has a finite subcover. Thus, there exists a positive
integer k such that M × U ⊂ W := ∪

k
i=1 Wi and for each i ∈ {1, . . . , k} we have: ∀s ≥ si, ∃ T (s) ∈ (0, Ti] such that

|P(T (s)+ s, s, z, ξ)η| > ci, ∀(z, η) ∈ Wi with z ∉ X, ∀ξ ∈ Ξi,

where ci > 1, Ti > 0, si ∈ T,Wi is a neighborhood of (z i, ηi) ∈ M × U andΞi is a neighborhood of ξ0.
There exists an open, bounded neighborhood VM of M , such that VM × U ⊆ W . Let Ξ0 ⊆ Ξi, for all i ∈ {1, . . . , k} and

define c = min{c1, . . . , ck}, T = max{T1, . . . , Tk} (hence c > 1, T > 0) and s0 = max{s1, . . . , sk}. Hence we have that

|P(T (s)+ s, s, z, ξ)η| > c, ∀z ∈ VM \ X, η ∈ U, ξ ∈ Ξ0, s ≥ s0, (3.15)

for some T (s) ∈ (0, T ].
Now let z = (x, y) ∈ VM \ X, ξ ∈ Ξ0 and s ≥ s0, and assume that φ(t + s, s, z, ξ) ∈ VM ,∀t ∈ [0, t0], for some t0 > 0. Let

η = y/|y|. Then, from (3.15), we have

|P(ν1, s, z, ξ)y| > c|y|, where ν1 := T (s)+ s.

If ν1 > t0 + s we stop here, since (10)–(30) hold with n = 1. Otherwise, assuming that we have already obtained
ν0, . . . , νr(νr ≤ t0 + s), satisfying (10) and (30) (with n replaced by r), we define νr+1 in a similar manner as ν1. Thus,
let zr = φ(νr , s, z, ξ) and ηr = P(νr , s, z, ξ)y/|P(νr , s, z, ξ)y|. Note that ηr is well defined, because Z \ X is positively
invariant. Also, P(νr , s, z, ξ)y = φ(2)(νr , s, z, ξ) ≥ 0, hence ηr ∈ U . So again, from (3.15),

|P(T (νr)+ νr , νr , zr , ξ)ηr | > c, where T (νr) ∈ (0, T ]. (3.16)

Define νr+1 = T (νr)+ νr . Then (3.16) implies, using (2.4), that

|P(νr+1, s, z, ξ)y| > cr+1
|y|. (3.17)
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Note that, by construction, 0 < νr−νr−1 ≤ T . Also, for fixed s, (νr−s) → ∞ as r → ∞ since, otherwise, itwould follow that
φ(2)(νr , s, z, ξ) is bounded, which would contradict (3.17). Hence we obtain (10)–(30) by defining n = min{r | νr > t0 + s}.

The fact that all solutions φ(t, s, z, ξ) with z ∈ VM \ X and ξ ∈ Ξ0 leave VM follows directly from (30) arguing by
contradiction: suppose φ(t, s, z, ξ) ∈ VM for all t ≥ s. If s ≥ s0 then

|φ(2)(νi, s, z, ξ)| = |P(νi, s, z, ξ)y| > c i|y|, ∀i ≥ 0. (3.18)

If s < s0, let z̄ = (x̄, ȳ) = φ(s0, s, z, ξ) (note that ȳ ≠ 0). Then φ(t + s0, s0, z̄, ξ) ∈ VM for all t ≥ 0, hence there exists a
sequence s0 = ν̃0, ν̃1, . . . , ν̃i, . . . such that

|φ(2)(ν̃i, s, z, ξ)| = |φ(2)(ν̃i, s0, z̄, ξ)|

= |P(ν̃i, s0, z̄, ξ)ȳ| > c i|ȳ|, ∀i ≥ 0. (3.19)

Thus, either (3.18) or (3.19) gives a contradiction to VM being bounded. �

Our main result, which we state next, provides sufficient conditions for robust persistence of the species that make up the
vector y.

Theorem 3.5. Assume that (A1)–(A5) hold. Then (1.4) is robustly uniformly persistent: there exist ε > 0 and Ξ0 a bounded
neighborhood of ξ0 such that

lim inf
t→∞

|φ(2)(t + s, s, z, ξ)| > ε, ∀s ∈ T, z ∈ Z \ X, ξ ∈ Ξ0. (3.20)

Same holds for (1.3) if for any δ > 0 there exists V a neighborhood of B andΞ a neighborhood of ξ0 such that

inf{d(F(z, ξ), X) | z ∈ V , |y| ≥ δ, ξ ∈ Ξ} > 0. (3.21)

Proof. Since (A1)–(A4) hold, let VM be a neighborhood of M,Ξ0 a neighborhood of ξ0, and c > 1, T > 0, s0 ∈ T given by
Theorem 3.4. We claim first that there exists V 1

B a neighborhood of B such that

δ := inf{|y| | z = (x, y) ∈ V 1
B \ VM} > 0. (3.22)

If (3.22) does not hold then we can find a sequence (zn)n ⊂ Z \ VM (∗) satisfying |yn| → 0 and d(zn, B) → 0. But then from
(A5) we have that (zn)n is bounded, thus it has a convergent subsequence znk → z. Hence z ∈ X . On the other hand, there
exists a sequence (bn)n ⊂ B such that d(zn, bn) → 0. Then, since

d(z, bnk) ≤ d(z, znk)+ d(znk , bnk),

we have that d(z, bnk) → 0 as k → ∞. This implies that z ∈ B (because B is closed), hence z ∈ M . But, on the other hand,
z ∉ VM (see (∗)), and so we have a contradiction toM = B ∩ X . Thus the claim holds.

Now, for the δ given by (3.22), there exist V 2
B ⊆ V 1

B a neighborhood of B and Ξ0 ⊆ Ξ0 a neighborhood of ξ0 for which
(3.21) holds (that is, (3.21) holds with V andΞ replaced by V 2

B andΞ0, respectively).
Let ẑ ∈ Z \ X, ŝ ∈ T and ξ̂ ∈ Ξ0. From (3.4) and Theorem 3.4 we can assume that ẑ ∈ V 2

B \ VM . If φ(t + ŝ, ŝ, ẑ, ξ̂ ) never
enters VM (for any t ≥ 0) then obviously

lim inf
t→∞

|φ(2)(t + ŝ, ŝ, ẑ, ξ̂ )| > δ.

Otherwise there exist t̂ ≥ 0 and ε̃ ∈ (0, δ), ε̃ independent of ẑ and ξ̂ , such thatφ(t̂+ŝ, ŝ, ẑ, ξ̂ ) ∈ VM and |φ(t+ŝ, ŝ, ẑ, ξ̂ )(2)| ≥

ε̃ for all t ∈ [0, t̂]. This is obvious in the continuous case, while in the discrete case it follows from (3.21). Thus, it suffices to
prove (3.20) only for z ∈ Vε̃ = {z = (x, y) ∈ V 2

B ∩ VM | |y| ≥ ε̃}. So let z̃ ∈ Vε̃, s̃ ∈ T and ξ̃ ∈ Ξ0. Without loss of generality,
we can assume that s̃ ≥ s0. Let t0 ∈ T and assume that φ(t + s̃, s̃, z̃, ξ̃ ) ∈ VM for all t ∈ [0, t0]. Then let s̃ = ν0, ν1, ν2, . . . , νn
be as in Theorem 3.4. Thus, we have

|P(νi, s̃, z̃, ξ̃ )ỹ| ≥ c i|ỹ| ≥ c iε̃ ≥ ε̃, ∀i ∈ {1, . . . , n}. (3.23)

Fix a t ∈ [0, t0]. Then νi−1 ≤ t + s̃ ≤ νi, for some i ∈ {1, . . . , n} (see (20) in Theorem 3.4). Using (2.4) we have

|P(νi, s̃, z̃, ξ̃ )ỹ| ≤ ∥P(νi, t + s̃, φ(t + s̃, s̃, z̃, ξ̃ ), ξ̃ )∥|P(t + s̃, s̃, z̃, ξ̃ )ỹ|. (3.24)

Using the assumptions (A3), (3.1)–(3.3) and that 0 ≤ νi − νi−1 ≤ T , similar to the way we obtained (3.12), we can find that
there is a C > 0, independent of z̃, s̃ and ξ̃ (and depending only onVM ,Ξ0 and T ) such that ∥P(νi, t+s̃, φ(t+s̃, s̃, z̃, ξ̃ ), ξ̃ )∥ ≤

C . Then, from (3.23) and (3.24) we have that

|P(t + s̃, s̃, z̃, ξ̃ )ỹ| ≥ C−1ε̃. (3.25)

Hence, since φ(2)(t + s̃, s̃, z̃, ξ̃ ) = P(t + s̃, s̃, z̃, ξ̃ )ỹ, we have that (3.20) holds, where we can define ε = min{ε̃, C−1ε̃}. �
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Remark 3.6. We need to mention that, in the continuous case, one does not need (A2) in order to prove (3.25). In fact, if VB
and Ξ are such that (A1), (A3) and (A4) hold, and VM ⊂ VB is any bounded set containing M , it can be shown in this case
(i.e., t ∈ R) that for every t0 ≥ 0 there exists a positive constant C > 0 (depending only on VM ,Ξ and t0) such that

φ(t + s, s, z, ξ) ∈ VM , ∀t ∈ [0, t0] ⇒ |P(t + s, s, z, ξ)η| ≥ C, ∀η ∈ U .

Thus we make the following assumption, only needed in the discrete case.

(D) For every z ∈ M, η ∈ U and t0 ∈ Z+, there exists C > 0 such that |P(t0 + s, s, z, ξ0)η| ≥ C , for all s ∈ Z+.

We give next a result that can be useful in applications where there is a finite number of orbits in X , that attract all the other
orbits in X (we have such an application in Section 4.2). Let O(s, z) := {φ(t, s, z) | t ≥ s} denote the (positive) orbit through
(s, z).

Proposition 3.7. Assume that (A1), (A3), (A4) and (D) hold and that there are finitely many orbits O1, . . . ,Or in X, where
each Oi = O(0, ai), for some ai ∈ M, with the following properties:

(i) ∀z ∈ M, ε > 0, ∃ s0, t0 ∈ T such that, ∀s ≥ s0, ∃i ∈ {1, . . . , r} and |φ(t + s, s, z)− φ(t + s, 0, ai)| < ε,∀t ≥ t0;
(ii) ∀Oi, ∃ ci > 1, Ti > 0, si ∈ T such that ∀ẑ ∈ Oi, η ∈ U, ∃ T (ẑ, η) ∈ (0, Ti] satisfying |P(T (ẑ, η) + ŝ, ŝ, ẑ)η| > ci, where

O(ŝ, ẑ) ⊆ Oi, ŝ ≥ si.

Then (A2) holds.

Proof. Let z̃ ∈ M, c̃ > 1. From (A1) we have that

∃s0 ∈ T such that |φ(t + s, 0, ai)| ∈ M, ∀s ≥ s0, t ≥ 0, i ∈ {1, . . . , r}. (3.26)

Let smax = max{s0, s1, . . . , sr}, c = min{c1, . . . , cr}, T = max{T1, . . . , Tr}. Let a ∈ (1, c). LetVB as in (A4).
We claim that for each i ∈ {1, . . . , r} there is an εi > 0 such that, for every pair (ŝ, ẑ) such that O(ŝ, ẑ) ⊆ Oi, ŝ ≥ smax,

and for every η ∈ U and z ∈ Bεi(ẑ) ∩ X

φ(t + ŝ, ŝ, z) ∈ VB, ∀t ∈ [0, T ] ⇒ |P(T (ẑ, η)+ ŝ, ŝ, z)η| > a, (3.27)

where T (ẑ, η) and ŝ are as in (ii). Otherwise, there would be sequences ẑk ∈ Oi, zk ∈ X, ηk ∈ U , with |zk − ẑk| → 0, such
that |P(T (ẑk, ηk) + ŝk, ŝk, zk)ηk| ≤ a, where O(ŝk, ẑk) ⊆ Oi, ŝk ≥ smax, and φ(t + ŝk, ŝk, zk) ∈ VB for all t ∈ [0, T ]. On the
other hand, from (ii) we have |P(T (ẑk, ηk)+ ŝk, ŝk, ẑk)ηk| > c. Hence

|P(T (ẑk, ηk)+ ŝk, ŝk, ẑk)ηk − P(T (ẑk, ηk)+ ŝk, ŝk, zk)ηk| ≥ c − a > 0, ∀k. (3.28)

But now one can show, the same way as in the proof of Lemma 3.3, that (3.28) cannot hold. Hence the claim holds. Thus let
0 < ε < min{ε1, . . . , εr} such that Bε(z) ∩ X ⊆ VB for all z ∈ Oi ∩ M and all i ∈ {1, . . . , r}. Then, from (i), there exists
t0 > 0, s̃0 ≥ smax such that φ(t + s, s, z̃) ∈ VB for all t ≥ t0 and all s ≥ s̃0. Let η̃ ∈ U, s ≥ s̃0 and assume that φ(t + s, s, z̃) is
attracted to some Oi (i.e., (i) holds) and i is fixed with this property.

For the rest of the proofwewill use the same idea as in the proof of Theorem3.4. Thus, let z1 = φ(t0+s, s, z̃), ẑ1 = φ(t0+
s, 0, ai), ŝ1 = t0 + s and η1 = P(t0 + s, s, z̃)η̃/|P(t0 + s, s, z̃)η̃|. Then, since |z1 − ẑ1| < ε and φ(t + ŝ1, ŝ1, z1) ∈ VB,∀t ≥ 0,
from (3.27) we have that there exists T (ẑ1, η1) ∈ (0, T ] such that |P(T (ẑ1, η1)+ ŝ1, ŝ1, z1)η1| > a. This implies, using (2.4),
that

|P(T (ẑ1, η1)+ ŝ1, s, z̃)η̃| > a|P(t0 + s, s, z̃)η̃|. (3.29)

Now let t1 = T (ẑ1, η1)+ t0, z2 = φ(t1 + s, s, z̃), ẑ2 = φ(t1 + s, 0, ai), ŝ2 = t1 + s and η2 = P(t1 + s, s, z̃)η̃/|P(t1 + s, s, z̃)η̃|.
By repeating the previous step we obtain

|P(T (ẑ2, η2)+ ŝ2, s, z̃)η̃| > a2|P(t0 + s, s, z̃)η̃|, (3.30)

for some T (ẑ2, η2) ∈ (0, T ]. Clearly, by continuing this algorithm, we obtain that

|P(T (ẑn, ηn)+ ŝn, s, z̃)η̃| > an|P(t0 + s, s, z̃)η̃|, ∀n ≥ 1, (3.31)

where ŝn = T (ẑn−1, ηn−1) + · · · + T (ẑ1, η1) + t0 + s and each T (ẑ i, ηi) ∈ (0, T ], for i = 1, . . . , n. But |P(t0 + s, s, z̃)η̃|
is bounded below by a positive constant independent of s (see Remark 3.6). Thus, there exists an ñ, independent of s, such
that añ|P(t0 + s, s, z̃)η̃| > c. Define T (s) = T (ẑ ñ, ηñ)+ · · · + T (ẑ1, η1)+ t0. Hence T (s) ∈ (0, ñT + t0]. Note that t0 is also
independent of s, as it depends only on the attracting orbit Oi. Since there are only finitely many such orbits, we conclude
that (A2) holds. �
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3.1. Periodic systems

In this section we consider the case when F(t, z) is periodic in t (i.e., there exists τ ∈ T \ {0} such that F(t, z) =

F(t + τ , z),∀t ∈ T, z ∈ Z) and provide sufficient conditions for assumption (A2) to hold. Note that assumption (3.1) holds
in this case (as A is assumed to be a continuous matrix function). Let P denote the collection of all periodic orbits inM .

Proposition 3.8. Assume that P is not empty and every orbit in M is attracted to a member of P . If for each periodic orbit
O(ŝ, ẑ) in P and each η ∈ U, P(τ + ŝ, ŝ, ẑ) has a left eigenvector v corresponding to an eigenvalue r with |r| > 1, and
vη = v1η1 + · · · + vqηq ≠ 0, then (A2) holds.

Proof. Note that, from the definition of P(t, s, z), it follows that

P(t + s, s, z)η = P(t + s + τ , s + τ , z)η, ∀s, t ∈ T, z ∈ Z, η ∈ U . (3.32)

Thus, it suffices to show that

∀z ∈ M, ∀η ∈ U, ∃Tz,η > 0, ∃c(z, η) > 1, such that
∀s ∈ [0, τ ], ∃ 0 < T (s) ≤ Tz,η and |P(T (s)+ s, s, z)η| > c(z, η). (3.33)

We claim that it is even enough to have only the following:

∀z ∈ M, ∀η ∈ U,∀s ∈ [0, τ ], ∃ T > 0 such that
|P(T + s, s, z)η| > 1. (3.34)

In the discrete case, this is based on the fact that there are only finitely many s’s in [0, τ ]. We now prove (3.33) for the
continuous case, based on (3.34). Thus, let z ∈ M, η ∈ U be fixed. Then, for all ŝ ∈ [0, τ ], there exist T (ŝ) > 0 such that
|P(T (ŝ) + ŝ, ŝ, z)η| > 1. s → |P(T (ŝ) + s, s, z)η| being continuous, there exist c(ŝ) > 1 and Iŝ a neighborhood of ŝ, such
that |P(T (ŝ) + s, s, z)η| > c(ŝ), for all s ∈ Iŝ. Since [0, τ ] is compact and contained in ∪s∈[0,τ ] Is, there exists a finite set
{s1, . . . , sk} ⊂ [0, τ ] such that [0, τ ] ⊆ I := ∪

k
i=1 Isi . Let c(z, η) = min{c(s1), . . . , c(sk)}. Hence, for all s ∈ [0, τ ] there is a

T (s) ∈ {T (s1), . . . , T (sk)} such that |P(T (s)+ s, s, z)η| > c(z, η). By defining Tz,η to be max{T (s1), . . . , T (sk)} we have that
(3.33) holds.

Now we prove (3.34). Let z ∈ M and η ∈ U . Let s ∈ [0, τ ] and let O = O(ŝ, ẑ) be the periodic orbit in P that attracts
φ(t + s, s, z). Then

P(kτ + ŝ, ŝ, ẑ) = P(τ + (k − 1)τ + ŝ, τ + ŝ, φ(τ + ŝ, ŝ, ẑ))P(τ + ŝ, ŝ, ẑ)
= P((k − 1)τ + ŝ, ŝ, ẑ)P(τ + ŝ, ŝ, ẑ).

From this it follows, by an induction argument, that

P(kτ + ŝ, ŝ, ẑ) = [P(τ + ŝ, ŝ, ẑ)]k. (3.35)

Let v be an eigenvector of P(τ + ŝ, ŝ, ẑ) (without loss of generality we assume it is a unit vector) such that vη ≠ 0, and let r
be an eigenvalue corresponding to v, |r| > 1. Then, using (3.35) we obtain

|P(kτ + ŝ, ŝ, ẑ)η| ≥ |vP(kτ + ŝ, ŝ, ẑ)η| = |r|k|vη|. (3.36)

Then there exists k ∈ Z+ such that |r|k|vη| > 1. Consequently we obtain

|P(kτ + ŝ, ŝ, ẑ)η| > 1. (3.37)

Using (3.37) and that P is continuous in (s, z, η), in the continuous case (respectively continuous in (z, η) in the discrete
case), and [0, τ ]× O ×U is compact, it follows that there exist a neighborhood V of O, c > 1 and k1, . . . , kl ∈ Z+ such that

∀s ∈ [0, τ ], z ∈ V , η ∈ U, ∃ i ∈ {1, . . . , l}, |P(kiτ + s, s, z)η| ≥ c. (3.38)

Let t(s, z) be such that φ(t + s, s, z) ∈ V , for all t ≥ t(s, z). Let s̃ = (t(s, z) + s) mod τ , z̃ = φ(s̃, s, z) and
η̃ = P(s̃, s, z)η/|P(s̃, s, z)η|. From Lemma 2.1 part (c) and assumption (D), η̃ is well defined and belongs to U . Note that
(3.38) is similar to (3.15). Thus, since φ(t + s̃, s̃, z̃) ∈ V , for all t ≥ 0, as in the proof of Theorem 3.4, we can obtain that for
every i ∈ Z+ there exists νi > 0 such that |P(νi, s̃, z̃)η̃| ≥ c i. This implies that

|P(νi, s, z)η| ≥ c i|P(s̃, s, z)η|. (3.39)

We can choose i so large that the right hand side in (3.39) is greater than one. Hence (3.34) holds and with this the proof is
complete. �
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4. Applications

4.1. An epidemic model of amphibians in periodic environment

We now apply our results from the previous section to the following discrete time amphibian (adult) population model
with periodic coefficients (of period two), which belongs to Emmert and Allen [16].AS(n + 1) = [bS(n)ϕ(N(n))+ pS(n)e−βw·I(n)

]AS(n)
AI(n + 1) = pS(n)(1 − e−βw·I(n))AS(n)+ [bI(n)ϕ(N(n))+ pI(n)]AI(n)
F(n + 1) = bFAI(n)+ pF F(n)

(4.1)

AS and AI stand for susceptible and infective adults, respectively, while F represents the fungus (which is the source of the
disease in the model). pK (n), K = S, I , are probabilities that a susceptible (K = S), or an infective (K = I), adult survives
over the time period from n to n + 1, while bK (n) = 0 for n odd and bK (n) = bK for n even. N(n) = cSAS(n) + cIAI(n) and
w · I(n) = wAAI(n)+ wF F(n). Function ϕ could be, for example, of Beverton–Holt type:

ϕ(x) = 1/(1 + αx), α > 0, (4.2)

or of Ricker type:

ϕ(x) = e−αx, α > 0. (4.3)

All parameters are assumed to be positive (see [16] for a detailed explanation of the model). In addition, we denote the
vector of parameters that appear in the model by ξ (ξ belongs to Rl, for some l ∈ Z+). Let ξ0 be a fixed vector of parameters.

Consider the equation

x(n + 1) = [bi(n)ϕ(cix(n))+ pi(n)]x(n), (4.4)

where i could be either S or I . For i = S, (4.4) gives the disease-free dynamics for (4.1). It is shown in [16] that (4.4) has a
period-two orbit {A0

i , A
1
i } given by

A0
i =

1
ci
ϕ−1


ΛS

bS


, A1

i =
1

cip1i
ϕ−1


Λi

bi


, (4.5)

where p0i := pi(0), p1i := pi(1) and

Λi =
1 − p0i p

1
i

p1i
. (4.6)

That is, any solution x(n) of (4.4) with x(0) = A0
i satisfies x(2n) = A0

i and x(2n + 1) = A1
i , for all n ≥ 0. In fact, sufficient

conditions are provided for A0
i to be a globally asymptotically stable fixed point of

fi(x) := [biϕ(cix)+ p0i ]x (4.7)

(in the sense that it is asymptotically stable and attracts all points in R+ \{0}), hence {A0
i , A

1
i } is a globally attracting periodic

orbit. Thus, for simplicity, we will occasionally make use of the following assumption:

(Hi) {A0
i , A

1
i } (i = S, I) is a period-two globally attracting orbit of (4.4).

Note that the period-two orbit (4.5) may exist only if p1i (bi + p0i ) > 1. Note also that (4.1) supports a ‘‘susceptible-free’’ (or
‘‘disease-only’’) environment, whose dynamics are given by

AI(n + 1) = [bI(n)ϕ(cIAI(n))+ pI(n)]AI(n)
F(n + 1) = bFAI(n)+ pF F(n).

(4.8)

The equation for AI in (4.8) is independent of F and is given by (4.4), with i = I .

Lemma 4.1. If (HI) holds then {(A0
I , F

0), (A1
I , F

1)} is a period-two globally attracting orbit of (4.8), where

F 0
=

bF (pFA0
I + A1

I )

1 − p2F
; F 1

=
bF (pFA1

I + A0
I )

1 − p2F
. (4.9)

Proof. Let (AI(n), F(n)), n ≥ s, where s is even and (AI(s), F(s)) = (A0
I , F

0). Then it is a simple calculation to show that
(AI(s + 2), F(s + 2)) = (A0

I , F
0), hence (AI(s + 2k), F(s + 2k)) = (A0

I , F
0),∀k ≥ 0. Since F(s + 1) = F 1, it also follows that

(AI(s + 2k + 1), F(s + 2k + 1)) = (A1
I , F

1),∀k ≥ 0.
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Now we show that {(A0
I , F

0), (A1
I , F

1)} is globally attracting. For this, it suffices to show that (AI(2n), F(2n)) → (A0
I , F

0)
as n → ∞, where again, (AI(n), F(n)), n ≥ s, (AI(s), F(s)) = (x0, y0), is an arbitrary non-zero solution of (4.8). We have
that

F(2n + 2) = bFAI(2n + 1)+ pFbFAI(2n)+ p2FF(2n). (4.10)

From (HI), AI(2n) → A0
I and AI(2n + 1) → A1

I . Let c = bFA1
I + pFbFA0

I and consider the equation

y(n + 1) = c + p2Fy(n), n ≥ s, (4.11)

which has the solution y(n) = c/(1 − p2F )+ p2nF y(s). Thus y(n) → c/(1 − p2F ) = F 0. From this it follows that F(2n) → F 0,
which completes the proof. �

Our goal is to see when the disease can persist in the population. For this, we first prove that (4.1) is dissipative.

Proposition 4.2. There exists a compact set B that attracts each trajectory of (4.1).

Proof. For both choices of φ (Ricker or Beverton–Holt), there exists an R ≥ 0 such that R ≥ supx≥0 xφ(x). Let a =

(RbS/cS, RbI/cI , 0), pS = max{p0S , p
1
S}, pI = max{p0I , p

1
I } and

A =

pS 0 0
pS pI 0
0 bF pF


.

Denote by z(n), n ≥ s a solution of (4.1). Then

z(n + 1) ≤ Az(n)+ a, ∀ n ≥ s. (4.12)

Iterating (4.12) we obtain

z(n) ≤ An−sz(s)+ (I − A)−1(I − An−s)a, ∀n ≥ s + 1. (4.13)

But An−s
→ 0 as n → ∞, so z(n) is attracted to the set

B =: [0, b] = {z ∈ R3
+

| 0 ≤ z ≤ b}, where b = (I − A)−1a. � (4.14)

It can be seen from (4.14) that B depends continuously on the parameters. This guarantees (3.4).
Next we provide sufficient conditions for persistence of the disease in the model. Let E0

S = (A0
S , 0, 0), E

1
S =

(A1
S , 0, 0), E

0
I = (0, A0

I , F
0), E1

I = (0, A1
I , F

1) and define the following matrices:

J IS(n, z) =

bS(n)φ(cIz2)+ pS(n)e−β(wAz2+wF z3)


(4.15)

and

JSIF (n, z) =


βwApS(n)z1 + bI(n)ϕ(cSz1)+ pI(n) βwFpS(n)z1

bF pF


(4.16)

where z = (z1, z2, z3). Let RS and RI denote the spectral radii of matrices J IS(1, E
1
I )J

I
S(0, E

0
I ) and JSIF (1, E

1
S )J

S
IF (0, E

0
S ),

respectively. Solutions corresponding to ξ0 are simply denoted by (AS(n), AI(n), F(n)), while solutions corresponding to
any other parameter ξ are denoted by (AξS (n), A

ξ

I (n), F
ξ (n)).

Proposition 4.3. The following statements hold true:

(a) In any of the following two cases:
(i) p1I (bI + p0I ) < 1 and p1S(bS + p0S) > 1, or
(ii) p1S(bS + p0S) > 1, (HI) and RS > 1,
there exists ε > 0 and a bounded neighborhoodΞ0 of ξ0 such that

lim inf
n→∞

AξS (n) > ε, (4.17)

for all solutions (AξS (n), A
ξ

I (n), F
ξ (n)) of (4.1), n ≥ s, with ξ ∈ Ξ0 and AξS (s) > 0.

(b) If, in addition to the hypotheses in (a) (i) or (a) (ii), (HS) holds and RI > 1, then there exists ε > 0 and a bounded
neighborhoodΞ0 of ξ0 such that

lim inf
n→∞

min{AS(n)ξ , AI(n)ξ , F(n)ξ } > ε, (4.18)

for all solutions (AξS (n), A
ξ

I (n), F
ξ (n)) of (4.1), n ≥ s, with ξ ∈ Ξ0, A

ξ

S (s) > 0 and AξI (s)+ F ξ (s) > 0.
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Proof. (a) Let X = {z = (z1, z2, z3) ∈ R3
+

| z1 = 0} and B given by (4.14). LetM = B ∩ X .
Since the system (4.1) is periodic, using (3.32) it is straightforward to check assumption (D). Next we verify the

assumptions (A1) and (A3)–(A5). (A1) and (A5) hold from Proposition 4.2.
Since the dynamics on X are given by (4.8), using that φ(x) ≤ 1 for all x ≥ 0 and that pI(n) ≤ 1 for all n, we have

AI(n + 1) ≤ (bI + 1)AI(n). This implies that, whenever AI(s) ∈ M, AI(n + s) ≤ K1 := (bI + 1)n−1 max{|z| | z ∈ M}. Then
F(n + 1) ≤ bFK1 + pF F(n), which implies that F(n + s) ≤ K2, for some K2 independent of s. Hence (A3) holds.

Also, as previously mentioned, (3.4) follows from the proof of Proposition 4.2 (namely from (4.14)). The map that gives
the right hand side in (4.1) is C1 in z and ξ , and so is every entry in the matrix

Ã(n, z) =

bS(n)ϕ(cSAS + cIAI)+ pS(n)e−βw·I 0 0
pS(n)(1 − e−βw·I) bIϕ(cSAS + cIAI)+ pI(n) 0

0 bF pF

 ,
where note that (4.1) can be written as z(n + 1) = Ã(z(n))z(n). Thus, because we can choose VB (as in (A4)) bounded,
assumptions (3.2) and (3.3) are satisfied. So assumption (A2) is the only one that remains to be checked, and then (4.17) and
(4.18) follow from Theorem 3.5.

First, we consider the case (i). The dynamics on the set X satisfy

AI(2n + 2) = p1I (bIϕ(cIAI(2n))+ p0I )AI(2n) ≤ p1I (bI + p0I )AI(2n). (4.19)

Since p1I (bI + p0I ) < 1, AI(2n) → 0 as n → ∞. This implies AI(n) → 0, from which it follows that F(n) → 0. For any z in X ,
let P(n + s, s, z) be the solution of u(n + 1) = J IS(n, z(n))u(n), P(s, s, z) = (1), where z(n) is the solution of (4.1), z(s) = z.
Hence, for any s ≥ 0, P(2+ s, s, 0) is the 1×1matrix J IS(1, 0)J

I
S(0, 0) = (p1S(bS +p0S)). Thus, the spectral radius of this matrix

is greater than one (by hypothesis). Hence, from Proposition 3.8, we have that (A2) holds.
Nowwe consider the case (ii). From Lemma 4.1we have that all orbits in X are attracted either to {0} or {E0

I , E
1
I }.We know

from case (i) that the spectral radius of P(2+ s, s, 0) is greater than one. Now P(2, 0, E0
I ) = P(3, 1, E1

I ) = J IS(1, E
1
I )J

I
S(0, E

0
I ),

which has spectral radius RS > 1, from hypothesis. So again, from Proposition 3.8 we have that (A2) holds.
Then (4.17) follows from Theorem 3.5.

(b) Let X = {z = (z1, z2, z3) ∈ R3
+

| z2 = z3 = 0} and B given by (4.14).
First we show that there exist ε > 0 andΞ0 a neighborhood of ξ0 such that

lim inf
n→∞

AI(n)ξ + F(n)ξ > ε, (4.20)

for all solutions (AS(n)ξ , AI(n)ξ , F(n)ξ ) of (4.1), n ≥ s and ξ ∈ Ξ0, with AI(s)ξ + F(s)ξ > 0. From part (a), there exists an
ε̃ > 0 such that the set B̃ := {z ∈ B | z1 ≥ ε̃} absorbs all solutions of (4.1) with AS(s) > 0, corresponding to all ξ close
to ξ0. A simple calculation shows that b in (4.14) has all components positive, so we can choose ε̃ sufficiently small, so that
B̃ ≠ ∅. Let M = B̃ ∩ X . Assumptions (A1), (A3)–(A5), and (D) can be verified as above. Then, because (HS) holds, all orbits
originating in M are attracted to {E0

S , E
1
S }. P(2, 0, E

0
S ) = JSIF (1, E

1
S )J

S
IF (0, E

0
S ) and P(3, 1, E1

S ) = JSIF (0, E
0
S )J

S
IF (1, E

1
S ), hence both

have spectral radius RI > 1 which corresponds to eigenvectors with both components positive (Perron–Frobenius). Thus,
Proposition 3.8 says that (A2) holds, and then (4.20) comes from Theorem 3.5.

Then, using the equations for AI and F in (4.1), one readily obtains that

lim inf
n→∞

min{AI(n)ξ , F(n)ξ } > ε, (4.21)

for all solutions (AS(n)ξ , AI(n)ξ , F(n)ξ ) of (4.1), n ≥ s and ξ ∈ Ξ0, with AI(s)ξ + F(s)ξ > 0.
Now (4.18) follows from (4.21) and (4.17). �

4.2. A nonautonomous SIRS model with n infection strains

Here we consider a generalized version of the model of Teng et al. [17], with n infection strains Ij, j = 1, . . . , n and the
corresponding transmission rates αj, disease-induced mortality rates βj and recovery (from the infection) rates γj (all time
dependent). The other (time dependent) coefficients that appear in the model are population growth rate, G, instantaneous
per capita natural death rate, µ, and instantaneous per capita rate of leaving the removed stage, ω. In order to address
robust uniform persistence questions in regard to this model, we further let the time dependent coefficients mentioned
above, depend also on a parameter ξ ∈ Rl. Thus, the model is

S ′
= G(t, ξ)− µ(t, ξ)S −

n
j=1

αj(t, ξ)SIj + ω(t, ξ)R

I ′j = (αj(t, ξ)SIj − µ(t, ξ)Ij − γj(t, ξ)Ij − βj(t, ξ))Ij, j = 1, . . . , n

R′
=

n
j=1

γj(t, ξ)Ij − µ(t, ξ)R − ω(t, ξ)R.

(4.22)
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In order to avoid confusion with our previous notation, the notation in (4.22) has been slightly changed, compared
to [17].

As before, we fix a parameter ξ0. The total population N = S +
n

j=1 Ij + R satisfies the differential inequality

N ′(t, ξ) ≤ G(t, ξ)− µ(t, ξ)N(t, ξ). (4.23)

For every fixed ξ,G(t, ξ) is assumed to be bounded. G is also assumed to be locally Lipschitz continuous, namely

|G(t, ξ)− G(t, ξ0)| ≤ KG|ξ − ξ0|, (4.24)

for all t ≥ 0 and all ξ in some neighborhood of ξ0, where KG is a nonnegative constant. Analogous assumptions are made for
all the other coefficients in the model.

Based on (4.23), certain additional restrictions can be put on the function µ to guarantee that (A1) holds with B being
compact set (hence (A5) also holds). Such an assumption, that is analogous to the one made in [17], is

∃ a > 0 such that lim inf
s→∞

 a+s

s
µ(r, ξ0)dr > 0. (4.25)

Thus, let δ(ξ0) = lim infs→∞

 a+s
s µ(r, ξ0)dr > 0. From (4.25) it follows that there exists an s0 ≥ 0 such that na+s

s µ(r, ξ0)dr ≥ nδ(ξ0), for all n ∈ Z+ and all s ≥ s0. Hence t+s

s
µ(r, ξ0)dr → ∞ as t → ∞, uniformly in s. (4.26)

Also, for any s and t, s ≤ t , we have t

s
µ(r, ξ0)dr ≥

 s+[ t−s
a ]a

s
µ(r, ξ0)dr ≥


t − s
a


δ(ξ0) ≥


t − s
a

− 1

δ(ξ0), (4.27)

where [·] above represents the least integer function. But from (4.23) we obtain that

N(t, ξ0) ≤ N(s)e−
 t
s µ(r,ξ0)dr +

 t

s
G(α, ξ0)e−

 t
α µ(r,ξ0)drdα. (4.28)

Let K 0
G be a constant such that G(t, ξ0) ≤ K 0

G for all t ≥ 0. Then using (4.26)–(4.28) it follows, by straightforward calculation,
that

lim sup
t→∞

N(t, ξ0) ≤ aK 0
G
eδ(ξ0)

δ(ξ0)
. (4.29)

Thus, we can take

B =


x ∈ Rn+2

+
| |x| ≤ aK 0

G
eδ(ξ0)

δ(ξ0)


.

In order to investigate the persistence of the disease in the population, we define X = {z ∈ Rn+2
| Ij = 0, j = 1, . . . , n},

where z = (S, I1, . . . , In, R) is the population vector. LetM = B ∩ X (henceM is compact). Since the disease-free dynamics
satisfy (4.23) with N(t) = S(t) + R(t) and ‘‘≤’’ replaced by ‘‘=’’, assumption (A3) can be readily verified. Then, as in the
previous application,VB in (A4) can be taken to be bounded, and then using that all coefficients in (4.22) are locally Lipschitz
continuous and that F and A corresponding to (4.22) are C1 in z, we also obtain that (3.1)–(3.3) hold.

Finally, we give below a brief argument to show that the last part of assumption (A4), namely (3.4), is satisfied. Since
µ satisfies an inequality analogous to (4.24), namely |µ(t, ξ) − µ(t, ξ0)| ≤ Kµ|ξ − ξ0|, for all t ≥ 0 and all ξ in some
neighborhood of ξ0, it follows that

δ(ξ0)− aKµ|ξ − ξ0| ≤ δ(ξ) = lim inf
s→∞

 a+s

s
µ(r, ξ)dr ≤ δ(ξ0)+ aKµ|ξ − ξ0|,

which shows that δ is continuous at ξ0. Now, from (4.24) we have that G(t, ξ) ≤ K 0
G + KG|ξ − ξ0|. Then N(t, ξ) satisfies an

inequality analogous to (4.29), with δ(ξ0) replaced by δ(ξ) and K 0
G replaced by K 0

G + KG|ξ − ξ0|. This shows that (3.4) holds.
Let S̃(t), S̃(0) = S̃0, be a fixed solution of

S ′(t) = G(t, ξ0)− µ(t, ξ0)S(t) (4.30)

such that (S̃0, 0, . . . , 0, R0) ∈ M , for some R0 (where M = B ∩ X).
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Proposition 4.4. Assume that there exists T > 0 such that, for all j = 1, . . . , n,

lim inf
s→∞

 s+T

s
αj(t, ξ0)S̃(t)− µ(t, ξ0)− γj(t, ξ0)− βj(t, ξ0)dt > 0. (4.31)

Then there exists an ε > 0 andΞ0 a neighborhood of ξ0, such that

lim inf
t→∞

Iξ1 (t)+ · · · + Iξn (t) > ε, ∀ξ ∈ Ξ0, (4.32)

where (S(t)ξ , Iξ1 (t), . . . , I
ξ
n (t), Rξ (t)), t ≥ s, is any solution of (4.22) with Iξ1 (s)+ · · · + Iξ1 (s) > 0.

Proof. Let Jj1,...,jk = {j1, . . . , jk} ⊂ {1, . . . , n}, Jj1,...,jk ≠ {1, . . . , n}, and define

ZJj1,...,jk = {x = (S, I1, . . . , In, R) ∈ Rn+2
+

| Ij1 = · · · = Ijk = 0}. (4.33)

Note that ZJj1,...,jk is positively invariant for (4.22) and we take it to be our state space. Let BJj1,...,jk
⊂ ZJj1,...,jk be the

corresponding absorbing set (as in (A1)). Let Jcj1,...,jk be the complement of Jj1,...,jk and XJj1,...,jk
= {x = (S, I1, . . . , In, R) ∈

ZJj1,...,jk | Ij = 0,∀j ∈ Jcj1,...,jk}, which is also a (non-empty) positively invariant set. Note that BJj1,...,jk
∩ XJj1,...,jk

= M .
As previously discussed, assumptions (A1) and (A3)–(A5) hold. So we only need to show that assumption (A2) holds, and

for this we apply Proposition 3.7. Thus, let z0 = (S0, 0, . . . , 0, R0) ∈ M and P(t, s, z0) be the fundamental matrix for

u′(t) = diag(αj(t, ξ0)S(t)− δj(t, ξ0))u(t), (4.34)

where δj(t, ξ0) = µ(t, ξ0)+ γj(t, ξ0)+βj(t, ξ0) and (S(t), 0, . . . , 0, R(t)) is the solution of (4.22), corresponding to ξ = ξ0,
with (S(s), I1(s), . . . , In(s), R(s)) = z0. Hence

P(t, s, z0) = diag

exp

 t

s
αj(r, ξ0)S(r)− δj(r, ξ0)dr


. (4.35)

If ψ(t) = ψ(t, s, S0) denotes the solution of (4.30) with ψ(s) = S0, then S(t) ≥ ψ(t), for all t ≥ s. Hence P(t, s, z0) ≥

P∗(t, s, z0) := diag(exp(
 t
s αj(r, ξ0)ψ(r) − δj(r, ξ0)dr)). Let M∗

= {z1 | z = (z1, . . . , zn+2) ∈ M}. Hence M∗ is compact.
Then it suffices to verify the hypotheses of Proposition 3.7 forM∗, ψ and P∗, in order to conclude that (A2) holds.

Let S̃(t), S̃(0) = S̃0, be a fixed solution of (4.30) such that S̃0 ∈ M∗. Then

|ψ(t + s, s, S0)− S̃(t + s)| = e−
 s+t
s µ(r,ξ0)dr |S0 − S̃(s)|. (4.36)

Thus, from (4.36), we have that (i) in Proposition 3.7 is satisfied. Also, (ii) in Proposition 3.7 follows from the hypothesis.
Hence (A2) holds. Then, from Theorem 3.5 we have that there exist ε > 0 andΞ0 a neighborhood of ξ0 inΞ , both depending
on Jj1,...,jk , such that

lim inf
t→∞


i∈Jcj1,...,jk

Iξi (t) > ε, ∀ξ ∈ Ξ0, (4.37)

where


i∈Jcj1,...,jk
Iξi (s) > 0. Since there are finitely many sets Jj1,...,jk , we conclude that (4.32) holds. �

Restricted to a single infection strain, condition (4.31) is the same as the condition in Theorem 1 in [17], that the authors
impose to obtain uniform persistence of the disease. However, we do not impose a similar restriction on αj’s, as the one in
(H2) in [17].
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Appendix

Proof of Lemma 2.1. (a) Let ξ ∈ Rl. We have that A(n, z, ξ) =
∂F
∂y (n, z, ξ),∀z ∈ X, n ∈ Z+, where ∂F

∂y (n, z, ξ) =

(
∂Fp+i
∂yj
(n, z, ξ))1≤i,j≤q. But, since X is positively invariant, Fp+i(n, z, ξ) = 0,∀z ∈ X, 1 ≤ i ≤ q. So,

∂Fp+i

∂yj
(n, z, ξ) = lim

h→0+

Fp+i(n, x1, . . . , xp, 0, . . . , yj = h, . . . , 0, ξ)− Fp+i(n, z, ξ)
h

= lim
h→0+

Fp+i(n, x1, . . . , xp, 0, . . . , yj = h, . . . , 0, ξ)
h

≥ 0.
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(b) Let ξ ∈ Rl. Suppose there exist t̄ ∈ R, z̄ ∈ X such that aij(t̄, z̄, ξ) < 0 for some i ≠ j. Then, by continuity, there exists
a neighborhood V (z̄) of z̄ such that aij(t̄, z, ξ) < 0,∀z ∈ V (z̄). Let z = (x1, . . . , xp, 0, . . . , 0, yj, 0, . . . , 0) ∈ V (z̄), yj > 0,
and consider the solution z(t) of (1.4) that starts at z at t = t̄ . Then y′

i(t̄) = aij(t̄, z, ξ)yj < 0. So there exists t̂ > t̄ such that
yi(t̂) < yi(t̄) = 0, which contradicts Rp+q

+ being positively invariant. Hence, aij(t, z, ξ) ≥ 0, t ∈ R, z ∈ X , whenever i ≠ j.
(c) The discrete case follows directly from the fact that X is positively invariant and from (a). For the continuous case, we can
use Proposition B.7. in [18] to conclude that any solution u(t) of (2.3) (where z ∈ X), with u(s) ≥ 0, satisfies u(t) ≥ 0,∀t ≥ s.
Hence P(t + s, s, z, ξ) ≥ 0,∀z ∈ X,∀t, s ≥ 0,∀ξ ∈ Rl. �
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