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LIPSCHITZ CONSTANTS AND
LOGARITHMIC SOBOLEV INEQUALITY

YASUHIRO FUJITA

Abstract. We revisit two results of [8]; they are a logarithmic Sobolev in-
equality on Rn with Lipschitz constants and an expression of Lipschitz con-

stants as the limit of a functional by the entropy. We have two goals in this
paper. The first goal is to clarify when the strict inequality holds in this in-
equality. The second goal is to investigate the asymptotic behavior of this
functional by the Abelian and Tauberian theorems of Laplace transforms.

1. Introduction

Let n ∈ N. For a smooth enough function f ≥ 0 on Rn, we define
the entropy of f by

Ent(f) =

∫

Rn

f(x) log f(x)dx−
∫

Rn

f(x)dx log

∫

Rn

f(x)dx.

We interpret that 0 log 0 = 0. We denote by ‖ · ‖∞ the L∞(Rn)-norm
with respect to the Lebesgue measure on Rn. Hence, if f is Lipschitz
continuous on Rn, ‖Df‖∞ (the L∞(Rn)-norm of the Euclidean length
|Df | of the gradient Df) is the Lipschitz constant of f .

In [8], the author showed the following logarithmic Sobolev inequality
with Lipschitz constants: if f is Lipschitz continuous on Rn and ef ∈
Lα(Rn) for some α > 0, then ef ∈ Lβ(Rn) for any β > α, and

(1.1) Ent(eβf ) ≤ n

∫

Rn

eβf(x)dx log

(
knβ‖Df‖∞

e

)
.

Here, the constant kn is given by

(1.2) kn =

(
1

σn−1(n− 1)!

)1/n

and σn−1 = 2πn/2/Γ(n/2) is the surface area of the unit ball of Rn.
Furthermore, when f(x) = C − θ|x − a| for some C ∈ R, θ > 0 and
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a ∈ Rn, equality holds in (1.1) for all β > 0. Note that inequality (1.1)
is equivalent to

(1.3)
e

knβ
exp

(
1

n

Ent(eβf)∫
Rn eβf(x)dx

)
≤ ‖Df‖∞.

As an application of inequality (1.1), the author also showed that the
Lipschitz constant ‖Df‖∞ can be expressed by using the entropy of f .
Indeed, if f is Lipschitz continuous on Rn with the Lipschitz constant
θ := ‖Df‖∞ > 0 and fulfills the condition

(1.4) −θ log(1 + |x− a|) ≥ f(x)− f(a) ≥ −θ|x− a|, x ∈ Rn

for some a ∈ Rn, then

‖Df‖∞ = lim
β→∞

e

knβ
exp

(
1

n

Ent(eβf )∫
Rn eβf(x)dx

)
.(1.5)

This is a link between the Lipschitz constant and the limit of the func-
tional given by the entropy.

In this paper, we revisit inequality (1.1) and representation formula
(1.5) by using the distribution function of a given function f . Let f
be a continuous function on Rn such that f attains its maximum over
Rn at some point a ∈ Rn. Without a loss of generality in (1.1) and
(1.5), we may assume that f(a) = 0. Indeed, if necessary, we consider
f(·)− f(a) instead of f , since Ent(eβ(f(·)−f(a))) = e−βf(a) Ent(eβf ). We
do not require that f is Lipschitz continuous on Rn in general. We
define the distribution function F of f by

(1.6) F (t) = |{x ∈ Rn | − f(x) ≤ t}| , t ≥ 0,

where |A| denotes the Lebesgue measure of a set A of Rn. We assume
that

there exist constants β0 > 0 and C0 > 0 such that(1.7)

F (t) ≤ C0e
β0t for all t ≥ 0.

Let us define I(β) by

(1.8) I(β) =
e

knβ
exp

(
1

n

Ent(eβf)∫
Rn eβf(x)dx

)
, β > β0.

As shown in Lemma 2.1 below, it is well-defined under (1.7).
We have two goals in this paper. The first goal is to clarify when

the strict inequality holds in (1.1). It is stated as follows: Let ω be the
Laplace transform of F defined by

(1.9) ω(β) =

∫ ∞

0

e−βtF (t)dt, β > β0.
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We define the function φ by

(1.10) φ(β) = log ω(β), β > β0.

Note that φ is well-defined, since ω > 0 on (β0,∞). As shown in
Theorem 3.1 below, we have

(1.11)
d

dβ
I(β) =

β

n
I(β)

(
φ
′′
(β)− n + 1

β2

)
, β > β0.

This equality provides an answer to the comment of [8, Remark 3.2]
about monotone property of I(β). That is, the monotone property of
I(·) is determined by the sign of the function φ

′′
(β)− (n + 1)/β2. We

provide examples to illustrate this result.
As an application of this result, we clarify when the strict inequality

holds in (1.1). Our main result says the following: let f be Lipschitz
continuous on Rn. Then, the strict inequality holds in (1.1) for all
β ∈ D, where D is the set defined by

(1.12) D =

{
β ∈ (β0,∞)

∣∣ φ
′′
(β) 6= n + 1

β2

}
.

Note that φ
′′
(β) is expressed as (ω

′
(β)/ω(β))

′
. The problem is when

D 6= ∅. When D 6= ∅, the strict inequality holds for some β ∈ (β0,∞).
We show that D = ∅ if and only if F (t) = vn(t/θ)n, t ≥ 0, for some
constant θ > 0. Here, vn is the volume of the unit ball of Rn and vn =
σn−1/n. Note that the distribution function F (t) = vn(t/θ)n, t ≥ 0, for
some constant θ > 0 is that of the function −θ|x−a| for some constant
a ∈ Rn. Hence, D = ∅ if and only if the distribution function of f is
same as that of the function −θ|x − a| for some constants θ > 0 and
a ∈ Rn. Therefore, when this is not the case, D 6= ∅. Furthermore,
we show that if D 6= ∅, then the set D is very large in the sense that
(β0,∞) \D is at most countable.

The second goal is to investigate the asymptotic behavior of I(β)
as β → ∞. The key is the Abelian and Tauberian theorems about
the Laplace transform of the distribution function F . We show that if
there exist constants α > 0 and C > 0 such that

(1.13) F (t) ∼ Ctα

Γ(α + 1)
as t → 0+,

then

(1.14) I(β) ∼ (β/e)
α−n

n

knC
1
n

as β →∞.

Here, we used the symbol A(s) ∼ B(s) as s → s0 to indicate that B is
positive in a neighborhood of s0 and A(s)/B(s) → 1 as s → s0. Note
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that the asymptotic behavior of I(β) as β → ∞ is determined by a
local property of F (t) as t → 0+. As the special case for α = n, we
conclude that if there exists a constant θ > 0 such that

(1.15) F (t) ∼ vn

(
t

θ

)n

as t → 0+,

then

(1.16) I(β) ∼ θ as β →∞.

If f(x)/|x − a| → −θ as |x − a| → 0, then (1.15) is fulfilled, so that
we have (1.16). Note that this corresponds to (1.5) under (1.4), since
log(1+ |x−a|)/|x−a| → 1 as |x−a| → 0. The implication from (1.13)
to (1.14) is an Abelian theorem.

As a Tauberian theorem, we show that if the condition

(1.17) lim
β→∞

φ(β)

β
= 0

is fulfilled, then (1.14) with constants α > 0 and C > 0 implies (1.13).
Condition (1.17) is considered as a Tauberian condition. We provide a
sufficient condition on F in order that (1.17) is fulfilled. As a particular
case, if (1.17) is fulfilled, then (1.16) with a constant θ > 0 implies
(1.15).

The contents of this paper are as follows: in Section 2, we provide
preliminaries. In Section 3, we clarify when the strict inequality holds
in (1.1). In Section 4, we investigate the asymptotic behavior of I(β)
as β →∞.

2. Preliminaries

Throughout this paper, we assume (1.7) for the function F defined
by (1.6). Recall that f is a continuous function on Rn such that f
attains its maximum 0 over Rn at some point a ∈ Rn. We do not
require that it is Lipschitz continuous on Rn.

Lemma 2.1. ω ∈ C∞((β0,∞)) and we have, for β > β0,

(2.1) I(β) =
e

knβ
(βω(β))−

1
n exp

(
1

n
+

1

n

βω
′
(β)

ω(β)

)
.

Proof. By (1.7) and (1.9), we see that ω ∈ C∞((β0,∞)) and

(2.2) ω(n)(β) = (−1)n

∫ ∞

0

e−βt tnF (t)dt, β > β0.
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Next, let χA be the indicator function of a set A. When β > β0, we
have

βω(β) = β

∫ ∞

0

e−βt

[∫

Rn

χ{−f(x)≤t} dx

]
dt

= β

∫

Rn

[ ∫ ∞

0

e−βtχ{−f(x)≤t} dt

]
dx

= β

∫

Rn

[ ∫ ∞

−f(x)

e−βt dt

]
dx =

∫

Rn

eβf(x) dx.

Similarly, we have

ω(β) + βω
′
(β) =

∫ ∞

0

(1− βt)e−βtF (t) dt

=

∫

Rn

[ ∫ ∞

−f(x)

(1− βt)e−βt dt

]
dx =

∫

Rn

f(x)eβf(x) dx.

By the definition of Ent(eβf ), we have

(2.3) I(β) =
e

knβ

(∫

Rn

eβf(x)dx

)−1/n

exp

(
β

n

∫
Rn f(x)eβf(x)dx∫

Rn eβf(x)dx

)
.

Putting these results together, we conclude that the lemma holds. �

Next, we provide a sufficient condition on F in order that (1.17) is
fulfilled.

Lemma 2.2. Assume that there are constants ℓ > 0, ρ > 0 and
δ > 0 such that

F (t) ≥ ℓtρ in (0, δ).

Then, (1.17) is fulfilled.

Proof. By (1.7), we have

(2.4) ω(β) ≤ C0

β − β0

, β > β0.

On the other hand, by our assumption, we have, for β > 1,

ω(β) ≥
∫ δ

0

e−βtℓtρ dt =
ℓ

βρ+1

∫ βδ

0

e−ssρ ds

>
ℓ

βρ+1

∫ δ

0

e−ssρ ds =: C1β
−(ρ+1).
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Thus, for β > max{β0, 1}, we obtain

C1β
−(ρ+1) ≤ ω(β) ≤ C0

β − β0
.

From this result, we conclude that the lemma holds. �

3. Strict inequality in (1.1)

In this section, we clarify when the strict inequality holds in (1.1).

Theorem 3.1. Equality (1.11) holds.

Proof. Let β > β0. By (1.10) and (2.1), we have

(3.1) I(β) =
e

kn
exp

{
1

n

(
1 + βφ

′
(β)− φ(β)− (n + 1) log β

)}
.

Then, we obtain

d

dβ
I(β) =

1

n
I(β)

d

dβ

(
1 + βφ

′
(β)− φ(β)− (n + 1) log β

)

=
β

n
I(β)

(
φ
′′
(β)− n + 1

β2

)
.

�

We provide two examples.

Example 3.2. For θ > 0, γ > 0 and a ∈ Rn, let f(x) = −θ|x − a|γ
in Rn. Then we have

F (t) =
∣∣{x ∈ Rn | |x− a| ≤ (t/θ)1/γ

}∣∣ = vn

(
t

θ

)n
γ

, t ≥ 0.

Hence, we have

ω(β) =
vn

θ
n
γ

β−
n
γ
−1 Γ

(
n

γ
+ 1

)
, β > 0.

Therefore, (1.17) is fulfilled, and

(3.2) φ
′′
(β) =

n
γ

+ 1

β2
, β > 0.

This implies that I(·) is strictly increasing (resp. strictly decreasing)
on (0,∞) if and only if 0 < γ < 1 (resp. 1 < γ). When γ = 1, it is
easy to check that I(β) = θ for any β > 0.
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Example 3.3. Let n = 1. For θ > 0 and a ∈ Rn, let f(x) =
−θ log(1 + |x− a|) in R. Then, we have

F (t) =
∣∣∣
{
x ∈ R | |x− a| ≤ e

t
θ − 1

}∣∣∣ = 2
(
e

t
θ − 1

)
, t ≥ 0.

Hence, we have

ω(β) =
2

β(βθ − 1)
, β >

1

θ
.

Therefore, (1.17) is fulfilled, and

(3.3) φ
′′
(β) =

1

β2
+

θ2

(βθ − 1)2
>

2

β2
, β >

1

θ
.

This implies that I(·) is strictly increasing on (1/θ,∞).

Recall that D is the set defined by (1.12).

Theorem 3.4. The following conditions are equivalent:

there exists an open interval E of (β0,∞) such that(3.4)

I(·) is a constant function on E.

D = ∅.(3.5)

F (t) = vn(t/θ)n, t ≥ 0, for some constant θ > 0.(3.6)

Proof. (3.4)=⇒(3.5). By (2.1), I(·)n is holomorphic in the domain
{z ∈ C|Rez > β0}. Hence, by (3.4) and the theorem of identity of
holomorphic functions, I(·)n ≡ C in this domain for some constant
C > 0. Therefore, by (3.1) and (1.10), we obtain

n log

(
e

kn

)
+ 1 + βφ

′
(β)− φ(β)− (n + 1) log β = log C, β > β0.

Differentiating this equality, we have

φ
′′
(β) =

n + 1

β2
, β > β0.

This implies (3.5).

(3.5)=⇒(3.6). By (3.5), we have

φ(β) = K − Lβ − (n + 1) log β, β > β0

for some constants K, L ∈ R, and

ω(β) = eK−Lββ−(n+1), β > β0.

Since (2.4) is fulfilled under (1.7), we see that L ≥ 0. Let

G(t) =
eK

n!
χ[L,∞)(t)(t− L)n, t ≥ 0.
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Since ∫ ∞

0

e−βtG(t)dt = ω(β), β > β0,

we have F (t) = G(t) a.e. in [0,∞) by the uniqueness of Laplace
transforms. Since F and G are right-continuous on [0,∞), we have
F (t) = G(t), t ≥ 0.

Now, we derive a contradiction to suppose that L > 0. If L > 0,
then F (t) = 0 on [0, L). Let a ∈ Rn be a point where f attains its
maximum over Rn. Since f is continuous on Rn, we can choose δ > 0
so that

|f(x)− f(a)| < L

2
, |x− a| < δ.

Since f(a) = 0, we have

{x | |x− a| ≤ δ} ⊂
{

x | − f(x) <
L

2

}
,

so that vnδ
n ≤ F (L/2). This is a contradiction to the hypothesis

that F (t) = 0 on [0, L). Therefore, we have proved that L = 0, and
F (t) = eKtn/n!, t ≥ 0. By letting θ = (n!vne

−K)1/n, we conclude (3.6).

(3.6)=⇒(3.4). If (3.6) is fulfilled, we have I(β) = θ on (β0,∞) by
Example 3.2. Thus, (3.4) holds for E = (β0,∞). �

Now, we state the main results of this section. By the proof of
Lemma 2.1, we note that, under (1.7), ef ∈ Lβ(Rn) and Ent(eβf ) < ∞
for any β > β0.

Theorem 3.5. Let f be Lipschitz continuous on Rn. Then, the strict
inequality holds in (1.1) for any β ∈ D.

Proof. We derive a contradiction to suppose that equality holds in
(1.1) for some β̂ ∈ D, i.e., I(β̂) = ‖Df‖∞.

First, we consider the case such that φ
′′
(β̂) > (n+1)/β̂2. Then, there

exists an open interval (β1, β2) such that β1 < β̂ < β2 and φ
′′
(β) >

(n + 1)/β2 for all β ∈ (β1, β2). By Theorem 3.1 and (1.3), we see

that I(β) = ‖Df‖∞ on [β̂, β2). By Theorem 3.4, D = ∅. This is a

contradiction to the hypothesis that β̂ ∈ D.
Next, we consider the case such that φ

′′
(β̂) < (n+1)/β̂2. Then, there

exists an open interval (β1, β2) such that β1 < β̂ < β2 and φ
′′
(β) <

(n + 1)/β2 for all β ∈ (β1, β2). By Theorem 3.1 and (1.3), we see

that I(β) = ‖Df‖∞ on (β1, β̂]. By Theorem 3.4, D = ∅. This is a

contradiction to the hypothesis that β̂ ∈ D.
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We conclude that, for any β ∈ D, equality never holds in (1.1). �

Remark 3.6. When f is not Lipschitz continuous on Rn, we interpret
that ‖Df‖∞ = ∞ and the right-hand side of (1.1) is equal to ∞. Then,
we see that the strict inequality holds in (1.1) for all β ∈ (β0,∞).

Next, we show that when D 6= ∅, it is very large in the sense that
the set (β0,∞) \D is at most countable.

Theorem 3.7. If D 6= ∅, then the set (β0,∞) \D is at most count-
able. In particular, for a function f which does not satisfy (3.6), the
strict inequality holds in (1.1) for uncountably many β ∈ (β0,∞).

Proof. Assume that D 6= ∅. Since φ is holomorphic in the domain
{z ∈ C |Rez > β0}, we see that every point of (β0,∞) \ D is an
isolated point of this set; otherwise D = ∅ by the theorem of identity.
This implies that the set (β0,∞) \D is at most countable.

Next, let f be a function which does not satisfy (3.6). When ‖Df‖∞ =
∞, the strict inequality holds in (1.1) for all β ∈ (β0,∞) by Remark 3.6.
When ‖Df‖∞ < ∞, the strict inequality holds in (1.1) for uncountably
many β ∈ (β0,∞) by Theorem 3.5. �

Example 3.8. We consider the function f from Example 3.2. When
0 < γ < 1 and 1 < γ, the strict inequality holds in (1.1) for all
β ∈ (0,∞) by (3.2), Theorem 3.5 and Remark 3.6. When γ = 1,
equality holds in (1.1) for all β ∈ (0,∞).

Example 3.9. We consider the function f from Example 3.3. Then,
the strict inequality holds in (1.1) for all β ∈ (1/θ,∞) by (3.3) and
Theorem 3.5.

4. Asymptotic behavior of I(β) as β →∞
In this section, we study asymptotic behavior of I(β) as β → ∞.

The key proposition is the following Abelian and Tauberian theorem
(cf. [1, Theorem 1.7.1′], [7, Theorem 3 of Chapter XIII-5]).
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Proposition 4.1. Let U be a non-decreasing function on [0,∞) sat-
isfying U(0) = 0 and U(t) ≤ K1e

β1t, t ≥ 0, for some constants β1 > 0
and K1 > 0. Let c, ρ > 0. Then, the following are equivalent:

U(t) ∼ ctρ

Γ(ρ + 1)
as t → 0+.

∫ ∞

0

e−βtU(t)dt ∼ cβ−(ρ+1) as β →∞.

Remark 4.2. Proposition 4.1 is stated more generally by using regularly
varying functions (see the books above).

Now, we provide our first result of this section. Recall that, through-
out this paper, we assume (1.7) for the function F defined by (1.6).
Recall also that we use the symbol A(s) ∼ B(s) as s → s0 to indi-
cate that B is positive in a neighborhood of s0 and A(s)/B(s) → 1 as
s → s0.

Theorem 4.3. If there exist constants α > 0 and C > 0 such that
(1.13) is fulfilled, then we have (1.14).

Proof. By (1.9) and (2.2), we have

ω(β) ∼ Cβ−(α+1) as β →∞,

ω
′
(β) ∼ −C(α + 1)β−(α+2) as β →∞.

Hence, by (2.1), it is not difficult to see that

I(β) ∼ e

knβ

(
Cβ−α

)− 1
n exp

(
1

n
− α + 1

n

)

=
(β/e)

α−n
n

knC
1
n

as β →∞.

�

Corollary 4.4. If there exists a constant θ > 0 such that (1.15) is
fulfilled, then we have (1.16). In particular, if there exist a constant
θ > 0 and a point a ∈ Rn such that f(x)/|x− a| → −θ as |x− a| → 0,
then we have (1.16).

Proof. The first part is a consequence of Theorem 4.3. Next, note
that if f(x)/|x− a| → −θ as |x− a| → 0, then (1.15) holds. Thus, the
second part follows. �
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Example 4.5. Consider the function f satisfying (1.7) and

f(x) = −θ|x− a|γ, x ∈ D,

where θ > 0, γ > 0 and a ∈ Rn are constant, and D is a bounded
domain of Rn such that a ∈ D. Then, we have

F (t) =
∣∣{x ∈ Rn | |x− a| ≤ (t/θ)1/γ

}∣∣ = vn

(
t

θ

)n
γ

as t → 0+.

Since knv
1/n
n = (1/n!)1/n, we have

I(β) ∼ θ
1
γ (β/e)

1−γ
γ

[Γ(n
γ

+ 1)/n!]
1
n

as β →∞.

Therefore,

(4.1) lim
β→∞

I(β) =




∞, 0 < γ < 1,
0, 1 < γ,
θ, γ = 1.

Next, let
f(x) = −θ|x− a|γ, x ∈ Rn.

By Examples 3.2, 3.8 and Theorem 4.3, we see that when 0 < γ < 1,
I(β) increases strictly and diverges to ∞ as β → ∞. When 1 < γ,
I(β) decreases strictly and converges to 0 as β → ∞. When γ = 1,
I(β) = θ on (0,∞).

Example 4.6. Consider the function f satisfying (1.7) and

f(x) = −θ log(1 + log(1 + |x− a|)), x ∈ D,

where θ > 0 and a ∈ Rn are constant, and D is a bounded domain
of Rn such that a ∈ D. In this case, f(x) does not satisfy (1.4), but
f(x)/|x − a| → −θ as |x − a| → 0. Hence, we have limβ→∞ I(β) = θ
by Corollary 4.4.

Example 4.7. We consider the function f of Example 3.3. By Exam-
ples 3.3, 3.9 and Theorem 4.3, I(β) strictly increases and converges to
θ as β →∞

Next, we show that the converse of Theorem 4.3 holds provided that
condition (1.17) is fulfilled. This condition is considered as a Tauberian
condition.

Theorem 4.8. Assume that (1.17) is fulfilled. If (1.14) is satisfied
for some constants α > 0 and C > 0, then we have (1.13).
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Proof. Let 0 < ǫ < 1 be arbitrary. By (1.14), we can find a constant
R > 0 so that

(1− ǫ)
(β/e)

α−n
n

knC
1
n

< I(β) < (1 + ǫ)
(β/e)

α−n
n

knC
1
n

, β > R.

By (2.1), we have, for β > β0,

I(β) =
1

kn
exp

(
n + 1

n
+

1

n

[
β2

(
φ(β)

β

)′

− (n + 1) log β

])
.

These implies that if β > max{β0, R},

n log(1− ǫ) < α+1+log C +β2

(
φ(β)

β

)′

− (α+1) log β < n log(1+ ǫ).

Let γ > β > max{β0, R}. Then, we have

n log(1− ǫ)

∫ γ

β

t−2 dt

< (α + 1 + log C)

∫ γ

β

t−2 dt +
φ(γ)

γ
− φ(β)

β
− (α + 1)

∫ γ

β

t−2 log t dt

< n log(1 + ǫ)

∫ γ

β

t−2 dt,

so that

n log(1− ǫ)

(
−1

γ
+

1

β

)

< (α + 1 + log C)

(
−1

γ
+

1

β

)
+

φ(γ)

γ
− φ(β)

β

−(α + 1)

(
−1

γ
log γ − 1

γ
+

1

β
log β +

1

β

)

< n log(1 + ǫ)

(
−1

γ
+

1

β

)
.

Letting γ →∞ and using (1.17), we obtain, for β > max{β0, R},
−n log(1− ǫ) > − log C + φ(β) + (α + 1) log β > −n log(1 + ǫ),

which implies that

(1 + ǫ)−n <
ω(β)

Cβ−(α+1)
< (1− ǫ)−n, β > max{β0, R}.

Hence
ω(β) ∼ Cβ−(α+1) as β →∞.

By Proposition 3.1, we conclude (1.13). �
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Corollary 4.9. Assume that (1.17) is fulfilled. If (1.16) is fulfilled
for some constant θ > 0, then we have (1.15).
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