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An existence theorem is established for the BPS equations arising in the theory of branes.
For the doubly periodic domain case, we obtain an explicitly necessary and sufficient con-
dition for the existence of a unique solution.
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1. Introduction

Vortices are important objects in planar physics [1,8,5,7,9,3,6,10,17]. In this paper we aim to establish the existence of a
multiple vortex solution of the BPS equations derived in [15] arising from the theory of D-branes.

Following [8], the BPS equations derived in [15] can be reduced as

1U = 2eU + eV − 3 + 4π
M
s=1

δps(x), (1.1)

1V = eU + 2eV − 3 + 4π
N

s=1

δqs(x), (1.2)

where U, V are the unknown functions, and δp denotes the Dirac measure centered at p. We will consider the equations in
two cases. In the first case the equationswill be studied over a doubly periodic domainΩ , governingmultiple vortices hosted
in Ω such that the field configurations are subject to the ‘t Hooft boundary condition [16,18,19] under which periodicity is
achieved modulo gauge transformations. In the second case the equations will be studied over the full plane R2 and the
solutions satisfy the boundary condition

U, V → 0 as |x| → ∞. (1.3)

Our main result reads as follows.

Theorem 1.1. (i) Consider Eqs. (1.1)–(1.2) over a doubly periodic domain Ω . For any given points p1, . . . , pM ∈ Ω , a solution
exists if and only if

max{M,N} <
3|Ω|

4π
. (1.4)

Furthermore, if there exists a solution, it must be unique.
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(ii) Consider Eqs. (1.1)–(1.2) over the full plane R2 subjected to the boundary condition (1.3). For any given points p1, . . . , pM ∈

R2, there exists a unique solution such that the boundary condition (1.3) is realized exponentially fast.
(iii) In both cases, there holds the quantized integrals 

2eU + eV − 3

dx = −4πM, (1.5) 

eU + 2eV − 3

dx = −4πN. (1.6)

The rest of our paper is organized as follows. In Section 2 we prove the explicitly necessary and sufficient condition for
the existence result in the doubly periodic domain case. In Section 3 we prove the existence result for the planar case.

2. Proof of existence for doubly periodic case

We consider the problem (1.1)–(1.2) over a doubly periodic domain Ω .
Let u0 and v0 be the solution to (see [2])

1u0 = 4π
M
s=1

δps −
4πM
|Ω|

, (2.1)

1v0 = 4π
N

s=1

δqs −
4πN
|Ω|

. (2.2)

Set U = u + u0 and V = v + v0, and the equations are transformed into

1u = 2eu0+u
+ ev0+v

− 3 +
4πM
|Ω|

, (2.3)

1v = eu0+u
+ 2ev0+v

− 3 +
4πN
|Ω|

. (2.4)

If (u, v) is a solution to the above equations, then, integrating the equations over Ω , we obtain the necessary condition
for existence

M <
3|Ω|

4π
, N <

3|Ω|

4π
(2.5)

which is equivalent to (1.4).
Next we show that the above condition (1.4) is also sufficient.
Using the following transformation

f = u + v, g = u − v, (2.6)

or equivalently

u =
f + g
2

, v =
f − g
2

, (2.7)

we change Eqs. (2.3)–(2.4) into

1f = 3

eu0+

f+g
2 + ev0+

f−g
2 − 2


+

4π
|Ω|

(M + N), (2.8)

1g = eu0+
f+g
2 − ev0+

f−g
2 +

4π
|Ω|

(M − N), (2.9)

which are the Euler–Lagrange equations of the functional

I(f , g) =


Ω


1
6
|∇f |2 +

1
2
|∇g|2 + 2eu0+

f+g
2 + 2ev0+

f−g
2 + 2


2π
3|Ω|

(M + N) − 1

f +

4π
|Ω|

(M − N)g

dx. (2.10)

Integrating Eqs. (2.8)–(2.9) over Ω , we obtain the conditions
Ω

eu0+
f+g
2 dx = |Ω| −

4π
3

(2M − N) ≡ η1 > 0, (2.11)
Ω

ev0+
f−g
2 dx = |Ω| −

4π
3

(2N − M) ≡ η2 > 0, (2.12)

which is equivalent to (2.5). Then (1.5)–(1.6) follows from (2.11)–(2.12).
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Wewill deal with the doubly periodic domain case by two methods, namely, the first is the direct minimization method
developed in [11,19], and the second method is a constrained minimization method, which was recently used in [14,13,12]
to tackle the existence of non-Abelian vortices and dyons.

2.1. Direct minimization

Let W 1,2(Ω) be the usual Sobolev space of Ω-periodic L2 functions with their derivatives also in L2(Ω). For W 1,2(Ω) in
the scalar case, we have the decomposition

W 1,2(Ω) = R + Ẇ 1,2(Ω)

such that any w ∈ W 1,2(Ω) can be expressed as

w = w + ẇ, w ∈ R, ẇ ∈ Ẇ 1,2(Ω),


Ω

ẇdx = 0. (2.13)

For the function w ∈ Ẇ 1,2(Ω), there holds the Trudinger–Moser inequality [2,4]
Ω

ewdx ≤ C exp


1
16π


Ω

|∇w|
2dx


, (2.14)

which is important for our estimate.
As (f , g) ∈ W 1,2(Ω), using the above inequality (2.14) we see that the functional defined by (2.10) is a C1 functional

which is strictly convex and lower semi-continuous with respect to the weak topology ofW 1,2(Ω).
For (f , g) ∈ W 1,2(Ω), applying the decomposition formula (2.13) and (2.6)–(2.7), we have

I(f , g) −


Ω


1
6
|∇ ḟ |2 +

1
2
|∇ ġ|2


dx = 2


Ω

(eu0+u̇+u
+ ev0+v̇+v)dx − 2(η1u + η2v). (2.15)

It follows from Jensen’s inequality that
Ω

eu0+u̇+u
≥ |Ω| exp


1

|Ω|


Ω

(u0 + u̇ + u)dx


= |Ω| exp


1
|Ω|


Ω

u0dx

eu ≡ σ1eu. (2.16)

Analogously,
Ω

ev0+v̇+v
≥ |Ω| exp


1

|Ω|


Ω

v0dx

ev

≡ σ2ev. (2.17)

Combining (2.15)–(2.17), we have

I(f , g) −


Ω


1
6
|∇ ḟ |2 +

1
2
|∇ ġ|2


dx ≥ 2


(σ1eu − η1u) + (σ2ev

− η2v)


≥ 2


η1 ln
σ1

η1
+ η2 ln

σ2

η2


. (2.18)

From (2.18) we can see that the functional I(f , g) is bounded from below and the following minimization problem

η0 ≡ inf

I(f , g)|f , g ∈ W 1,2(Ω)


(2.19)

is well-defined.
Let (fk, gk) be a minimizing sequence of (2.19). It is easy to see that the function F(t) = σ et −ηt , where σ , η are positive

constants, satisfies the property that F(t) → +∞ as t → ±∞. Then, we infer from (2.18) that {uk} and {vk} are bounded,
as a result, {f

k
} and {g

k
} are bounded. Then, the sequences {f

k
} and {g

k
} admit convergent subsequences, still denoted by

{f
k
} and {g

k
} for convenience. That is to say, there exist two real numbers f

∞
, g

∞
∈ R such that f

k
→ f

∞
and g

k
→ g

∞
as

k → ∞.
In addition, using Poincaré inequality and (2.18), we conclude that the sequences {ḟk} and {ġk} are bounded inW 1,2(Ω).

Therefore, the sequences {ḟk} and {ġk} admit weakly convergent subsequences, still denoted by {ḟk} and {ġk} for convenience.
In other words, there exist two functions ḟ∞, ġ∞ ∈ W 1,2(Ω) such that ḟk → ḟ∞ and ġk → ġ∞ weakly inW 1,2(Ω) as k → ∞.
Of course, ḟ∞, ġ∞ ∈ Ẇ 1,2(Ω).

Set f∞ = f
∞

+ ḟ∞, g∞ = g
∞

+ ġ∞, which are all in W 1,2(Ω) naturally. Then, the above convergence implies fk →

f∞, gk → g∞ weakly in W 1,2(Ω) as k → ∞. Since the functional I(f , g) is weakly lower semi-continuous in W 1,2(Ω), we
conclude that (f∞, g∞) is a solution of the minimization problem (2.19) and is a critical point of I(f , g). As a critical point of
I(f , g), it satisfies Eqs. (2.8)–(2.9). Noting that I(f , g) is strictly convex, we know that it has at most one critical point, which
implies the uniqueness of the solutions to Eqs. (2.8)–(2.9).
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2.2. Constrained minimization

The constraints (2.11)–(2.12) can be written as

J1(f , g) ≡


Ω

eu0+udx = η1, J2(f , g) =


Ω

ev0+vdx = η2. (2.20)

We consider the constrained minimization problem

η0 ≡ inf

I(f , g)|(f , g) ∈ W 1,2(Ω) and satisfies (2.20)


. (2.21)

Assume that (f̃ , g̃) is a solution of (2.21). Then there exist two real numbers, say λ1, λ2, such that

D(I + λ1J1 + λ2J2)(f̃ , g̃)(f , g) = 0, ∀(f , g) ∈ W 1,2(Ω). (2.22)

Noting (f̃ , g̃) and taking (f , g) = (1, 0), (0, 1) in (2.22), we obtain

λ1η1 + λ2η2 = 0, λ1η1 − λ2η2 = 0. (2.23)

Therefore, λ1 = λ2 = 0. That is to say, the constraints do not lead to a Lagrange problem so that a solution of the constrained
minimization problem is a critical point of the functional I(f , g) itself.

From (2.20) we obtain

u = ln η1 − ln


Ω

eu0+udx


, v = ln η2 − ln


Ω

ev0+vdx


. (2.24)

Then, we have

I(f , g) −


Ω


1
6
|∇ ḟ | +

1
2
|∇ ġ|2


dx = 2


Ω

eu0+u̇dx + 2


Ω

ev0+v̇dx − 2η1u − 2η2v

≥ 2


η1 ln
σ1

η1
+ η2 ln

σ2

η2


, (2.25)

where we have used (2.18) and Jensen’s inequality. Hence, the functional I(f , g) is bounded from below and the minimiza-
tion problem (2.19) is well-defined.

Let {(fk, gk)} be aminimizing sequence of (2.19). Then it follows from (2.25) that {(ḟk, ġk)} is bounded inW 1,2(Ω).Without
loss of generality, we may assume that {(ḟk, ġk)} weakly converges to (ḟ , ġ) in W 1,2(Ω). Then from the Trudinger–Moser
inequality (2.14) and (2.24) we obtain that {(f

k
, g

k
)} converges to (f , g), where f , g ∈ R. Hence, {(fk, gk)} weakly converges

to (f + ḟ , g + ġ) in W 1,2(Ω). Then by the Trudinger–Moser inequality (2.14) and the embedding theorem, we see that the
weak limit (f , g) ≡ (f + ḟ , g + ġ) satisfies the constraints in (2.20). Since J1 and J2 are weakly continuous and the functional
I is weakly lower semi-continuous, we can conclude that the weak limit of {(fk, gk)} is a solution of (2.19). The uniqueness
of the solutions follows from the strict convexity of the functional.

3. Proof of existence for the planar case

To deal with the existence of the planar case, we follow the approach of [8] and introduce the background functions

u0 = −

M
s=1

ln(1 + µ|x − ps|−2), v0 = −

N
s=1

ln(1 + µ|x − qs|−2). (3.1)

Straight calculation leads to

1u0 = −

M
s=1

4µ
(1 + µ|x − ps|2)2

+ 4π
M
s=1

δps ≡ −h1(x) + 4π
M
s=1

δps , (3.2)

1v0 = −

N
s=1

4µ
(1 + µ|x − qs|2)2

+ 4π
N

s=1

δqs ≡ −h2(x) + 4π
N

s=1

δqs . (3.3)

Writing U = u0 + u, V = v0 + v, we have

1u = 2eu0+u
+ ev0+v

− 3 + h1, (3.4)

1v = eu0+u
+ 2ev0+v

− 3 + h2. (3.5)
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Let f = u + v, g = u − v, which is u =
f+g
2 , v =

f−g
2 . Obviously, we have the relation

f 2 + g2
= 2(u2

+ v2), |∇f |2 + |∇g|2 = 2(|∇u|2 + |∇v|
2). (3.6)

Then we have

1f = 3

eu0+

f+g
2 + ev0+

f−g
2 − 2


+ h1 + h2, (3.7)

1g = eu0+
f+g
2 − ev0+

f−g
2 + h1 − h2 (3.8)

over the full plane R2. The boundary condition for f , g reads

f → 0, g → 0 as |x| → ∞. (3.9)

To solve the problem (3.7)–(3.9), we look for the critical point of the functional

I(f , g) =


R2


1
6
|∇f |2 +

1
2
|∇g|2 + 2eu0+

f+g
2 + 2ev0+

f−g
2 +


h1 + h2

3
− 2


f + (h1 − h2)g


dx. (3.10)

It is easy to see that the functional is C1 and strictly convex overW 1,2(R2).
By direct computation, we see that the Fréchet derivative of I satisfies

(DI(f , g))(f , g) −


R2


1
6
|∇f |2 +

1
2
|∇g|2


dx

=


R2


1
6
|∇f |2 +

1
2
|∇g|2 + 2(eu0+u

− 1 + l1)u + 2(ev0+v
− 1 + l2)v


dx

≥


R2


1
3
(|∇u|2 + |∇v|

2) + 2(eu0+u
− 1 + l1)u + 2(ev0+v

− 1 + l2)v

dx, (3.11)

where we have used the notation

l1 ≡
1
3
(2h1 − h2), l2 ≡

1
3
(2h2 − h1) (3.12)

and the relation (3.6).
Now we estimate the last two terms in (3.11). Let

M(u) = (eu0+u
− 1 + l1)u, M(v) = (ev0+v

− 1 + l2)v,

u+ = max{u, 0}, and u− = max{−u, 0}. Then it follows from the elementary inequality et − 1 ≥ t that

eu0+u+ − 1 + l1 ≥ u0 + u+ + l1,

which implies
R2

M(u+)dx ≥


R2

(u0 + u+ + l1)u+dx

=


R2

u2
+
dx +


R2

(u0 + l1)u+dx

≥
1
2


R2

u2
+
dx −

1
2


R2

(u0 + l1)2dx. (3.13)

Next, using the inequality 1 − e−t
≥

t
1+t ∀t ≥ 0, we have

M(−u−) =

1 − l1 − eu0−u−


u−

=

1 − l1 + [1 − e−u− ]eu0 − eu0


u−

≥


1 − l1 +

u−

1 + u−

eu0 − eu0

u−

≥ [1 − l1]
u2

−

(1 + u−)2
+

u−

1 + u−

(1 − eu0 − l1). (3.14)

We may take µ sufficiently large such that max{l1, l2} < 1
2 (say). Noting that 1 − eu0 and l1, l2 are in L2(Ω), we see that

R2

u−

1 + u−

(1 − eu0 − l1)dx ≥ −
1
4


R2

u2
−

(1 + u−)2
dx −


R2

(1 − eu0 − l1)2dx. (3.15)
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Then it follows from (3.14)–(3.15) that
R2

M(−u−)dx ≥
1
4


R2

u2
−

(1 + u−)2
dx − C . (3.16)

Here and below, we use C and C with subscripts to denote positive constants. By using (3.13) and (3.16), we obtain
R2

M(u)dx ≥
1
4


R2

u2

(1 + |u|)2
dx − C . (3.17)

Similarly, we can get
R2

M(v)dx ≥
1
4


R2

v2

(1 + |v|)2
dx − C . (3.18)

Therefore, it follows from (3.11), (3.17) and (3.18) that

DI(f , g)(f , g) −


R2


1
6
|∇f |2 +

1
2
|∇g|2


dx

≥
1
3


R2

(|∇u|2 + |∇v|
2)dx +

1
2


R2


u2

(1 + |u|)2
+

v2

(1 + |v|)2


dx − C . (3.19)

Now we carry out an estimate of L2 norms. Using the following Sobolev inequality
R2

w4dx ≤ 2


R2
w2dx


R2

|∇w|
2dx, w ∈ W 1,2(R2),

we obtain
R2

w2dx
2

=


R2

|w|

1 + |w|
(1 + |w|)|w|dx

2

≤ 2


R2

|w|
2

(1 + |w|)2
dx


R2

(|w|
2
+ |w|

4)dx

≤ 4


R2

|w|
2

(1 + |w|)2
dx


R2

w2dx

1 +


R2

|∇w|
2dx



≤
1
2


R2

w2dx
2

+ C


1 +


R2

|w|
2

(1 + |w|)2
dx

4

+


R2

|∇w|
2dx

4


. (3.20)

Then, it follows from (3.20) that
R2

w2dx
 1

2

≤ C

1 +


R2

|w|
2

(1 + |w|)2
dx +


R2

|∇w|
2dx


. (3.21)

Hence, from (3.19) and (3.21) we have

DI(f , g)(f , g) −


R2


1
6
|∇f |2 +

1
2
|∇g|2


dx ≥ C0(∥u∥L2(R2) + ∥v∥L2(R2)) − C1. (3.22)

Then, by the relation (3.6) and (3.22) we get the following lower bound

DI(f , g)(f , g) ≥ C2(∥f ∥W1,2(R2) + ∥g∥W1,2(R2)) − C3. (3.23)

By using the estimate (3.23) the critical point of the functional I can be obtained. In fact, from (3.23)wemay choose R > 0
sufficiently large such that

inf

DI(f , g)(f , g)| ∥f ∥W1,2(R2) + ∥g∥W1,2(R2) = R


≥ 1 (3.24)

(say).
Now we consider the minimization problem

η0 ≡ inf

I(f , g)(f , g)| ∥f ∥W1,2(R2) + ∥g∥W1,2(R2) ≤ R


. (3.25)

This problem obviously has a solution since the functional I is weakly lower semi-continuous. Let w̃ = (f̃ , g̃) be a solution
of (3.25). We prove that it must be a interior point. Otherwise, if

∥f̃ ∥W1,2(R2) + ∥g̃∥W1,2(R2) = R,
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then,

lim
t→0

I([1 − t]w̃) − I(w̃)

t
=

dI([1 − t]w̃)

dt


t=0

= −DI(w̃)(w̃) ≤ −1. (3.26)

Hence, we can choose t > 0 sufficiently small such that, withwt
= (f t , g t) = (1 − t)w̃,

I(f t , g t) = I(wt) < I(w̃) = I(f̃ , g̃) = η0, (3.27)

∥f t∥R2 + ∥g t
∥R2 = (1 − t)(∥f̃ ∥W1,2(R2) + ∥g̃∥W1,2(R2)) = (1 − t)R < R, (3.28)

which contradicts the definition of η0. Therefore, (f̃ , g̃) must be an interior point for the problem (3.25). As a result, it is
a critical point of the functional I . The uniqueness of the critical point follows from the fact that the functional I is strictly
convex.

Using the Sobolev embedding inequality

∥w∥Lp(R2) ≤


π

p
2

− 1
 p−2

2p
∥w∥W1,2(R2), ∀p > 2, w ∈ W 1,2(R2), (3.29)

we see that ew
− 1 ∈ L2(R2) as w ∈ W 1,2(R2). Applying this fact in the equation and using an elliptic estimate, we obtain

f , g ∈ W 2,2(R2), which implies f , g → 0 as |x| → ∞. By the inequality (3.29) and the equations of f , g , we see that the
right hand side of the equations are in Lp(R2) for any p > 2. Then the elliptic Lp estimate implies f , g ∈ W 2,p(R2). Hence,
|∇f |, |∇g| → 0 as |x| → ∞. Linearizing the equations of f , g , we see that f , g vanish exponentially fast and |∇f |, |∇g|
vanish like O(|x|−3) as |x| → ∞. Hence, we have

R2
1f dx = 0,


R2

1gdx = 0.

Integrating Eqs. (3.7)–(3.8) over R2, we have

3


R2


eu0+

f+g
2 + ev0+

f−g
2 − 2


dx = −


R2

(h1 + h2)dx = −4π(M + N), (3.30)
R2


eu0+

f+g
2 − ev0+

f−g
2


dx = −


R2

(h1 − h2)dx = −4π(M − N). (3.31)

Then, from (3.30)–(3.31), we obtain (1.5)–(1.6).
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