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a b s t r a c t

We investigate the roots of Wills polynomials of convex bodies. We study the structure,
showing that the set of roots in the upper half plane is a convex cone, monotonous with
respect to the dimension. In particular, we give its precise description for dimensions
n = 2, 3. We also show that for n ≤ 7 this cone is completely contained in the (open) left
half plane, which is not true in dimensions≥ 14.Moreover, we study the size of the roots of
the Wills polynomial, bounding them in terms of functionals like the in- and circumradius
of the set. We also relate the roots of the Steiner and the Wills polynomials.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let Kn be the set of all convex bodies, i.e., compact convex sets, in the n-dimensional Euclidean space Rn, and let Bn and
Cn be the n-dimensional unit ball and cube of edge-length 1, respectively. The volume of a setM ( Rn, i.e., its n-dimensional
Lebesgue measure, is denoted by vol(M), and with cl M , convM we represent its closure and convex hull, respectively. For
K ∈ Kn and a non-negative real number λ, the volume of the Minkowski sum K + λ Bn, is expressed as a polynomial of
degree n in λ,

vol(K + λBn) =

n
i=0

n
i


Wi(K)λi. (1.1)

This expression is known as the Steiner formula of K . The coefficients Wi(K) are the quermassintegrals of K , and they are a
special case of the more general defined mixed volumes for which we refer to [21, s. 5.1]. In particular W0(K) = vol(K),
Wn(K) = vol(Bn) = κn, nW1(K) = S(K) is the surface area of K and (2/κn)Wn−1(K) = b(K) is the mean width of K
[21, p. 42]. The volume of the n-dimensional unit ball Bn takes the value

κn =
πn/2

Γ
 n
2 + 1

 , (1.2)

where Γ denotes the gamma function.
In [18], McMullen considered the normalized quermassintegrals

Vi(K) =

n
i

 Wn−i(K)

κn−i
, (1.3)
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and proposed to call these measures the intrinsic volumes of K , since, if K is k-dimensional, then Vk(K) is the usual
k-dimensional volume of K . The intrinsic volumes depend only on the convex body K but not on the dimension of the
embedding space (see e.g. [2, s. 6.4]). Thus the Steiner formula (1.1) can be represented via (1.3) as

vol(K + λBn) =

n
i=0

κiVn−i(K)λi.

In [25] Wills introduced and studied the functional

W (λK) =

n
i=0

Vi(K)λi

because of its possible relation with the so-called lattice-point enumerator G(K) = #(K ∩ Zn). Many nice properties of this
functional, as well as relations with other measures, have been studied in the last years; see, for instance, [3,4,19,25–27].
More recently, the Wills functional has been also considered from a more general point of view or in a probabilistic context
(see [13] and [22,23], respectively).

In the following we will write, for K ∈ Kn,

gK (z) =

n
i=0

Vi(K)z i =

n
i=0

n
i

 Wn−i(K)

κn−i
z i (1.4)

to denote theWills polynomial of K , regarded as a formal polynomial in a complex variable z ∈ C. Similarly, wewill represent
the classical Steiner polynomial (cf. (1.1)) in a variable z ∈ C by fK ;Bn(z) =

n
i=0

 n
i


Wi(K)z i.

Notice that gK (z) (and hence its roots) does not depend on the dimension of the space Rn where K is embedded, because
the intrinsic volumes of K have this property. Thus, from now on and unless we explicitly say the opposite, we will always
assume that for K ∈ Kn, its dimension dim K = n.

In [6–12,16], geometric properties of the roots of (relative and classical) Steiner polynomials have been studied: their
location, size, relation with other geometric magnitudes (in- and circumradius) and characterization of (families of) convex
bodies.

Here we are interested in studying properties of the roots of the Wills polynomial gK (z), as, for instance, its location
or relation with other functionals. To this end, we fix the notation which will be used along the paper. Denoting by Re z,
Im z and arg z, the real part, imaginary part and the principal argument of a complex number z, respectively, let C+

=

{z ∈ C : Im z ≥ 0} be the set of complex numbers with non-negative imaginary part, and let

RW (n) = {z ∈ C+
: gK (z) = 0 for K ∈ Kn

} ∪ {0} (1.5)

be the set of all roots of gK (z), K ∈ Kn, in the upper half plane, plus the origin; notice that gK (0) ≠ 0 for any convex body
K , since the constant term of gK (z) is always 1 for all K ∈ Kn.

Theorem 1.1. RW (n) is a convex cone, containing the non-positive real axis R≤0 and monotonous in the dimension, i.e.,
RW (n) ⊂ RW (n + 1).

Now, for a fixed convex body E ∈ Kn, let

θE = min

arg z : z ∈ C+, gE(z) = 0


and then we denote by

RW (E) =

z ∈ C+

: arg z ≥ θE


∪ {0}

the convex cone, in the upper half plane, generated as the positive hull of the roots of the polynomial gE(z) and R≤0. Using
this notation, we can precisely describe the cones RW (2) and RW (3), which are given by the roots of the Wills polynomial
of the 2 and 3-dimensional unit balls, respectively. More precisely, we have the following result.

Theorem 1.2. RW (2) = RW (B2) and RW (3) = RW (B3).

Weobserve that, in particular,RW (2) andRW (3) are closed convex cones, butwedonot knowwhether this holds in general.
Regarding the stability of theWills polynomial, i.e., the fact that all its roots lie in the left half plane,we study the inclusion

RW (n) ⊂

z ∈ C+

: Re z < 0


∪ {0}, (1.6)

property that we call ‘‘weak’’ stability.

Proposition 1.1. Wills polynomials are weakly stable if n ≤ 7. For n ≥ 14 we have

z ∈ C+

: Re z ≤ 0} ( RW (n).
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We also show that not all roots of gK (z) can be pure imaginary complex numbers (see Proposition 2.1); Wills polynomials
share this property with Steiner polynomials.

The above results will be proved in Section 2, as well as some additional properties and consequences.
Observe that several of the above properties present restrictions in the dimension, in contrast with the known results for

the roots of the general relative Steiner polynomial [9]. It is due to the fact that in higher dimensions we do not have enough
information about the so called ‘‘full system’’ of inequalities among the quermassintegrals (cf. e.g., [2, Problem 6.1]).

Here we show an asymptotic relation between the roots of the Steiner and the Wills polynomials. It will be shown in
Section 3.

Theorem 1.3. For s ∈ N fixed, let K ∈ K s and let µ1, . . . , µs be the roots of gK (z). Embedding K ( Rn, n ≥ s, let γ1,n, . . . , γs,n
be the non-zero roots of fK ;Bn(z). Then, reordering if necessary, it holds

lim
n→∞

κn

κn−1
γi,n =

µi

|µi|
2 , i = 1, . . . , s.

In a sense, this theorem is saying that for high dimensions n, the Steiner polynomial fK ;Bn(z) of a convex body K with fixed
dimension dim K = s ‘‘behaves as’’ its Wills polynomial gK (z).

We also consider the problem to relate the roots of the Wills polynomial of a convex body K with other functionals,
namely, the in- and circumradius of K and the so called successive minima of K with respect to the integer lattice. Section 4
is devoted to this topic; there we will state the precise definitions and results.

Finally, in Section 5 we study a very particular Wills polynomial, the one of the unit ball, which has interesting and nice
properties.

2. The cone of the roots of the Wills functional

We start this section stating some preliminary lemmas which will be needed for the proof of Theorem 1.1.
In [15, Theorem 5.2] the following result is proved.

Theorem 2.1 ([15, Theorem 5.2]). Let ξ(t) be an unordered n-tuple of complex numbers, depending continuously on a real
variable t in a (closed or open) interval I. Then there exist n continuous functions µi(t), i = 1, . . . , n, the values of which
constitute the n-tuple ξ(t) for each t ∈ I .

As a consequence of it, we get the following lemma.

Lemma 2.1. Let K(t) ∈ Kn, t ∈ [a, b], be a one-parameter family of convex bodies with dim K(t) = n for all t ∈ (a, b],
dim K(a) = n−1 and so that K(t) varies continuously on t ∈ [a, b], and let gK(t)(z) be the corresponding one-parameter family
of Wills polynomials, t ∈ [a, b]. Then we have the following.

1. There exist n − 1 continuous functions µ1, . . . , µn−1 : [a, b] −→ C joining the n − 1 roots of gK(a)(z) and n − 1 roots of
gK(b)(z), such that µ1(t), . . . , µn−1(t) are n − 1 of the n roots of gK(t)(z) for all t ∈ [a, b].

2. Moreover, there exists another continuous function µn : (a, b] −→ C such that µn(t) is the remaining root of gK(t)(z) for all
t ∈ (a, b], verifying that limt→a+ µn(t) = ∞.

Proof. We take the polynomials g̃K(t)(z) =
n

i=0 Vn−i

K(t)


z i, t ∈ [a, b], whose (non-zero) roots are the inverses of the

roots of gK(t)(z) and have leading coefficients 1 for all t ∈ [a, b]. Then the result is a direct consequence of Theorem 2.1 and
the fact that the roots of a polynomial are continuous functions of the coefficients of the polynomial (see e.g. [17, p. 3]). �

Remark 2.1. It is also well-known (see e.g. [27, Proposition 3]) that if P is an orthogonal box with edge lengths a1, . . . , an >
0, then the roots of gP(z) areµi = −1/ai, i = 1, . . . , n. In particular, theWills polynomial of the n-dimensional cube of edge
length a, gaCn(z), has an n-fold root µ = −1/a.

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. The inclusion RW (n) ⊂ RW (n+1) is a direct consequence of the fact that intrinsic volumes remain
unchanged if a convex body K is embedded in any Euclidean space of bigger dimension.

By the homogeneity of the intrinsic volumes (see e.g. [2, p. 105]) we have that for any K ∈ Kn and all λ > 0,
gλK (z) = gK (λz). Hence, if µ ∈ RW (n), µ ≠ 0, there exists K ∈ Kn such that gK (µ) = 0 and so, for each λ > 0,

0 = gK (µ) = g(1/λ)K (λµ).

It implies that λµ ∈ RW (n). This, together with the fact that for the cube gCn(z) = (z + 1)n (see Remark 2.1), shows that
RW (n) is a cone containing the non-positive real axis.

In order to prove the convexity of RW (n), we will proceed in two steps.
Step 1. First we show that if we consider the convex cone RW (Bn), determined by the roots of Bn and the non-positive

real axis, then all its points are roots of some Wills polynomial, i.e., RW (Bn) ⊂ RW (n). We proceed by induction on n.
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If n = 1, the result is obviously true, so, we suppose n > 1 and that the cone RW (Bn−1) ⊂ RW (n − 1). Notice that we
can assume the strict inclusion RW (Bn−1) ( RW (Bn), otherwise we directly have the required result.

For each t ∈ [0, 1], we consider the convex body K(t) = tBn−1 + (1 − t)Bn and its Wills polynomial gK(t)(z) =
n

i=0
Vi

K(t)


z i, and let µn be a root of gBn(z) such that argµn = θBn . Thus, we have a one-parameter family of polynomials

satisfying the conditions of Lemma 2.1, and hence there exists a continuous map µ : [0, 1] −→ C with µ(0) = µn and
µ(1) = µn−1 a root of gBn−1(z), such that µ(t) is a root of gK(t)(z) for all t ∈ [0, 1]. We notice that without loss of generality
we may assume that µn is not the root which ‘‘gets lost’’ because, otherwise, we can work with its conjugate µn.

Therefore f : [0, 1] −→ (0, 2π) given by f (t) = argµ(t) is a continuous function with f (1) = argµn−1 ≥ θBn−1 and
f (0) = θBn , and so, using the intermediate value theorem, together with the fact that RW (n) (and RW (Bn)) is a cone and the
induction hypothesis, we can conclude that RW (Bn) ⊂ RW (n).

Step 2. Finally we show that RW (n) is convex, for which it suffices to prove that, fixed µ0 ∈ RW (n), µ0 ≠ 0, the cone

RW (n) ∩

z ∈ C+

: arg z ≥ argµ0


(2.1)

is convex. To this end, let K ∈ Kn, dim K = s, be such that gK (µ0) = 0, and let K(t) = tBs + (1 − t)K , t ∈ [0, 1]. Since
dim K(t) = s for all t ∈ [0, 1], gK(t) is always a polynomial of degree s, and thus (cf. Lemma 2.1) there exists a continuous
map µ : [0, 1] −→ C with µ(0) = µ0 and µ(1) = µ1 a root of gBs(z), such that µ(t) is a root of gK(t)(z) for all t ∈ [0, 1].
Using an analogous argument as before and since µ1 ∈ RW (Bs) ⊂ RW (s) ⊂ RW (n) by Step 1, we obtain that the cone
given in (2.1) is convex. �

Before giving the precise characterization of the conesRW (2) andRW (3), we study the stability of theWills polynomial,
since it will be needed in the proof of Theorem 1.2. The main ingredients in order to do it are the well-known inequalities

Wi(K)2 ≥ Wi−1(K)Wi+1(K), 1 ≤ i ≤ n − 1, (2.2)

and

Wi(K)Wj(K) ≥ Wk(K)Wl(K), 0 ≤ k < i < j < l ≤ n, (2.3)

particular cases of the Aleksandrov–Fenchel inequality (see e.g. [21, s. 6.3]).

Proof of Proposition 1.1. We use the following stability criterion (see [20, Theorem 3] and [14, Theorem 1]): a real
polynomial f (z) =

n
i=0 ai z

i, with ai > 0 for i = 0, . . . , n, is stable if ai−1ai+2 ≤ β aiai+1, i = 1, . . . , n − 2, where
β ≈ 0.4655 is the only real solution of z(z + 1)2 = 1. It is easy to check that (2.3) ensures that this criterion is fulfilled for
n = 7. The weak stability property for all n ≤ 6 follows from the monotonicity of the cone of the roots (see Theorem 1.1).

Finally, it can be checked with a computer or by applying the Routh–Hurwitz criterion (see e.g. [17, p. 181]) that the
polynomial

gB14(z) = κ14

14
i=0


14
i


1

κ14−i
z i

has a root with positive real part (µ ≈ 0.04562+1.81036i). The non-stability property for all n ≥ 14 is deduced again from
the monotonicity of the cones (see Theorem 1.1). �

So only in dimensions 8 ≤ n ≤ 13 we do not know whether Wills polynomials may have roots with positive real parts.
Obviously, by the convexity of the cone RW (n), the existence of a root with positive real part implies the existence of a pure
imaginary complex root. However, not all roots can be of that type. More precisely:

Proposition 2.1. There exists no convex body K ∈ Kn such that all roots of gK (z) are imaginary pure complex numbers (exclud-
ing the real root existing in odd dimension).

The proof of this result is similar to the one of the corresponding result for the Steiner polynomial in [8, Proposition 2.1].
We sketch it here for completeness.

Proof. By Proposition 1.1 all roots of gK (z) are contained in the (open) left half plane if n ≤ 7, and so we may assume that
n = dim K ≥ 8.

Let K ∈ Kn be a convex body, n even, such that all roots of gK (z) are {±bj i, j = 1, . . . , n/2}, with all bj > 0. Then we get

gK (z) =

n
i=0

Vi(K)z i = vol(K)

n/2
j=1

(z2 + b2j ),

which implies V2i+1(K) = 0 for all i = 0, . . . , (n − 2)/2. In particular, V1(K) = 0, i.e., dim K = 0, a contradiction.
For n odd, let K ∈ Kn be a convex body such that the roots of gK (z) are {−a, ±bj i, j = 1, . . . , (n − 1)/2}, with all

a, bj > 0. Then

gK (z) =

n
i=0

Vi(K)z i = vol(K)(z + a)
(n−1)/2

j=1

(z2 + b2j )
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and, in particular, we have

vol(K) a
(n−1)/2

j=1

b2j = 1, vol(K)

(n−1)/2
j=1

b2j = V1(K), vol(K) a = Vn−1(K).

Thus we get the relation Vn−1(K)V1(K) = vol(K), which implies, by (1.3) and inequality (2.3), that κn−1/κn ≥ n2/2. It
contradicts the well-known inequality

2π
n + 1

<
κn

κn−1
<


2π
n

(2.4)

(see e.g. [24, Theorem 5.3.2 and p. 216]) since n > 1. �

Next we come to the proof of Theorem 1.2 in which we characterize the cones RW (2) and RW (3).

Proof of Theorem 1.2. We start determining the 2-dimensional cone RW (2).
Let −a + bi ∈ C+ be a root of a Wills polynomial gK (z) for some planar convex body K ∈ K2. By Proposition 1.1 and

Theorem 1.1 we may assume that both a, b > 0. Thus gK (z) = vol(K)(z2 + 2az + a2 + b2), and we have the identities
2vol(K)a = V1(K), vol(K)(a2 + b2) = 1, from which we get

vol(K) =
1

a2 + b2
, V1(K) =

2a
a2 + b2

.

Then, the isoperimetric inequality (cf. (2.2), i = 1) in terms of the intrinsic volumes, namely, V1(K)2 ≥ πvol(K), yields

b ≤


4 − π

π
a. (2.5)

If we have equality in (2.5) then equality in the isoperimetric inequality holds, which implies that K is the Euclidean ball.
Conversely, if K = B2 then gB2(z) = πz2 + πz + 1, whose (complex) roots give equality in (2.5). Therefore, equality holds
in (2.5) if and only if K = B2.

This together with the fact that RW (2) is a cone (Theorem 1.1) shows that RW (2) = RW (B2) =

x + yi ∈ C+

:
√

(4 − π)/π x + y ≤ 0

.

Now we consider the 3-dimensional case.
Since gB3(z) = (4π/3)z3 + 2πz2 + 4z + 1, it can be checked that

m0 =
tan θB3

 =

√
3(t− + t+)

t− − t+ + 2
√

π
≈ 0.9624,

where t± =
√

6π2 − 39π + 64 ±
√

π(π − 3)
1/3

.
Let −a + bi ∈ C+ be a root of a Wills polynomial gK (z) for some K ∈ K3. By Proposition 1.1 and Theorem 1.1 we may

assume that both a, b > 0 and taking m = b/a, m > 0, we have to show that m ≤ m0. Let −c be the real root of gK (z),
c > 0. Then we have the identities

(2a + c) =
V2(K)

vol(K)
, (a2 + b2 + 2ac) =

V1(K)

vol(K)
, c(a2 + b2) =

1
vol(K)

, (2.6)

and using (1.3), inequalities (2.2) for i = 1, 2 yield, in terms of a, c,m,

(i)
4
3
c2 +


16
3

− 2π

ac +


16
3

− π(1 + m2)


a2 ≥ 0,

(ii)

4π − 8(1 + m2)


c2 +


4a(1 + m2)(π − 4)


c + πa2(1 + m2)2 ≥ 0,

(2.7)

respectively.
We assumem > m0. On the one hand it can be seen that, since c > 0, inequality (2.7) (i) is equivalent to

c ≥c =

a


3π(4m2 + 3π − 12) + 3π − 8


4
.

On the other hand, a direct computation shows that the above condition on m also implies that inequality (2.7) (ii) holds if
and only if

0 < c ≤ c̄ =

a(m2
+ 1)


2(πm2 − 3π + 8) + π − 4


2(2m2 − π + 2)

.
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Hence,c ≤ c ≤ c̄ , which is a contradiction because it can be checked that conditionm > m0 gives c̄ <c. Thereforem ≤ m0,
and using the convexity of the cone RW (3) we get the result. Moreover, since equality in (2.2), i = 2, holds only for the ball,
an analogous argument to the one of the case n = 2 shows that equalitym = m0 holds if and only if K = B3. �

Remark 2.2. From the above proof, it is also obtained that the ball Bn is the only convex body such that one of the roots of
gBn(z) lies on (determines) the boundary bd RW (n) \ R≤0, n = 2, 3.

3. Relating the roots of the Wills and Steiner polynomials

Let R(n) =

z ∈ C+

: fK ;Bn(z) = 0 for some K ∈ Kn

denote the set of all roots of the Steiner polynomial fK ;Bn(z) in the

upper half plane. In [8, Theorem 1.2] and [9, Proposition 1.2] it is proved that

R(2) = R≤0,

R(3) =


x + yi ∈ C+

: x +
√
3 y < 0


∪ {0},

R(4) =

x + yi ∈ C+

: x + y < 0


∪ {0}.

A first direct observation from Theorem 1.2 is that clR(n) ( RW (n) for n = 2, 3. Moreover, it is easy to check that in
dimension 4, the coneRW (B4) =


x + yi ∈ C+

: αx + y < 0

,α = 1.42224 . . . , and hencewe also have the strict inclusion

clR(4) ( RW (B4) ⊂ RW (4). We cannot expect, however, that clR(n) ( RW (Bn) for any dimension; indeed, it can be
checked with a computer or by applying the Routh–Hurwitz criterion that gB12(z) is weakly stable, whereas the (weak)
stability of the Steiner polynomial fails for n = 12 (see [6, Remark 3.2]).

For complex numbers z1, . . . , zr ∈ C let

si (z1, . . . , zr) =


J⊂{1,...,r}

#J=i


j∈J

zj

denote the i-th elementary symmetric function of z1, . . . , zr , 1 ≤ i ≤ r . In addition we set s0 (z1, . . . , zr) = 1. Moreover,
let γi, i = 1, . . . , n, be the roots of the Steiner polynomial fK ;Bn(z) =

n
i=0 κiVn−i(K)z i of K ∈ Kn. From the identityn

i=0 κiVn−i(K)z i = κn
n

i=1(z − γi) we get

(−1)i
κn−i

κn
Vi(K) = si (γ1, . . . , γn) . (3.1)

Similarly, taking the Wills polynomial gK (z) with roots µi, i = 1, . . . , n, from the relation
n

i=0 Vi(K)z i = vol(K)
n

i=1(z −

µi) we get

(−1)i
Vn−i(K)

vol(K)
= si (µ1, . . . , µn) . (3.2)

Then from (3.1) and (3.2)we easily obtain the following relations between the roots of theWills and the Steiner polynomials:

si

γ −1
1 , . . . , γ −1

n


= κi si (µ1, . . . , µn) and

si

µ−1

1 , . . . , µ−1
n


=

κn

κn−i
si (γ1, . . . , γn) .

However, just checking some easy examples, it can be seen that it is not possible to get relations of the type γi = c(n)µi, for
an n-dependent constant c(n). Theorem 1.3 states a kind of asymptotic relation between them. For the proof of this theorem
we need the following lemma.

Lemma 3.1. Let k ≥ 0. Then

lim
n→∞

κn−k/κn

(κn−1/κn)
k = 1.

Proof. Stirling’s formula (see e.g. [24, Theorem 5.3.12] and [1, p. 24]) for the gamma function together with (1.2) yields the
asymptotic formula

lim
n→∞

κn 2πe
n

n/2 1
√
nπ

= 1.



M.A. Hernández Cifre, J. Yepes Nicolás / J. Math. Anal. Appl. 401 (2013) 733–742 739

Therefore we get

lim
n→∞

κn−k/κn

(κn−1/κn)
k = lim

n→∞

 2πe
n−k

 n−k
2 1

√
(n−k)π 2πe

n

n/2 1
√
nπ

  2πe
n

n/2 1
√
nπ 2πe

n−1

 n−1
2 1

√
(n−1)π

k

= lim
n→∞

(n − 1)k/2
√
n

nk/2
√
n − k

(n − 1)(n−1)k/2 nn/2

(n − k)(n−k)/2 nnk/2
= 1. �

Proof of Theorem 1.3. We observe that for any i = 1, . . . , s, µi is a root of gK (z) if and only if µi/ |µi|
2

= 1/µi is a root of
g̃K (z) =

s
i=0 Vn−i(K)z i. Thus it suffices to show that (reordering if necessary)

lim
n→∞

κn

κn−1
γi,n = µ̃i, i = 1, . . . , s, (3.3)

where µ̃i, i = 1, . . . , s, are the roots of g̃K (z).
Since dim K = s, the Steiner polynomial takes the form

fK ;Bn(z) =

n
i=n−s

κiVn−i(K)z i = zn−s
s

j=0

κn−s+jVs−j(K)z j,

and then, for any i = 1, . . . , s, γi,n is a (non-zero) root of fK ;Bn(z) if and only if the complex number γ̃i,n = (κn/κn−1)γi,n
satisfies the relation

s
j=0

κn−s+j

κn


κn−1

κn

j

Vs−j(K) γ̃
j
i,n = 0,

or equivalently, dividing by (κn−1/κn)
s, if and only if γ̃i,n is a root of the polynomial

s
k=0

κn−k/κn

(κn−1/κn)k
Vk(K)zs−k

= zs + V1(K)z +

s
k=2

βk,nVk(K)zs−k,

where for short we write βk,n = (κn−k/κn)/(κn−1/κn)
k, k = 2, . . . , s. By Lemma 3.1, the s − 2 sequences (βk,n)n tend to 1

when n goes to infinity, which shows that the pointwise limit

lim
n→∞


zs + V1(K)z +

s
k=2

βk,nVk(K)zs−k


= g̃K (z).

This, together with the fact that the roots of a polynomial are continuous functions of the coefficients, proves (3.3) and
concludes the proof. �

From Theorem 1.3 we immediately get the following corollary, which shows the asymptotic behavior of the (modulus
and the argument of the) roots of the Steiner polynomial with respect to the ones of gK (z).

Corollary 3.1. Let K ∈ K s and let µ1, . . . , µs be the roots of gK (z). Embedding K ( Rn, n ≥ s, let γ1,n, . . . , γs,n be the non-zero
roots of fK ;Bn(z). Then the following properties hold.

(i) limn→∞ |γi,n| = ∞, i = 1, . . . , s.
(ii) Reordering if necessary, limn→∞ arg γi,n = argµi, i = 1, . . . , s.

Proof. Using (2.4),

lim
n→∞

|γi,n| = lim
n→∞

κn−1

κn

1
|µi|

≥ lim
n→∞


n
2π

1
|µi|

= ∞.

Property (ii) is straightforward. �

4. The roots of the Wills polynomial and other functionals

For K ∈ Kn, we denote by

r(K) = max{r : ∃ x ∈ Rn with x + r Bn ⊂ K},

R(K) = min{R : ∃ x ∈ Rn with K ⊂ x + R Bn},
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the usual in- and circumradius of K . Since, up to translations, r(K)Bn ⊂ K and K ⊂ R(K)Bn the following inequalities are a
direct consequence of the monotonicity of the mixed volumes (cf. e.g. [21, p. 277]):

r(K)Wi+1(K) ≤ Wi(K) ≤ R(K)Wi+1(K), (4.1)

for i ∈ {0, . . . , n − 1}.
We start this section bounding the roots of the Wills functional in terms of the in- and circumradius.

Proposition 4.1. Let K ∈ Kn. Then the roots µi, i = 1, . . . , n, of the Wills polynomial gK (z) are bounded by

1
V1(K)

≤ |µi| ≤
Vn−1(K)

vol(K)
. (4.2)

Both inequalities are sharp. In particular, we have

1
2n

1
R(K)

≤ |µi| ≤
n
2

1
r(K)

.

Proof. It is known (see e.g. [17, p. 137]) that the roots of a polynomial
n

j=0 ajz
j with real coefficients aj > 0 lie in the ring

min{aj/aj+1} ≤ |z| ≤ max{aj/aj+1}, for j = 0, 1, . . . , n − 1. Hence in order to bound the roots of gK (z) we have to find the
minimumandmaximumofVj(K)/Vj+1(K), j = 0, . . . , n−1.Writing this quotient via (1.3) in terms of the quermassintegrals,
we get

Vj(K)

Vj+1(K)
=

j + 1
n − j

κn−j−1

κn−j

Wn−j(K)

Wn−j−1(K)
.

Aleksandrov–Fenchel inequalities (2.2) ensure that Wn−j(K)/Wn−j−1(K) is increasing in j, and clearly j+ 1 is so. So we have
to study the monotonicity of κn−j−1/


(n − j)κn−j


in j.

In order to do it, we consider the sequence ym = κm−1/(mκm). By (1.2) and properties of the gamma function (see e.g. [24,
Section 5.3]), it is an easy computation to check that κm/κm−2 = 2π/m. Then

1
m + 1

κm

κm−2
=

1
m + 1

2π
m

=
1
m

κm+1

κm−1
,

and using Aleksandrov–Fenchel inequalities (2.2) for κm = Wm(Cn), we get

ym+1 =
1

m + 1
κm

κm+1
=

1
m

κm−2

κm−1
≤

1
m

κm−1

κm
= ym.

Therefore, ym is a decreasing sequence inm, i.e., κn−j−1/

(n − j)κn−j


is an increasing sequence in j. Thus, altogether we get

1
V1(K)

=
1
n

κn−1

Wn−1(K)
≤

Vj(K)

Vj+1(K)
≤

n
2
W1(K)

W0(K)
=

Vn−1(K)

vol(K)

for j = 0, . . . , n − 1, which shows (4.2).
We notice that for n = 1, any line segment gives equality in both inequalities. Moreover, for any dimension, let Q (ℓ) be

the n-dimensional orthogonal box with edge-lengths 1, ℓ, . . . , ℓ, ℓ ≥ 1, for which Vi

Q (ℓ)


= si (1, ℓ, . . . , ℓ) and µ1 = 1

is one of the roots of gQ (ℓ)(z) (see Remark 2.1). Then

lim
ℓ→∞

Vn−1

Q (ℓ)


vol

Q (ℓ)

 = lim
ℓ→∞

ℓn−1
+ (n − 1)ℓn−2

ℓn−1
= 1 = |µ1|,

which shows that the upper bound is sharp. Analogously, taking Q̄ (ℓ) the n-dimensional orthogonal box with edge-lengths
1, ℓ, . . . , ℓ, ℓ ≤ 1, then

lim
ℓ→0

1

V1

Q̄ (ℓ)

 = lim
ℓ→0

1
(n − 1)ℓ + 1

= 1 = |µ1|,

which shows that the lower bound is sharp.
The bounds in terms of the in- and circumradius follow immediately from (4.1) (via (1.3)), taking into account that

κn−1/κn ≥ 1/2 for all n ≥ 1. �

For the next proposition, we need to deal with a special kind of sets. Tangential bodies can be defined in several
equivalentways; herewewill use the following one: a convex body K ∈ Kn is called a tangential body, if it holds the equality
W0(K) = r(K)W1(K) (cf. (4.1), i = 0). The n-dimensional cube is an example of this type of bodies. For an exhaustive study
of the more general defined p-tangential bodies we refer to [21, Section 2.2] and [21, Theorem 6.6.16].
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Proposition 4.2. Let K ∈ Kn and let µi, i = 1, . . . , n, be the roots of the Wills polynomial gK (z). If Reµi = −a, a > 0, for all
i = 1, . . . , n, then

1
2R(K)

≤ a ≤
1

2r(K)
.

Equality holds in the right inequality if and only if K is a tangential body.

Proof. Using (3.2) for i = 1 and (1.3), we have

−na =

n
i=1

Reµi =

n
i=1

µi = −
Vn−1(K)

vol(K)
= −

n
2
W1(K)

W0(K)
,

and thus, by (4.1),

1
2R(K)

≤ a ≤
1

2r(K)
.

Finally, equality a = 1/

2r(K)


holds if and only if we have equality in W0(K) ≥ r(K)W1(K), i.e., when K is a tangential

body. �

Proposition 4.2 contrasts with the case of the Steiner polynomial, where only the one of the ball can have all its roots
with equal real part (in fact, it has an n-fold real root).

Remark 4.1. From the above argument we also notice that
n

2R(K)
≤
Reµ1 + · · · + Reµn

 ≤ |Reµ1| + · · · + |Reµn|.

In [27] Wills studied relations between the roots of the Wills polynomial of a 0-symmetric convex body, i.e., such that
K = −K , and its successive minima, which we introduce next. Here we slightly improve some of those relations.

We denote by Zn the integer lattice, i.e., the lattice of all points with integral coordinates in Rn. For K ∈ Kn 0-symmetric,
the i-th successive minimum λi(K) of K , i = 1, . . . , n, is defined as

λi(K) = min

λ ∈ R : λ > 0, dim(λK ∩ Zn) ≥ i


.

Clearly 0 < λ1(K) ≤ · · · ≤ λn(K), and they are homogeneous of degree −1, i.e., λi(αK) = (1/α)λi(K). As a general
reference for lattices and successive minima we refer to [2]. Here we show the following result.

Proposition 4.3. Let K ∈ Kn be 0-symmetric and let µi, i = 1, . . . , n, be the roots of the Wills polynomial, ordered such that
|µ1| ≤ · · · ≤ |µn|. Then we have the following.

(i) λi+1(K) . . . λn(K) < 2n−i
 n

i


|µi+1| . . . |µn|, i = 1, . . . , n − 1.

(ii) λn(K) + (n − 1)r(K)n−1/ R(K)n ≤ −2(µ1 + · · · + µn).

Equality holds in (ii) if and only if K = Bn.

It improves items (d) and (b) in [27, Theorem 1], respectively.

Proof. In [5] the following sharp inequality was proved for a 0-symmetric convex body K ∈ Kn:

λi+1(K) . . . λn(K)vol(K) < 2n−iVi(K),

i = 1, . . . , n − 1. This, together with (3.2), gives

λi+1(K) . . . λn(K) < 2n−i(−1)n−isn−i (µ1, . . . , µn) ≤ 2n−i
n
i


|µi+1 . . . µn|.

On the other hand, the known Wills conjecture, proved independently by Bokowski and Diskant, states that vol(K) −

r(K)S(K) + (n − 1)κnr(K)n ≤ 0 (see e.g. [21, p. 324] and the references inside). Taking into account that λn(K) ≤ 1/r(K),
because K ⊃ r(K)Bn, and also that vol(K) ≤ κnR(K)n (cf. (4.1)), then using (3.2) we get the required inequality:

−2
n

i=1

µi = 2
Vn−1(K)

vol(K)
=

S(K)

vol(K)
≥

1
r(K)

+ (n − 1)
κn

vol(K)
r(K)n−1

≥ λn(K) + (n − 1)
r(K)n−1

R(K)n
.

Since equality in Wills’ conjecture holds if and only if K is the Euclidean ball, we obtain the same characterization for the
equality case in (ii). �



742 M.A. Hernández Cifre, J. Yepes Nicolás / J. Math. Anal. Appl. 401 (2013) 733–742

5. A brief note on the Wills polynomial of the ball

The Wills polynomial of the ball verifies the nice property (see [26, (4.4)])

i! κi g
(n−i)
Bn (z) = n! κn gBi(z), (5.1)

where g(k)(z) denotes the k-th derivative of a polynomial g(z).
We have also proved that the Wills polynomial of the ball determines the cone of roots, i.e., RW (n) = RW (Bn), for

dimensions n = 2, 3. In this section we show some additional properties of this particular polynomial gBn(z) and the cone
RW (Bn).

Proposition 5.1. The Wills polynomial gBn(z) is weakly stable for n ≤ 13 and it is not for n ≥ 14. Moreover, RW (Bn−1) (
RW (Bn) if n ≤ 14.

Proof. Applying the stability criterion used in Proposition 1.1, it is easy to check that gBn(z) is weakly stable for n ≤ 13,
whereas the polynomial gB14(z) has a root with positive real part (µ ≈ 0.04562 + 1.81036i).

Let n ≥ 14 be any positive integer such that the polynomial gBn(z) is not weakly stable. If we assume that gBn+1(z) is
weakly stable, then we have conv


µ : gBn+1(µ) = 0


( {z ∈ C : Re z < 0}. The well-known Gauss–Lucas theorem states

that all roots of the derivative of a non-constant polynomial lie in the convex hull of the set of zeros of the polynomial (see
e.g. [17, Theorem 6.1]). This result together with the fact g ′

Bn(z) = (nκn/κn−1)gBn−1(z) (cf. (5.1)) shows that gBn(z) is weakly
stable, a contradiction. So, gBn+1(z) is also weakly stable.

On the other hand, let Ā denote the set of conjugates of complex numbers in A ⊂ C+. Because of the (weak) stability of
gBn(z), the cone RW (Bn) ∪ RW (Bn) is convex for n < 14, and then it contains the set conv


µ : gBn(µ) = 0


. Again, the

Gauss–Lucas theorem together with (5.1) proves thatRW (Bn−1) ⊂ RW (Bn), n < 14. Numerical computations give the strict
inclusion. Finally, the non-stability of gB14(z) concludes the proof. �
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