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It is known that any continuous piecewise monotonic function with nonmonotonicity
height not less than 2 has no continuous iterative roots of order n greater than the number
of forts of the function. In this paper, we consider the problem of iterative roots in the case
that the order n is less than or equal to the number of forts. By investigating the trajectory
of possible continuous roots, we give a general method to find all iterative roots of those
functions with finite nonmonotonicity height.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Given a nonempty set X and a positive integer n ∈ N, a function f : X → X is said to be an iterative root of F : X → X
of order n if

f n(x) = F (x), ∀x ∈ X, (1.1)

where f n denotes the nth iterate of f , i.e., f n(x) = f ◦ f n−1(x) and f 0(x) ≡ x for any x ∈ X . The existence of iterative roots
has been intensively studied for almost 200 years, starting from Ch. Babbage [1], and great advance were made to find
the solutions of Eq. (1.1) (see [2–7,11–13]). Among these works, there are plentiful results on iterative roots for monotonic
self-mapping on compact interval, in which the roots are defined piece by piece from a small neighborhood without fixed
points to the whole domain [5–7]. However, the method is invalid without the assumption of monotonicity and thus finding
iterative roots for non-monotonic mapping is treated as a difficult problem. In 1983, Jingzhong Zhang and Lu Yang [15]
studied a class of non-monotonic continuous functions, called strictly piecewise monotonic functions (abbreviated as PM
functions). By introducing the idea of “characteristic interval”, the problem of iterative roots for PM function can be reduced
to that on its characteristic interval, which becomes the monotone case. In this paper, being different from these works on
searching existence conditions for iterative roots, we try to give a general method to find all roots.
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2. Preliminaries

Let I := [a,b] for a,b ∈ R, a < b, and let F : I → I be a continuous function. A point c ∈ (a,b) is called a fort of F if F is
strictly monotonic in no neighborhood of c. The set of forts of F is denoted by S(F ). A function F is said to be piecewise
monotonic if the number of forts of F , denoted by N(F ) is finite. By PM(I, I) we denote the set of all piecewise monotonic
self-mappings of I .

Lemma 2.1. (See Lemma 2.3 in [9].) Let p,q ∈ R be such that p < q and F ([a,b]) ⊂ [p,q] and let F : [a,b] → R and G : [p,q] → R

be continuous functions. Then

S(G ◦ F ) = S(F ) ∪ {
c ∈ (a,b): F (c) ∈ S(G)

}
.

In particular, the function G ◦ F is piecewise monotonic if and only if so are the functions F and G|F ([a,b]) .

By Lemma 2.1, we know that every continuous iterative root of a piecewise monotonic (strictly monotonic) self-mapping
is also piecewise monotonic (strictly monotonic). Moreover, for each function F ∈ PM(I, I), N(F ) is nondecreasing under
iteration, i.e.,

0 = N
(

F 0) � N(F ) � N
(

F 2) � · · · � N
(

F n) � · · · .
Then we define the nonmonotonicity height (or simple height) H(F ) of F as the least k ∈N∪ {0} satisfying N(F k) = N(F k+1)

if such a k exists and ∞ otherwise.

Example 2.1. (See Example 2.9 in [9].) For the classical hat function F : [0,1] → [0,1], given by

F (x) = min{2x,2 − 2x},
one can check that S(F k) = { 1

2k , . . . , 2k−1
2k }, k ∈N, and thus H(F ) = ∞.

Example 2.2. Let F : [0,1] → [0,1] be defined by

F (x) =
{

1
2 x, ∀x ∈ [0, 1

2 ),

− 1
2 x + 1

2 , ∀x ∈ [ 1
2 ,1].

Obviously, F maps [0,1] onto [0,1/4], which implies that H(F ) = 1.

Example 2.3. Consider the function F : [0,1] → [0,1], given by

F (x) =

⎧⎪⎨
⎪⎩

x, ∀x ∈ [0, 1
3 ),

−x + 2
3 , ∀x ∈ [ 1

3 , 2
3 ),

2x − 4
3 , ∀x ∈ [ 2

3 ,1].
We have S(F 3) = S(F 2) = { 1

3 , 2
3 , 5

6 } and then H(F ) = 2.

The simplest case for the nonmonotonicity height is H(F ) = 0, which means that F is strictly monotonic. When H(F ) = 1,
the problem of iterative roots was reduced to be discussed on its characteristic interval (see [8,10,15,14]). More concretely,
for every F ∈ PM(I, I) with H(F ) = 1, there exists a sub-interval of I denoted by K (F ), covering the range of F such that
F is strictly monotonic on it. Such a maximal sub-interval bounded by either forts or end-points, is called the characteristic
interval of F . For instance, the characteristic interval of F given in Example 2.2 is K (F ) = [0, 1

2 ], and F in Example 2.3 has
no characteristic interval since H(F ) > 1. When F is strictly increasing on its characteristic interval, the following results
are obtained:

Theorem 2.1. (See Theorem 4 in [14].) Let F ∈ PM(I, I) and H(F ) � 1. Suppose that (i) F is strictly increasing on its characteristic
interval [a′,b′] and (ii) F (x) on I cannot reach a′ and b′ unless F (a′) = a′ or F (b′) = b′ . Then for any integer n > 1, F has a continuous
iterative root of order n. Moreover, these conditions are necessary for integers n > N(F ) + 1.

In addition, when H(F ) > 1, we also have the following nonexistence result of iterative roots for order n > N(F ).

Theorem 2.2. (See Theorem 1 in [14].) Let F ∈ PM(I, I) and H(F ) > 1. Then F has no continuous iterative roots of order n for
n > N(F ).
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Therefore, in [15,14] two open problems were raised naturally:

(P1) Does F ∈PM(I, I) with H(F ) > 1 have an iterative root of order n for n � N(F )?
(P2) Does F ∈PM(I, I) with H(F ) � 1 have an iterative root of order n for n � N(F )+1 if F (x′) = a′ (or b′) at x′ ∈ I\K (F )?

Problem (P2) was solved partly for the case that the continuous iterative root f of order n satisfying H( f ) = n [8]. When
H(F ) � 1, it was proved that every continuous iterative root is an extension from the characteristic interval [10], which
generalized the results of Theorem 3 in [14]. Recently, Problem (P1) in the case of equal to was discussed in [9]. The
authors showed that only types T1 (‘almost increasing’) and T2 (‘almost decreasing’) of continuous iterative roots possibly
appear and they characterized all type T1 roots of order n. A full description of type T2 is still an open question.

In this paper, we continue to study Problem (P1). Our purpose is to find all iterative roots of order n � N(F ) under the
assumption that the nonmonotonicity height is finite, i.e., H(F ) < ∞ (see Examples 2.2–2.3). Moreover, an algorithm for
computing those iterative roots of such functions is also given and we illustrate our results by two examples in the last
section.

3. Nonmonotonicity height and iterative roots

For each F ∈ PM(I, I), let H(F ) = k, 2 � k < ∞ is an integer. From the definition of nonmonotonicity height H(F ),
we know

N
(

F k) = N
(

F k+1) = · · · = N
(

F 2k) = · · · ,
which implies that H(F k) = 1. Hence, F k has a characteristic interval denoted by I ′ such that F k is strictly monotonic on it.
Clearly, F is also strictly monotonic on I ′ by Lemma 2.1.

Lemma 3.1. Let F ∈PM(I, I) and H(F ) = k. Then k is the smallest nonnegative integer such that F k(I) ⊂ I ′ .

Proof. It is easy to see that F k(I) ⊂ I ′ because of the fact H(F k) = 1. Now, suppose that F k′
(I) ⊂ I ′ for a nonnegative

integer k′ . Since F is strictly monotone on I ′ , we have

S
(

F k′+1) = S
(

F ◦ F k′) = S
(

F k′)
,

which implies that k′ � k. �
On the other hand, the set S(F ) partitions the whole interval I into N(F ) + 1 sub-intervals. Let Ii be an open inter-

val of the ith sub-interval. Then F is strictly monotone on each Ii . We say that F admits the partition I(F ) := {Ii: i =
0,1, . . . , N(F )}. Similarly, let J i be an open interval of the ith sub-interval between two consecutive forts of F k and F k ad-

mits the partition I(F k) := { J i: i = 0,1, . . . , N(F k)}. Thus, I = ⋃N(F )
i=0 cl(Ii) = ⋃N(F k)

i=0 cl( J i) and F is also strictly monotone on
each J i . Moreover, for every J i , i = 0,1, . . . , N(F k), there exists a unique It , t ∈ {0,1, . . . , N(F )}, such that J i ⊂ It . Obviously,
I ′ ∈ I(F k).

In what follows, assume that F has a continuous iterative root f of order n � 1. By Lemma 2.1 we know that
f ∈PM(I, I). Furthermore, the following lemma shows some properties of f .

Lemma 3.2. Let F ∈PM(I, I) and H(F ) = k. If f is a continuous iterative root of F of order n � 1, then:

(i) f is strictly monotone on each J i ∈ I(F k), i = {0,1,2, . . . , N(F k)}.
(ii) For every sub-interval J i ∈ I(F k), there is an integer j ∈ {0,1,2, . . . , N(F k)} such that f ( J i) ⊂ J j .

(iii) f nk(I) ⊂ I ′ .

Proof. Since F is strictly monotonic on each J i ∈ I(F k), it follows from Lemma 2.1 that (i) holds.
In order to prove (ii), we assume that there exists i ∈ {0,1, . . . , N(F k)} such that f ( J i) �⊂ J j for all j = 0,1, . . . , N(F k).

It follows that there are two interior points x1, x2 ∈ J i such that f (x1) ∈ Jm and f (x2) ∈ Jm+1, where Jm and Jm+1 are two
consecutive sub-intervals in I(F k) because of the continuity of f . Let {c} := cl( Jm) ∩ cl( Jm+1), i.e., the common end-point
of the closure of two sub-intervals. Clearly, c ∈ S(F k). By the continuity of f on J i , there exists x3 between x1 and x2 such
that

f (x3) = c.



398 L. Li, J. Chen / J. Math. Anal. Appl. 411 (2014) 395–404
Notice

S
(

f ◦ F k) = S( f ) ∪ {
x ∈ (a,b): f (x) ∈ S

(
F k)},

which implies that x3 ∈ S( f ◦ F k). However, being an interior point of J i , x3 /∈ S(F k). It follows that S(F k) < S( f ◦ F k) �
S(F k ◦ F k), a contradiction to the fact that H(F k) = 1.

(iii) is obtained directly by the fact that f nk(I) = F k(I) ⊂ I ′ . �
According to Lemmas 3.1–3.2, it seems that the iteration orbit of F on each J i ⊂ I(F k) proceeds in a regular manner.

We first give the following definition.

Definition 3.1. A finite sequence

InsF := {{
J i, J i1, J i2, . . . , J i(r−1), I ′

}
, i = 0,1, . . . , N

(
F k)}

of each pairwise disjoint intervals is called an interval sequence with respect to F : I → I if

F ( J i) ⊂ J i1, F ( J i j) ⊂ J i( j+1), j = 1,2, . . . , r − 2, and F ( J i(r−1)) ⊂ I ′.

Here r + 1 := card InsF ( J i) is called the number of interval sequence beginning with J i ∈ I(F k). In other words,
r � N(F k) − 1 is the smallest nonzero integer such that F r( J i) ⊂ I ′ .

We further denote the iteration of F on InsF ( J i) = { J i, J i1, J i2, . . . , I ′} by

J i
F−→ J i1

F−→ J i2
F−→ · · · F−→ I ′.

Example 3.1. Consider mapping F : [0,1] → [0,1], given by

F (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x, ∀x ∈ [0, 1
4 ),

− 1
2 x + 3

8 , ∀x ∈ [ 1
4 , 1

2 ),
9
4 x − 1, ∀x ∈ [ 1

2 , 2
3 ),

− 3
2 x + 3

2 , ∀x ∈ [ 2
3 ,1].

By calculating, we obtain

F 3(x) = F 2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x, ∀x ∈ [0, 1
4 ),

− 1
2 x + 3

8 , ∀x ∈ [ 1
4 , 1

2 ),
9
4 x − 1, ∀x ∈ [ 1

2 , 5
9 ),

− 9
8 x + 7

8 , ∀x ∈ [ 5
9 , 2

3 ),
3
4 x − 3

8 , ∀x ∈ [ 2
3 , 5

6 ),

− 3
2 x + 3

2 , ∀x ∈ [ 5
6 ,1],

which implies that S(F 3) = S(F 2) = { 1
4 , 1

2 , 5
9 , 2

3 , 5
6 } and thus H(F ) = 2.

Furthermore, F 2 admits the partition I(F 2) = ∑5
i=0 cl J i , where I ′ = cl( J0) = [0, 1

4 ], J1 = ( 1
4 , 1

2 ), J2 = ( 1
2 , 5

9 ), J3 = ( 5
9 , 2

3 ),

J4 = ( 2
3 , 5

6 ) and J5 = ( 5
6 ,1). Then by Definition 3.1, it is easy to check that the interval sequence with respect to F is

InsF = {{
I ′
}
,
{

J1, I ′
}
,
{

J2, I ′
}
,
{

J3, J1, I ′
}
,
{

J4, J1, I ′
}
,
{

J5, I ′
}}

.

This sequence describes the orbit of F among the partition I(F 2).

Proposition 3.1. Let F ∈PM(I, I) with H(F ) = k and s denote the smallest nonzero integer such that F s(I ′) ⊂ I ′; then s is a divisor
of k. In particular, s = 1 means that F is a self-mapping on I ′ .

The proof of Proposition 3.1 follows from Lemma 3.1 and (ii) in Lemma 3.2 directly. Similarly, let s′ be the smallest
nonzero integer such that f s′ (I ′) ⊂ I ′ , then s′ is a divisor of nk by (ii)–(iii) in Lemma 3.2.
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4. Construction of iterative roots

Let Fix(F ) be the set of all fixed points of F and S ′(F ) := S(F ) ∪ {a} ∪ {b}.

Lemma 4.1. Let F ∈PM(I, I) and H(F ) = k. Then #{S ′(F )∩Fix(F )} � 2. Furthermore, two fixed forts (or end-points) are consecutive
if #{S ′(F ) ∩ Fix(F )} = 2.

Proof. For an indirect proof, suppose that #{S ′(F )∩Fix(F )} � 3. Then for every point c ∈ S ′(F )∩Fix(F ), we have c ∈ Fix(F k),
which is a contradiction to the fact that F k(I) ⊂ I ′ ∈ I(F k) since F k is strictly monotone on I ′ . Hence, #{S ′(F ) ∩ Fix(F )} � 2.
Furthermore, if #{S ′(F ) ∩ Fix(F )} = 2, it follows from the same reason that there is no forts between the two fixed forts
(or end-points). �

By Lemma 4.1, for #{S ′(F ) ∩ Fix(F )} � 2 we have three cases: (i) #{S ′(F ) ∩ Fix(F )} = 2; (ii) #{S ′(F ) ∩ Fix(F )} = 1;
(iii) S ′(F ) ∩ Fix(F ) = ∅. Before presenting Theorem 4.1, we first give a useful lemma.

Lemma 4.2. Let F ∈ PM(I, I) and H(F ) = k. If there is a sub-interval J i ∈ I(F k) for i ∈ {0,1,2, . . . , N(F k)} such that F ( J i) ⊂ J i ,
then cl( J i) is the characteristic interval of F k and s = 1.

Proof. From the assumption F ( J i) ⊂ J i , we have F k( J i) ⊂ J i . Notice J i ∈ I(F k), which implies that F k(I) ⊂ J i by the fact
that H(F k) = 1. Therefore, cl( J i) is the characteristic interval of F k . The second assertion s = 1 follows from the condition
F ( J i) ⊂ J i directly. �
Theorem 4.1. Let F ∈PM(I, I) and H(F ) = k. Then s = 1.

Proof. In what follows, we consider cases (i)–(iii) respectively. In case (i), denote the two consecutive forts which are also
fixed points by a′ and b′ . Since F k is strictly monotonic on [a′,b′] and F ([a′,b′]) ⊂ [a′,b′], it follows from Lemma 4.2 that
I ′ = [a′,b′] is the characteristic interval of F k and thus s = 1.

In case (ii), let x0 be the unique fixed fort (or end-point) of F , then x0 ∈ S ′(F k) ∩ Fix(F k) is one of the end-points of I ′ .
Assume that I ′ = [x0, x1], x0 < x1 and x1 ∈ S ′(F k) (the discussion for the other case I ′ = [x1, x0] is similar). We claim that

F
([x0, x1]

) ⊂ [x0, x1]. (4.1)

Otherwise, by the continuity of F and the fact that F (x0) = x0, there exists a point x2 ∈ (x0, x1) such that F (x2) = x1. Notice

S
(

F k+1) = S(F ) ∪ {
x ∈ (a,b): F (x) ∈ S

(
F k)},

which implies that x2 ∈ S(F k+1) since x1 ∈ S ′(F k). However, x2 is a monotonic point of F k and thus x2 ∈ S(F k+1)\S(F k) is a
contradiction to the assumption H(F ) = k. Therefore, (4.1) is proved and s = 1.

In case (iii), since F is a continuous self-mapping on I , it follows that F has at least one fixed point, denoted by y∗ ,
which is surely a monotonic point of F . Then there exists a sub-interval I∗ := [y0, y1] ∈ I(F k) such that y∗ ∈ (y0, y1).
Obviously y∗ ∈ F (I∗) ∩ I∗ �= ∅. We further claim that

F
(

I∗
) ⊂ I∗. (4.2)

Otherwise, by the continuity of F we have

F (y0) ∩ I∗ = ∅ or F (y1) ∩ I∗ = ∅.

Consequently, we can find a point y2 ∈ (y0, y1) such that F (y2) = y0 (or F (y2) = y1), which follows that y2 ∈
S(F k+1)\S(F k), a contradiction to the fact that H(F k) = 1. Therefore, (4.2) is proved and I∗ ∈ I(F k) is the characteristic
interval of F k . The proof is completed. �
Lemma 4.3. Let F ∈PM(I, I) and H(F ) = k. If F has a continuous iterative root f , then s′ = 1, i.e., f (I ′) ⊂ I ′ .

Proof. It follows from Theorem 4.1 that s = 1. Suppose that f is a continuous iterative root of F of order n. For an indirect
proof, assume s′ > 1. Then there is a sub-interval J ′ ∈ I(F k), J ′ �= I ′ such that

f s′( J ′) ⊂ J ′, (4.3)

by the definition of s′ and Ins f . On the other hand, since s′ is a divisor of nk, let nk = s′d for d is a positive integer. In view
of (4.3), we have

F k( J ′) = f nk( J ′) = f s′d( J ′) ⊂ J ′,

which is a contradiction to the fact that F k( J ′) ⊂ I ′ . Therefore, s′ = 1 and f is a self-mapping on I ′ . �
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Theorem 4.2. Let F ∈PM(I, I) and H(F ) = k. Then every continuous iterative root of F is an extension from an iterative root of F of
the same order on sub-interval I ′ .

Proof. If F has a continuous iterative root f of order n, it follows from Lemma 4.3 that f |I ′ is an iterative root of F on I ′ ,
satisfies f n|I ′ = F |I ′ .

By Lemma 3.2 and Theorem 4.1, for every sub-interval J ∈ I(F k), J �= I ′ , there is a finite interval sequence with respect
to F as

InsF ( J ) = {
J , F ( J ), F 2( J ), . . . , F r−1( J ), I ′

} ⊂ I
(

F k). (4.4)

It is clear that each J belongs to a certain InsF ( J ), with a fixed positive integer r.
On the other hand, according to (ii) in Lemma 3.2, Lemma 4.3 and the fact that f n = F , each J ∈ I(F k) also belongs to a

finite interval sequence with respect to f as

Ins f ( J ) := {
J , J1,1, J1,2, . . . , J1,n−1, F ( J ), J2,1, J2,2, . . . , F 2( J ), . . . , I ′

} ⊂ I
(

F k), (4.5)

such that

J
f−→ J1,1

f−→ J1,2
f−→ · · · f−→ J1,n−1

f−→ F ( J )
f−→ · · · f−→ I ′. (4.6)

Furthermore, (iii) in Lemma 3.2 and (4.5) imply that card Ins f ( J ) � nk + 1.
If r = 1 in (4.4), i.e., F ( J ) ⊂ I ′ , then the number of sub-intervals between J and I ′ in Ins f ( J ) does not exceed n − 1.

More concretely, for these J we have

J
f−→ J1

f−→ J2
f−→ · · · f−→ Jm−1

f−→ I ′, 2 � m � n. (4.7)

Thus, for every x ∈ J ,

F (x) = f n(x) = f |I ′ ◦ · · · ◦ f |I ′︸ ︷︷ ︸
n−m times

◦ f | Jm−1 ◦ · · · ◦ f | J2 ◦ f | J1 ◦ f | J (x),

and then

f | J (x) = f |−1
J1

◦ f |−1
J2

◦ · · · ◦ f |−1
Jm−1

◦ f |−(n−m)

I ′ ◦ F | J (x). (4.8)

Similarly, for those sub-intervals J ∈ I(F k) with r > 1 and Ins f ( J ) as (4.6), we obtain

F (x) = f n(x) = f | J1,n−1 ◦ · · · ◦ f | J1,2 ◦ f | J1,1 ◦ f | J (x),

for every x ∈ J . Hence,

f | J (x) = f |−1
J1,1

◦ f |−1
J1,2

◦ · · · ◦ f |−1
J1,n−1

◦ F | J (x). (4.9)

Therefore, the continuous iterative root f is an extension of f |I ′ from I ′ , which is defined by

f (x) :=
{

f |I ′(x), x ∈ I ′,
f | J (x), x ∈ J ∈ I(F k)\{I ′}.

The proof is completed. �
Remark that the equality (4.9) requires

F ( J ) ⊂ f ( J1,n−1), (4.10)

which is a necessary condition for the existence of such continuous iterative roots.
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According to the proof of Theorem 4.2, if F has continuous iterative roots, each of them can be found by the following
algorithm:

Algorithm 4.1. Input: continuous piecewise monotonic function F ∈ PM(I, I); a given large enough integer M > 0; the set
of forts S(F ); a given positive integer n � 2; Output: iterative roots of F .

Let S := S(F ).
Step1: Compute the nonmonotonicity height of F . For each fort y ∈ S let

S := S ∪ {
x ∈ (a,b): F (x) = y

}
.

Repeat this step until equation F (x) = y has no new solutions. Record the times as H(F ). Go to the next step.
If equation F (x) = y still provides new solutions in (a,b) after M times (it means H(F ) = ∞), terminate this algorithm

and quit.
Step2: Sort the points in S as {x1, x2, . . . , xp−1}, where a < x1 < x2 < · · · < xp−1 < b. Let J1 := (a, x1), J i := (xi−1, xi),

i = 2, . . . , p − 1, J p := (xp−1,b) and I(F k) := { J1, . . . , J p}.
Step3: Compute F ( J i) for i = 1, . . . , p. Find the interval sequence of each J i with respect to F and record it as InsF ( J i).

If F ( J ) ⊂ J , record cl( J ) as the characteristic interval I ′ .
Step4: According to InsF ( J i), choose possible interval sequences of J i with respect to f . If ri = #InsF ( J i) − 1 > 1, insert

possible sub-intervals which belong to I(F k)\InsF ( J i) between J i , F ( J i), F 2( J i), . . . , F ri−1( J i) and I ′ as (4.5)–(4.6). If ri = 1,
insert possible sub-intervals from I(F k)\InsF ( J i) between J i and I ′ as (4.7). Then record all interval sequences of J i with
respect to f for i = 1, . . . , p in the set Ins f .

Step5: Ins f = φ? Yes, return “F has no continuous iterative roots” and quit.
No, go to the next step.
Step6: Let Ins f := {Ins1, . . . , Inst} for t > 0 is a finite integer. Find an iterative root of F of order n on I ′ as the initial root

(see [6,7]). The special case for F is strictly monotonic and piecewise linear was investigated in Algorithm 1-3 in [16].
Take arbitrary interval sequence from Ins f and then calculate the iterative roots of F on each J i by (4.8) if ri = 1,

or by (4.9) when ri > 1. Note that condition (4.10) must be considered during the procedure of interval sequences finding.
Repeat this step until each interval sequence in Ins f was discussed.

Output iterative roots of F and quit.

Remark 4.1. For those functions with finite nonmonotonicity height, we see that the construction of their iterative roots can
also be reduced to the characteristic intervals. Hence, these continuous iterative roots are determined by the initial roots on
characteristic intervals.

Remark 4.2. According to Algorithm 4.1, the choosing of interval sequences between sub-intervals in InsF is not unique,
which implies the non-uniqueness of iterative roots. Moreover, many interval sequences also provide us discontinuous iter-
ative roots.

5. Examples

Example 5.1. Consider the mapping F : [0,1] → [0,1], given in Example 2.3 (see Fig. 1):

F (x) =

⎧⎪⎨
⎪⎩

x, for x ∈ [0, 1
3 ),

−x + 2
3 , for x ∈ [ 1

3 , 2
3 ),

2x − 4
3 , for x ∈ [ 2

3 ,1].

It is easy to see that S(F ) = { 1
3 , 2

3 } and N(F ) = 2.

Take each point y ∈ S(F ); we obtain a new fort 5
6 from equation F (x) = y. Since equation F (x) = 5

6 provides no new

solution in (0,1), S(F 3) = S(F 2) = { 1
3 , 2

3 , 5
6 } and H(F ) = 2.

Let I0 := [0, 1
3 ], I1 := ( 1

3 , 2
3 ), I2 := ( 2

3 , 5
6 ), I3 := ( 5

6 ,1).
By computing F (Ii) for i = 0, . . . ,3, we see that the characteristic interval of F 2 is I0, and the interval sequence with

respect to F is InsF = {{I3, I1, I0}, {I2, I0}}.
Then, according to step4 in Algorithm 4.1, we have only one possible interval sequence with respect to f for n = 2:

Ins f = {{I3, I2, I1, I0}
}
.



402 L. Li, J. Chen / J. Math. Anal. Appl. 411 (2014) 395–404
Fig. 1. F . Fig. 2. f and f1.

Hence, it follows from step6 that the iterative root extended from the initial root f |I0 (x) = x is

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x, for x ∈ [0, 1
3 ],

−x + 2
3 , for x ∈ ( 1

3 , 2
3 ],

2 − 2x, for x ∈ ( 2
3 , 5

6 ],
−x + 5

3 , for x ∈ ( 5
6 ,1].

On can check that f (see Fig. 2) is a discontinuous square iterative root of F . Therefore, F has no continuous iterative roots
of order 2, extended from the initial iterative root f |I0 (x) = x.

Take another initial iterative root on I0, say f |I0 (x) = 1
3 − x. Similarly, we get

f1(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−x + 1
3 , for x ∈ [0, 1

3 ],
x − 1

3 , for x ∈ ( 1
3 , 2

3 ],
2x − 1, for x ∈ ( 2

3 , 5
6 ],

x − 1
6 , for x ∈ ( 5

6 ,1],
which is a continuous square iterative root of F (see Fig. 2). Actually, according to Theorem 4.1 in [9], f1 is a square iterative
root of type T1. This fact shows that different initial iterative roots from characteristic interval may lead to different kinds
of roots.

Example 5.2. Consider the mapping F1 : [0,1] → [0,1], defined by (see Fig. 3)

F1(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x, for x ∈ [0, 1
3 ),

−x + 2
3 , for x ∈ [ 1

3 , 2
3 ),

5
2 x − 5

3 , for x ∈ [ 2
3 , 4

5 ),

− 5
2 x + 7

3 , for x ∈ [ 4
5 , 14

15 ),
25
4 x − 35

6 , for x ∈ [ 14
15 ,1].

One can check that S(F1) = { 1
3 , 2

3 , 4
5 , 14

15 } and N(F1) = 4.

Take each point y from S(F1) and solve the equation F1(x) = y; we obtain a new fort 74
75 . Furthermore, S(F 3

1 ) = S(F 2
1) =

{ 1
3 , 2

3 , 4
5 , 14

15 , 74
75 } implies that H(F1) = 2.

Let I0 := [0, 1
3 ], I1 := ( 1

3 , 2
3 ), I2 := ( 2

3 , 4
5 ), I3 := ( 4

5 , 14
15 ), I4 := ( 14

15 , 74
75 ), I5 := ( 74

75 ,1).
It is easy to see that the characteristic interval of F 2

1 is I0 and the interval sequence with respect to F1 is

InsF1 = {{I5, I1, I0}, {I2, I0}, {I3, I0}, {I4, I0}
}
.

Moreover, by step4 in Algorithm 4.1, we have nine interval sequences with respect to f for n = 2:

Ins1 = {{I5, I4, I1, I0}, {I2, I0}, {I3, I0}
}
, Ins2 = {{I5, I4, I1, I0}, {I3, I2, I0}

}
,
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Fig. 3. F1. Fig. 4. f2.

Ins3 = {{I5, I4, I1, I0}, {I2, I3, I0}
}
, Ins4 = {{I5, I3, I1, I0}, {I2, I0}, {I4, I0}

}
,

Ins5 = {{I5, I3, I1, I0}, {I4, I2, I0}
}
, Ins6 = {{I5, I3, I1, I0}, {I2, I4, I0}

}
,

Ins7 = {{I5, I2, I1, I0}, {I3, I0}, {I4, I0}
}
, Ins8 = {{I5, I2, I1, I0}, {I4, I3, I0}

}
,

Ins9 = {{I5, I2, I1, I0}, {I3, I4, I0}
}
.

For instance, in view of sequence Ins2 with the initial root f |I0 (x) = x, we get f |I1 = f |−1
I0

◦ F1|I1 , f |I4 = f |−1
I1

◦ F1|I4 ,

f |I5 = f |−1
I4

◦ F1|I5 , f |I2 = f |−1
I0

◦ F1|I2 , f |I3 = f |−1
I2

◦ F1|I3 and such square iterative root of F1 is defined by (see Fig. 4)

f2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x, for x ∈ [0, 1
3 ],

−x + 2
3 , for x ∈ ( 1

3 , 2
3 ],

5
2 x − 5

3 , for x ∈ ( 2
3 , 4

5 ],
−x + 8

5 , for x ∈ ( 4
5 , 14

15 ),

− 25
4 x + 13

2 , for x ∈ [ 14
15 , 74

75 ],
−x + 148

75 , for x ∈ ( 74
75 ,1].

One can check that f2 is a discontinuous square iterative root of F1. Fortunately, from sequence Ins5 we can find one
continuous square iterative root of F1, defined by (see Fig. 5)

f5(x) =

⎧⎪⎨
⎪⎩

x, for x ∈ [0, 1
3 ),

−x + 2
3 , for x ∈ [ 1

3 , 2
3 ),

5
2 x − 5

3 , for x ∈ [ 2
3 ,1].

On the other hand, it follows from Theorem 4.1 in [9] that F1 has continuous iterative roots of order n = N(F1) = 4 of
type T1. In fact, according to our algorithm, we have six interval sequences with respect to f for n = 4:

Ins1 = {I5, I2, I3, I4, I1, I0}, Ins2 = {I5, I2, I4, I3, I1, I0},
Ins3 = {I5, I3, I2, I4, I1, I0}, Ins4 = {I5, I3, I4, I2, I1, I0},
Ins5 = {I5, I4, I2, I3, I1, I0}, Ins6 = {I5, I4, I3, I2, I1, I0}.

In view of sequence Ins6 with the initial root f |I0 (x) = −x + 1
3 , we get f |I1 = f |−3

I0
◦ F1|I1 , f |I2 = f |−1

I1
◦ f |−2

I0
◦ F1|I2 ,

f |I3 = f |−1
I2

◦ f |−1
I1

◦ f |−1
I0

◦ F1|I3 , f |I4 = f |−1
I3

◦ f |−1
I2

◦ f |−1
I1

◦ F1|I4 , f |I5 = f |−1
I4

◦ f |−1
I3

◦ f |−1
I2

◦ F1|I5 . Hence, such iterative root
of order 4 is defined by (see Fig. 6)
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Fig. 5. f5. Fig. 6. f6.

f6(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x + 1
3 , for x ∈ [0, 1

3 ],
x − 1

3 , for x ∈ ( 1
3 , 2

3 ],
5
2 x − 4

3 , for x ∈ ( 2
3 , 4

5 ],
x − 2

15 , for x ∈ ( 4
5 , 14

15 ],
5
2 x − 23

15 , for x ∈ ( 14
15 , 74

75 ],
x − 4

75 , for x ∈ ( 74
75 ,1],

which is of type T1. Moreover, according to sequence Ins4 we can also find one discontinuous iterative root of order 4,
given by

f4(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x + 1
3 , for x ∈ [0, 1

3 ],
x − 1

3 , for x ∈ ( 1
3 , 2

3 ],
5
2 x − 4

3 , for x ∈ ( 2
3 , 4

5 ],
2
5 x + 46

75 , for x ∈ ( 4
5 , 14

15 ),

− 5
2 x + 47

15 , for x ∈ [ 14
15 , 74

75 ],
− 5

2 x + 17
5 , for x ∈ ( 74

75 ,1].
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