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We consider the one-parameter family of planar quintic systems, ẋ = y3 − x3, ẏ = −x +
my5, introduced by A. Bacciotti in 1985. It is known that it has at most one limit cycle
and that it can exist only when the parameter m is in (0.36,0.6). In this paper, using
the Bendixson–Dulac theorem, we give a new unified proof of all the previous results.
We shrink this interval to (0.547,0.6) and we prove the hyperbolicity of the limit cycle.
Furthermore, we consider the question of the existence of polycycles. The main interest and
difficulty for studying this family is that it is not a semi-complete family of rotated vector
fields. When the system has a limit cycle, we also determine explicit lower bounds of the
basin of attraction of the origin. Finally, we answer an open question about the change of
stability of the origin for an extension of the above systems.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and main results

A. Bacciotti, during a conference about the stability of analytic dynamical systems held in Florence in 1985, proposed to
study the stability of the origin of the following quintic system{

ẋ = y3 − x3,

ẏ = −x + my5, m ∈R.
(1)

Two years later, Galeotti and Gori in [10] published an extensive study of (1). They proved that system (1) has no limit
cycles when m ∈ (−∞,0.36] ∪ [0.6,∞), otherwise, it has at most one. Their proofs are mainly based on the study of the
stability of the limit cycles which is controlled by the sign of its characteristic exponent, together with a transformation of
the system using a special type of adapted polar coordinates. Their proof of the uniqueness of the limit cycle does not cover
its hyperbolicity.

In this paper we refine the above results. To guess which is the actual bifurcation diagram we first did a numerical study,
obtaining the following results. It seems that there exists a value m∗ > 0 such that:

(i) System (1) has no limit cycles if m ∈ (−∞,m∗] ∪ [0.6,∞). Moreover, for m = m∗ it has a heteroclinic polycycle formed
by the separatrices of the two saddle points located at (±m−1/4,±m−1/4).
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Fig. 1. Phase portraits of system (1).

(ii) For m ∈ (m∗,0.6) the system has exactly one unstable limit cycle.
(iii) The value m∗ is approximately 0.560115.

Recall that a polycycle is a simple, closed curve, formed by several solutions of the system, which admits a Poincaré return
map. The claims (i) and (ii) above coincide with the results described in [10]. Concerning the location of the value m∗
however, our computations differ from the results proposed in [10] where it is claimed that m∗ is between 0.58 and 0.59.

The first aim of this work is to obtain analytic results that confirm, as accurate as possible, the above claims. To clarify
the phase portraits of the system, we will study them on the Poincaré disc, see [3,24].

For m � 0, system (1) has no periodic orbits because x2/2 + y4/4 is a global Lyapunov function. Therefore, the origin is
a global attractor. In particular, its phase portrait is trivial. Therefore, we will concentrate on the case m > 0. In this case,
the system has three critical points, (±m−1/4,±m−1/4) and (0,0). The first two points are saddles and the third one is
a monodromic nilpotent singularity. Its stability can be determined using the tools introduced in [2,19], see Section 2 and
Theorem 1.3 below. We prove:

Theorem 1.1. Consider system (1).

(i) It has neither periodic orbits, nor polycycles, when m ∈ (−∞,0.547] ∪ [0.6,∞). Otherwise, it has at most one periodic orbit or
one polycycle, but cannot coexist. Moreover, when the limit cycle exists, it is hyperbolic and unstable.

(ii) For m > 0, its phase portraits on the Poincaré disc, are given in Fig. 1.
(iii) Let M be the set of values of m for which it has a heteroclinic polycycle. Then M is finite, non-empty and it is contained in

(0.547,0.6). Moreover, the system corresponding to m ∈M has no limit cycles and its phase portrait is given by Fig. 1 (b).

Our simulations show that (a), (b) and (c) of Fig. 1 occur when m ∈ (0,m∗), m = m∗ and m > m∗ , respectively, for some
m∗ ∈ (0.547,0.6), that numerically we have found to be m∗ ≈ 0.560115. We have not been able to prove the existence
of this special value m∗ rigorously, because our system is not a semi-complete family of rotated vector fields (SCFRVF)
and this fact hinders the obtention of the full bifurcation diagram; see the discussion in Subsection 3.1 and Example 7.1.
This is precisely the reason why we have decided to push forward the study of system (1). Our approach can be useful
to understand other interesting polynomial systems of differential equations that have been considered previously; see for
instance [4,8].
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Fig. 2. The limit cycle of system (1) and the set Um , introduced in Proposition 1.2, when m = 0.57.

From our analysis, we know the existence of finitely many values m∗
j , j = 1, . . . ,k, where k � 1, satisfying 0.547 <

m∗
1 < m∗

2 < · · · < m∗
k < 0.6, such that phase portrait (b) only occurs for these values. Moreover, for m ∈ (0.547,m∗

1), phase
portrait (a) holds, for m ∈ (m∗

k ,0.6) phase portrait (c) holds, and for each one of the remaining k − 1 intervals, the phase
portrait does not vary on each interval and is either (a) or (c).

As a byproduct of our approach we can also give explicit algebraic restrictions on the initial conditions which ensure
that the corresponding solutions tend to the origin.

Recall that when a critical point, p ∈R
n , of a differential system is an attractor we can define its basin of attraction as

W s
p =

{
x ∈R

n: lim
t→+∞ϕ(t,x) = p

}
,

where ϕ denotes the solution of the differential system such that ϕ(0,x) = x. A very interesting question, mainly motivated
by Control Theory problems, consists in obtaining testable conditions for ensuring that some initial condition is in W s

p .
Usually these conditions are obtained using suitable Lyapunov functions. In the proof of the following result however, we
use a different approach based on the construction of Dulac functions.

Proposition 1.2. Let W s
0 be the basin of attraction of the origin of system (1). Consider Vm(x, y) = g0,m(y) + g1,m(y)x + g2,m(y)x2 ,

with

g2,m(y) = 1

89 100
(3 − 10m)(3 + 35m)y12 − 1

6300
(75 − 125m)2/3(3 − 13m)y8

+ 1

90
(3 − 10m)y6 − 1

25
(75 − 125m)2/3 y2 + 1,

g1,m(y) = g′
2,m(y) and g0,m(y) = g′′

2,m(y)/2 − my5 g′
2,m(y)/2 + 5my4 g2,m(y)/3. Then, for m ∈ (0.5,0.6), Um ⊂ W s

0 , where Um

is the bounded connected component of {(x, y) ∈ R
2: Vm(x, y) � 0} that contains the origin and whose boundary is the oval of

Vm(x, y) = 0, see Fig. 2.

As we will see, the proof of the above proposition is a straightforward consequence of Proposition 5.2. Using the same
tools, it can be shown that the same result also holds for smaller values of m. In any case, notice that this proposition
covers all the values of m for which the system has limit cycles.

While studying the stability of the origin of system (1) we realized that, using the same tools, we could solve an open
question left in [10]. Our third result studies the stability of the origin of the following generalization of system (1):{

ẋ = y3 − x2k+1,

ẏ = −x + my2s+1, m ∈R and k, s ∈N
+.

(2)

In [10], the authors gave the stability of the origin when s 
= 2k and ask whether it is true or not that the change of stability
of the origin when s = 2k is at the value m = (2k + 1)/(4k + 1). We will prove that their guess was not correct for k > 1.
The new result shows that when s = 2k, the stability changes at
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m = (2k + 1)!!
(4k + 1)!!!! , (3)

where, given n ∈ N
+ , n!! and n!!!! are defined recurrently, as follows,

n!! = n × (n − 2)!!, n!!!! = n × (n − 4)!!!!,
with 1!! = 1, 2!! = 2 and j!!!! = j for 1 � j � 4. Notice that when k = 1, the right-hand side of (3) and (2k + 1)/(4k + 1)

coincide and give m = 3/5, which is one of the values appearing in Theorem 1.1.

Theorem 1.3. Consider system (2).

(i) When s < 2k, the origin is an attractor for m � 0 and a repeller for m > 0.
(ii) When s > 2k, the origin is always an attractor.

(iii) When s = 2k, the origin is an attractor for m < (2k + 1)!!/(4k + 1)!!!! and a repeller when the reverse inequality holds. Moreover,
when k = 1 and m = 3/5 the origin is a repeller and for m � 3/5 system (1) has at least one limit cycle near the origin.

The method used to study the stability of the origin of (2), when s = 2k and k = 1, also works for deducing its stability
in the case not covered by the above theorem: s = 2k, k > 1 and m as in (3). Nevertheless, the computations are tedious
and we have decided not to perform them.

The paper is structured as follows. In Section 2 we prove Theorem 1.3. In Section 3 we recall some preliminary results.
We start with a discussion on the differences between being or not, an SCFRVF. Then, Subsection 3.2 is devoted to studying
the singularities of system (1) at infinity and their phase portraits on the Poincaré disc. Afterwards, we present some
Bendixson–Dulac type results that we will use to prove non-existence or uniqueness of periodic orbits or polycycles. Finally,
we introduce a result for controlling the number of roots of 1-parameter families of polynomials and we show that our
system can be reduced to an Abel differential equation.

In Section 4 we prove the non-existence results for m ∈ (−∞,0.36] ∪ [0.6,∞). Our proof is different from that of [10]
and it is mainly based on the use of Dulac functions.

In Section 5 we prove that there exists at most one periodic orbit when m ∈ (1/2,0.6). Our approach also shows the
hyperbolicity of the orbit and again uses a Bendixson–Dulac type results. This section also includes the proof of Proposi-
tion 1.2.

Section 6 is devoted to enlarging the region where we can assure the non-existence of periodic orbits and polycycles,
proving this for m ∈ (0.36,0.547]. The proof uses once more a suitable Dulac function in a part of the interval and the
Poincaré–Bendixson Theorem, together with the hyperbolicity of the limit cycle, whenever it exists, for the remaining values
of m.

Section 7 deals with the existence of polycycles for the system. Finally, in Section 8, we combine all of the above results
to prove Theorem 1.1.

2. Stability of the origin and proof of Theorem 1.3

Notice that the origin of (1) and (2) are nilpotent critical points and there are several tools for studying its local stability,
see for instance [2,15,19]. We will follow the approach of [2,15], based on the polar coordinates introduced by Lyapunov
in [17], to study the stability of degenerate critical points.

Let u(θ) = Cs(θ) and v(θ) = Sn(θ) be the solutions of the Cauchy problem:

u̇ = −v2p−1, v̇ = u2q−1, u(0) = 2q
√

1/p and v(0) = 0,

where the prime denotes the derivative with respect to θ .
The Lyapunov generalized polar coordinates are x = r p Cs(θ) and y = rq Sn(θ). They parameterize the algebraic curves

px2q + qy2p = r2pq , that correspond to the level sets of the above (p,q)-quasi-homogeneous Hamiltonian system. In partic-
ular, p Cs2q(θ) + q Sn2p(θ) = 1, and both functions are smooth T p,q-periodic functions, where

T = T p,q = 2p−1/2qq−1/2p
Γ ( 1

2p )Γ ( 1
2q )

Γ ( 1
2p + 1

2q )
,

and Γ denotes the Gamma function. The general expression of a differential system in these coordinates is:

ṙ = x2q−1ẋ + y2p−1 ẏ

r2pq−1
, θ̇ = pxẏ − qyẋ

r p+q
. (4)

In the nilpotent monodromic case, the component θ̇ does not vanish in a punctured neighborhood of the critical point.
Hence, system (4) can be written in a neighborhood of r = 0 as
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dr

dθ
=

∞∑
i=1

Ri(θ)ri, (5)

where Ri(θ), i � 1, are T -periodic functions. The solution of (5) that passes through r = ρ when θ = 0 can be written as
the power series

r(θ,ρ) = ρ +
∞∑

i=2

ui(θ)ρ i, with ui(0) = 0, (6)

and the functions ui can be computed solving recursive linear differential equations obtained by plugging (6) into (5). It is
well known that the stability of the origin is given by the first non-vanishing generalized Lyapunov constant Vk := uk(T ).

To effectively compute some integrals of the above generalized trigonometric functions we will use the following result,
see [15].

Lemma 2.1. Let Sn and Cs be the (1,q)-trigonometrical functions and let T be their period. Then, for i, j ∈N,

(i)
∫ T

0 Sni(θ)Cs j(θ)dθ = 0 when either i or j are odd.

(ii)
∫ T

0 Sni(θ)Cs j(θ)dθ = 2Γ ( i+1
2 )Γ (

j+1
2q )

q
i+1

2 Γ ( i+1
2 + j+1

2q )

when i and j are both even.

(iii) For q = 2,
∫ θ

0 Cs8(ψ)dψ = 6 Sn(θ) Cs5(θ)+10 Sn(θ) Cs(θ)+5θ
21 .

(iv) For q = 2,
∫ θ

0 Sn4(ψ)dψ = − Sn3(θ) Cs(θ)−Sn(θ) Cs(θ)+θ
7 .

Proof of Theorem 1.3. By using the transformation (x, y) → (y, x), system (2) becomes{
ẋ = −y + mx2s+1,

ẏ = x3 − y2k+1.
(7)

We use (4), with p = 1 and q = 2, to transform it into{
ṙ = m Cs2s+4(θ)r2s+1 − Sn2k+2(θ)r4k+1,

θ̇ = r − Cs(θ)Sn2k+1(θ)r4k − 2m Cs2s+1(θ)Sn(θ)r2s,

or equivalently,

dr

dθ
= m Cs2s+4(θ)r2s − Sn2k+2(θ)r4k

1 − Cs(θ)Sn2k+1(θ)r4k−1 − 2m Cs2s+1(θ)Sn(θ)r2s−1
. (8)

Depending on the parameters s and k, the Taylor series of the right-hand side of the above equation gives rise to three
different situations at the origin.

(i) When s < 2k, then (8) becomes

dr

dθ
= m Cs2s+4(θ)r2s + O

(
r4k).

Therefore, using the method explained above and Lemma 2.1, we get that its first Lyapunov constant is

V 2s = m

T∫
0

Cs2s+4(θ)dθ = m
√

2πΓ ( 2s+5
4 )

Γ ( 2s+7
4 )

. (9)

Then m = 0 is the bifurcation value, and the origin of (2) changes its stability from attractor to repeller as m goes from
negative values to positive values. The case m = 0 follows using the Lyapunov function x4/4 + y2/2.

(ii) Suppose s > 2k, then the Taylor expansion of (8) at r = 0 is

dr

dθ
= −Sn2k+2(θ)r4k + O

(
r2s).

By using the same method, we obtain that the first Lyapunov constant is

V 4k =
T∫

0

−Sn2k+2(θ)dθ = −Γ ( 1
4 )Γ ( 2k+3

2 )

2
2k+1

2 Γ ( 4k+7
4 )

< 0, (10)

and the stability of the origin of (2) is independent of m and it is an attractor for all m.
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(iii) Finally, when s = 2k we have

dr

dθ
= (

m Cs4k+4(θ) − Sn2k+2(θ)
)
r4k + O

(
r8k−1). (11)

Hence the first non-vanishing generalized Lyapunov constant is given by

V 4k =
T∫

0

(
m Cs4k+4(θ) − Sn2k+2(θ)

)
dθ.

Using (9) with s = 2k and (10), after some simplifying calculations, we obtain that

V 4k = 2π3/2(m(4k + 1)!!!! − (2k + 1)!!)
(Γ ( 3

4 ))2(4k + 3)!!!! .

Therefore the origin of (2) is an attractor for m < (2k + 1)!!/(4k + 1)!!!! and a repeller for m > (2k + 1)!!/(4k + 1)!!!!, as we
wanted to prove.

In the particular case s = 2k and k = 1, which corresponds to system (1), and when m = 3/5 we have that V 4 = 0. To
continue the proof we compute the next non-zero Lyapunov constant. For s = 2 and k = 1, Eq. (8) writes as

dr

dθ
= R4(θ)r4 + R7(θ)r7 + R10(θ)r10 + O

(
r13),

with R4(θ) = m Cs8(θ) − Sn4(θ),

R7(θ) = 2m2 Cs13(θ)Sn(θ) + m Cs9(θ)Sn3(θ) − 2m Cs5(θ)Sn5(θ) − Cs(θ)Sn7(θ)

and

R10(θ) = 4m3 Cs18(θ)Sn2(θ) + 4m2 Cs14(θ)Sn4(θ) + m(1 − 4m)Cs10(θ)Sn6(θ)

− 4m Cs6(θ)Sn8(θ) − Cs2(θ)Sn10(θ),

with m = 3/5. Following the procedure explained at the beginning of this section we obtain that u2 = u3 = 0,

u4(θ) =
θ∫

0

R4(ψ)dψ, u5 = u6 = 0,

u7(θ) =
θ∫

0

(
R7(ψ) + 4R4(ψ)u4(ψ)

)
dψ, u8 = u9 = 0,

u10(θ) =
θ∫

0

(
R10(ψ) + 7R7(ψ)u4(ψ) + 4R4(ψ)u7(ψ) + 6R4(ψ)u2

4(ψ)
)

dψ.

Using Lemma 2.1 and some straightforward computations we get that V 1 = · · · = V 9 = 0. Finally, it suffices to compute

V 10 =
T∫

0

(
R10(θ) + 7R7(θ)u4(θ) + 4R4(θ)u7(θ)

)
dθ,

because
du3

4(θ)

dθ
= 3R4(θ)u2

4(θ). Performing integration by parts and using the expression of u′
7 we arrive at

V 10 =
T∫

0

(
R10(θ) + 3u4(θ)u′

7(θ)
)

dθ =
T∫

0

(
R10(θ) + 3u4(θ)R7(θ)

)
dθ. (12)

Notice that, applying (iii) and (iv) of Lemma 2.1, we find that

u4(θ) =
θ∫ (

3

5
Cs8(ψ) − Sn4(ψ)

)
dψ = 6 Sn(θ)Cs5(θ) + 15 Sn(θ)Cs(θ) + 5 Sn3(θ)Cs(θ)

35
.

0
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Plugging this expression into (12), using several times (i) and (ii) of Lemma 2.1 and the properties of the Γ function, we
arrive at

V 10 = 128

1625

(Γ ( 3
4 ))2

√
π

> 0.

Hence the origin is unstable for m = 3/5. As a consequence, we obtain that at m = 3/5 the system has a Hopf-like bifurca-
tion. Therefore the system has at least one limit cycle near the origin for m � 3/5. �
3. More preliminary results

This section is a miscellaneous one and it is divided into several short subsections containing either some tools that we
will use to prove Theorems 1.1 and 1.2 or some preliminary results.

3.1. Differences between families that are SCFRVF and families that are not

On the one hand, if a 1-parameter family of differential systems is an SCFRVF, then there are many results that allow
to control the possible bifurcations; see [9,22,23]. One of the most useful ones is the so-called non-intersection property. It
asserts that if γ1 and γ2 are limit cycles corresponding to systems with different values of m, then γ1 ∩ γ2 = ∅. Informally,
we like to call this property Atila’s property,1 because it implies that, if for some value of m a limit cycle passes through
a region of the phase plane, this region becomes forbidden for the periodic orbits that the system could have for any other
value of the parameter. As a consequence the study of 1-parameter bifurcation diagrams is much more simple in this case.

For instance, consider a 1-parameter SCFRVF satisfying the following property:

(P) For each m ∈ (m0,m1), the system has at most one limit cycle, which we denote by γm. Here, if for some m the corresponding
system has no limit cycles then γm = ∅. Moreover, assume that

⋃
m∈(m0,m1) γm covers a region of the plane that all the periodic orbits

of the system have to pass.

Under this assumption, for m ∈ R \ (m0,m1) the system has no periodic orbits.
The above property has very important practical consequences if we want to determine the values m0 and m1, that

constitute, in many cases, the most difficult ones to be obtained to complete the bifurcation diagram. Usually, one of the
values, say m0 corresponds to a Hopf-like bifurcation, and it is obtained by some local analysis. Then, for instance, if for
some value, say m̃ > m0, the system has no limit cycles then m1 < m̃. The same idea can also be applied to obtain lower
bounds of m1. These facts simplify a lot the obtention of analytic bounds for the value m1, because it suffices to deal with
concrete systems, with fixed values of m. This approach has been successfully applied in many works; see for instance [11,
14,21,23,25].

On the other hand, if for a general family of vector fields we have that the same property (P) given above holds, we
can say nothing of what happens for m ∈ R \ (m0,m1). For this reason, when we study system (1), we cannot ensure the
existence of a unique value of m for which the phase portrait looks like in Fig. 1 (b); see also Example 7.1. We remark that
system (1) is not an SCFRVF with respect to m, and moreover we have not been able to transform it into one.

From our point of view, to introduce tools for studying 1-parameter families that are not SCFRVF is a challenge for the
differential equations community.

3.2. Global phase portrait

We will draw the phase portraits of system (1) on the Poincaré disc [3,24]. Recall that, from the works of Markus [18]
and Neumann [20], to characterize a phase portrait it suffices to determine the type of critical points (finite and at infinity),
the configuration of their separatrices, and the number and character of their periodic orbits.

We start by studying the critical points at infinity of the Poincaré compactification of the system. That is, we will use
the transformations (x, y) = (1/z, u/z) and (x, y) = (v/z,1/z), with a suitable change of time to transform system (1) into
two new polynomial systems, one in the (u, z)-plane and another one in the (v, z)-plane; see [3] for the details. Then, to
understand the behavior of the solutions of (1) near infinity it suffices to study the type of critical points of the transformed
systems which are localized on the line z = 0. These points are precisely the so-called critical points at infinity of system (1).

Lemma 3.1. By using the transformation (x, y) = (v/z,1/z) and the change of time dt/dτ = 1/z4 system (1) is transformed into the
system{

v ′ = −mv + (
1 − v3)z2 + v2z4,

z′ = −mz + vz5,
(13)

1 Recall that it was said about Atila, King of the Huns, that “the grass never grew on the spot where his horse had trod”.
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where the prime denotes the derivative with respect to τ . The origin is the unique critical point of (13) on z = 0 and it is an attracting
node.

The proof of the above result is straightforward.

Lemma 3.2. By using the transformation (x, y) = (1/z, u/z) and the change of time dt/dτ = 1/z4 system (1) is transformed into the
system{

u′ = (
u − z2)z2 + u4(mu − z2),

z′ = (
1 − u3)z3,

(14)

where the prime denotes the derivative with respect to τ . The origin is the unique critical point of (14) on z = 0 and it is a repeller.

Proof. It is clear that the origin of system (14) is its unique critical point on z = 0. To determine its nature we will use the
directional blow-up, since the linear part of the system at this point vanishes identically; see again [3].

We apply the z-directional blow-up given by the transformation r = u/z, z = z. Together with the change of time
dt/dτ = z3, system (14) is transformed into{

ṙ = −1 + mzr5,

ż = 1 − z3r3.
(15)

System (15) has no critical points on z = 0. Then by using the transformation (u, z) = (rz, z) we can obtain the phase
portrait of system (15). Recall that the mapping swaps the third and fourth quadrants in the z-directional blow-up. In
addition, taking into account the change of time dt/dτ = z3, it follows that the vector field in the third and fourth quadrant
of the plane (u, z) points in the opposite direction compared to the one obtained in the (r, z)-plane.

Next, we need to perform the u-directional blow-up to know the phase portrait in that direction. After that, collecting
the information about the blow-ups in both directions, we will have the phase portrait of system (14).

The u-directional blow-up is given by the transformation u = u, q = z/u, and with the change of time dt/dτ = u3,
system (14) is transformed into{

u̇ = −q2(uq2 − 1
) − u2(uq2 − m

)
,

q̇ = q5 − muq.
(16)

On q = 0, the origin is the unique critical point of the system, and since the linear part of the system at this point vanishes
identically we have to use again some directional blow-ups.

Since the lower degree term of q̇u − u̇q is −q(2mu2 +q2), and it only vanishes on the direction q = 0, to study the origin
of system (16) it suffices to consider the u-directional blow-up. It is given by the transformation u = u, s = q/u. Doing the
change of time dt/dτ = u, system (16) becomes{

u̇ = −us2(u3s2 − 1
) − u

(
u3s2 − m

)
,

ṡ = s3(u3 − 1
) + 2s

(
u3s4 − m

)
.

(17)

For s = 0, system (17) has a unique critical point at the origin. The linearization matrix at the origin has eigenvalues m and
−2m. Thus the origin of system (17) is a saddle.

Then, by using the transformation (u,q) = (u, su), we can obtain the phase portrait of system (16). Recall that the
mapping swaps the second and the third quadrants in the u-directional blow-up. In addition, taking into account the
change of time dt/dτ = u it follows that the vector field in the second and third quadrants of the plane (u,q) points in the
opposite direction compared to the one in the (u, s)-plane. Once we have the phase portrait in the (u,q)-plane, we apply
the transformation (u, z) = (u,qu).

By considering the properties of the blow-up technique and from the analysis of all the intermediate phase portraits we
obtain that the origin of system (14) is a repeller. �

Recall that the finite critical points are two hyperbolic saddles at (±m−1/4,±m−1/4) and a monodromic nilpotent singu-
larity (0,0), whose stability is given in Theorem 1.3. Finally, notice that the vector field is symmetric with respect to the
origin. By adding to these properties all the information concerning the infinite critical points and using the existence and
uniqueness results on the number of limit cycles and polycycles given in Theorem 1.1, we obtain the global phase portraits
of system (1) given in Fig. 1.

3.3. Some Bendixson–Dulac type criteria

The next statement is a Bendixson–Dulac type result, that mixes the Bendixson–Dulac Test given in the classical book
[3, Theorem 31] and the one given in [12, Proposition 2.2]. It is adapted to serve our interests. Similar results appear in
[5,13,16,26].
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Proposition 3.3 (Bendixson–Dulac Criterion). Let X = (P , Q ) be the vector field associated to the C1-differential system{
ẋ = P (x, y),

ẏ = Q (x, y),
(18)

and let U ⊂ R
2 be an open region which has its boundary formed by finitely many algebraic curves. Assume that there exist a rational

function V (x, y) and k ∈R
+ such that

M = M{V ,k}(x, y) = 〈∇V , X〉 − kV div(X) (19)

does not change sign in U and M only vanishes on points or curves that are not invariant by the flow of X. Then:

(I) If all the connected components of U \ {V = 0} are simply connected then the system has neither periodic orbits nor polycycles.
(II) If all the connected components of U \{V = 0} are simply connected, except one, say Ũ , that is 1-connected, then, either the system

has neither periodic orbits nor polycycles or it has at most one of them in U . Moreover, when it has a limit cycle, it is hyperbolic, it
is contained in Ũ , and its stability is given by the sign of −V M on Ũ .

Proof. Consider the Dulac function g(x, y) = |V (x, y)|−1/k . Then

div(g X) = ∂ g

∂x
P + ∂ g

∂ y
Q + g

(
∂ P

∂x
+ ∂ Q

∂ y

)
= 〈∇g, X〉 + g div(X)

= −1

k
sgn(V )|V |− k+1

k
(〈∇V , X〉 − kV div(X)

)
= −1

k
sgn(V )|V |− k+1

k M{V ,k} = −1

k
sgn(V )|V |− k+1

k M.

By the hypotheses, M|{V =0} = 〈∇V , X〉|{V =0} does not change sign in U and there is no solution contained in {M = 0}.
Therefore, neither the periodic orbits nor the polycycles of the vector field in U can intersect {V = 0}.

For proving (I) we follow the proof of the Bendixson–Dulac Criterion given in [3, Theorem 31]. Assume, to arrive at
a contradiction, that the system has a simple closed curve Γ which is the union of trajectories of the vector field. Let C ⊂ U
be the bounded region with boundary Γ . Then, by Stokes Theorem, we have that∫ ∫

C

div(g X) =
∫
Γ

〈g X,n〉,

where Γ is oriented in a suitable way. Note that the right-hand side in the above equality is zero because g X is tangent to
the curve Γ and the left one is non-zero by our hypothesis. This fact leads to the desired contradiction.

In case (II), applying a similar argument to the region bounded by two possible simple closed curves formed by trajec-
tories of the vector field, we arrive again at a contradiction.

To end the proof, let us show the hyperbolicity of the possible limit cycle Γ . Write Γ = {γ (t) := (x(t), y(t)), t ∈
[0, T ]} ⊂ Ũ , where T is its period, and its characteristic exponent h(Γ ) = ∫ T

0 div(X(γ (t)))dt . We need to prove that h(Γ ) 
= 0
and that its sign coincides with the sign of −V M on Ũ . We know that

M

V
= 〈∇V , X〉

V
− k div(X).

Remember that Γ ∩ {V = 0} = ∅. Evaluating this last equality on γ and integrating between 0 and T we obtain that

T∫
0

M

V

(
γ (t)

)
dt =

T∫
0

〈∇V , X〉
V

(
γ (t)

)
dt − k

T∫
0

div(X)
(
γ (t)

)
dt

= ln
∣∣V

(
γ (t)

)∣∣∣∣t=T
t=0 − kh(Γ ) = −kh(Γ ). (20)

Therefore, the result follows. �
Next result is a straightforward consequence of the above proposition. It states that when we construct a suitable Dulac

function, the same method provides an effective estimation of the basin of attraction of the attracting critical points.

Corollary 3.4. Assume that we are under the hypotheses of the above theorem and moreover that {V (x, y) = 0} has an oval such that
this set and the bounded region surrounded by it, say W , are contained in U . If the differential system has only a critical point p in W
which is an attractor, then W is contained in the basin of attraction of p.
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Observe that when we are under the hypotheses of the above corollary, but we already know that the system has a limit
cycle in U and that U is simply connected, then, unless the set {V (x, y) = 0} reduces to a single point, there is no need to
assume that {V (x, y) = 0} has an oval. The existence of the oval is already guaranteed by the method itself.

Sometimes the hypothesis that M does not change sign can be replaced for another one, which we explain in the
following remark.

Remark 3.5. Assume that in Proposition 3.3 we cannot ensure that the function M , given in (19), maintains its sign on the
whole domain U . Then, this hypothesis can be exchanged for another one. Define {M = 0}∗ to be the subset of {M = 0}
formed by curves that separate the regions {M > 0} and {M < 0}. Thus, the new hypothesis is that the set {M = 0}∗ is
without contact by the flow of X . Hence, the conclusions (I) and (II) of Proposition 3.3 are still holding, if we replace the
assumption for the connected components of U \ {V = 0} by the assumption for U \ ({V = 0} ∪ {M = 0}∗). We will use this
idea in the proof of Proposition 6.1.

3.4. Zeros of 1-parameter families of polynomials

As usual, for a polynomial P (x) = anxn + · · · + a1x + a0, we write �x(P ) to denote its discriminant, that is,

�x(P ) = (−1)
n(n−1)

2
1

an
Res

(
P (x), P ′(x)

)
,

where Res(P , P ′, x) is the resultant of P and P ′ with respect to x; see [7].
By using the same techniques as in [11, Lemma 8.1], it is not difficult to prove the following result, which will be used

in several parts of the paper.

Lemma 3.6. Let Gm(x) = gn(m)xn + gn−1(m)xn−1 + · · · + g1(m)x + g0(m) be a family of real polynomials depending continuously
on a real parameter m and set Λm = (c(m),d(m)) for some continuous functions c(m) and d(m). Suppose that there exists an interval
I ⊂ R such that:

(i) For some m0 ∈ I , Gm0 has exactly r zeros in Λm0 and all of them are simple.
(ii) For all m ∈ I , Gm(c(m)) · Gm(d(m)) 
= 0.

(iii) For all m ∈ I , �x(Gm) 
= 0.

Then for all m ∈ I , Gm(x) has also exactly r zeros in Λm and all of them are simple.

The idea of the proof consists in looking at the roots of G as continuous functions of m. The hypothesis (ii) prevents
that real roots of Gm pass through the boundary of Λm when m varies. The hypothesis (iii) forbids the appearance of some
multiple root of Gm when m varies.

Notice that the above result transforms the control of the zeros of a function depending on two variables, x and m, into
three problems of only one variable, the one of item (i) with the variable x and the two remaining ones with the variable m.
If the dependence on m is also polynomial, and the polynomial has rational coefficients, then these three simpler questions
can be solved by applying the well-known Sturm method. As we will see in the proof of Proposition 5.2, this approach can
also be extended when the polynomial has some irrational coefficients.

3.5. Transformation into an Abel equation

System (1) can be seen as the sum of two quasi-homogeneous vector fields, see [6]. It is known that in many cases these
systems can be transformed into Abel equations.

Proposition 3.7. The periodic orbits of system (1) correspond to positive T -periodic solutions of the Abel equation

dρ

dθ
= α(θ)ρ3 + β(θ)ρ2, (21)

where

α(θ) = 3 Cs(θ)Sn(θ)
(
2m Cs4(θ) + Sn2(θ)

)(
m Cs8(θ) − Sn4(θ)

)
and

β(θ) = 5m Cs8(θ) − 4 Sn4(θ) + (3 − 10m)Cs4(θ)Sn2(θ),

with Sn and Cs being the functions introduced in Section 2 and T their period.
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Proof. The result follows by applying the Cherkas transformation

ρ = r3

1 − r3 Sn(θ)Cs(θ)(Sn2(θ) + 2m Cs4(θ))
,

to the expression of system (1) in the quasi-homogeneous polar coordinates introduced in Section 2. It is used that the
periodic orbits of the system do not intersect the curve θ̇ = 0, and therefore the above transformation is well defined over
them, see [6]. �

Using the above expression it is not difficult to reproduce the proof of the existence of the Hopf-like bifurcation given in
Section 2. Unfortunately, although expression (21) looks quite simple, the results about the number of limit cycles of Abel
equations that we are aware of are not applicable to (21).

4. Non-existence of limit cycles for m ∈ (0,9/25) ∪ (3/5,∞)

In this section we prove the non-existence results of periodic orbits already given in [10] and extend them to the
non-existence of polycycles. Our proof is different and based on the Bendixson–Dulac theorem and other classical tools. We
study separately each interval.

Proposition 4.1. For m ∈ (0,9/25], system (1) has neither periodic orbits nor polycycles.

Proof. Recall that for m ∈ (0,9/25] the origin is an attractor. Therefore if we prove that any periodic orbit Γ of the system
is also an attractor we will have proved that the system has no periodic orbits. In order to prove the stability of the limit
cycle we need to compute

∫ T
0 div(X(γ (t)))dt , where γ (t) := (x(t), y(t)) is the time parametrization of Γ , and T = T (Γ ) its

period.
From Eq. (19), for any function V such that {V (x, y) = 0} ∩ Γ = ∅, we have

div(X) = M{V ,k} − 〈∇V , X〉
−kV

.

Hence,

T∫
0

div
(

X
(
γ (t)

))
dt = −

T∫
0

M{V ,k}(γ (t))

kV (γ (t))
dt,

where we have followed similar computations to those in (20). Then the stability of Γ is given by the sign of −M V . If we
show that for m ∈ (0,9/25] there exist a non-negative V and k ∈ R

+ , such that its corresponding M is non-negative, then
we will have proved that the limit cycle is hyperbolic and an attractor.

By considering V (x, y) = 2x2 + y4 and k = 2/3 Eq. (19) becomes

M{V , 2
3 } = 2

3

(
(3 − 10m)x2 + my4)y4,

which clearly is non-negative on R
2 for m ∈ (0,3/10].

If we use the same V (x, y) as in previous case, but k = K (m) = 8(11m + R)/(10m + 3)2, with R = √
m(1 − 4m)(25m − 9),

then we have

M{V ,K (m)} =
(

2

3 + 10m

(
(m + R)(11m + R)

m

)1/2

x2 + 2(3 − 10m)

3 + 10m

(
m(11m + R)

(m + R)

)1/2

y4
)2

.

Hence, M{V ,K (m)} is non-negative on R
2 for m ∈ (1/4,9/25]. Therefore system (1) has no limit cycles for m ∈ (0,9/25] as

we wanted to show.
To prove the non-existence of polycycles for m ∈ (0,9/25) we use a different approach. Following [24], we can associate

to each polycycle Γ , with k hyperbolic saddles at its corners, the number ρ(Γ ) = ∏k
i=1 bi/ai , where −ai < 0 < bi , i =

1, . . . ,k, are the eigenvalues at the saddles. Then, Γ is stable (respectively, unstable) if ρ(Γ ) < 1 (respectively, ρ(Γ ) > 1).
In our case

ρ(Γ ) = (5
√

m − 3 +
√

25m + 18
√

m + 9 )4

482m
.

Then, easy computations show that the polycycle is an attractor if m < 9/25 and a repeller if m > 9/25. Assume, to arrive at
a contradiction, that for m < 9/25 the polycycle exists. Then both, the polycycle and the origin, would be attractors. Applying
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the Poincaré–Bendixson Theorem we could ensure that the system would have at least one periodic orbit between them.
This result is in contradiction with the first part of the proof, where the non-existence of periodic orbits is established.

It only remains to show that for m = 9/25 the polycycle does not exist either. To prove this fact we could study the
stability of the polycycle showing that if it exists it would be an attractor, arriving again at a contradiction. Nevertheless it
is easier to apply Proposition 3.3 with the V and k = K (9/25) used to prove the non-existence of periodic orbits. Indeed,
this latter approach, taking the corresponding V and k, could also be used for all values of m ∈ (0,9/25], but we have
preferred to include a proof based on the study of the stability of the limit cycle and the polycycle. �
Lemma 4.2. Let X be the vector field associated to system (1).

(i) If we take k = 1/3 and V 1(x, y) = g0(y) + g1(y)x where g0(y) = g′
1(y) and g1(y) is a solution of the second order linear

ordinary differential equation

−g′′
1(y) + my5 g′

1(y) − 5

3
my4 g1(y) = 0, (22)

then (19) reduces to the function

M1 := M{V 1, 1
3 }(x, y) = 1

3
y3(3my2 g′′

1(y) − 5myg′
1(y) + 3g1(y)

)
. (23)

(ii) If we take k = 2/3 and V 2(x, y) = g0(y) + g1(y)x + g2(y)x2 , with

g1(y) = g′
2(y),

g0(y) = (1/2)g′′
2(y) − (1/2)my5 g′

2(y) + (5/3)my4 g2(y), (24)

then (19) becomes

M2 := M{V 2, 2
3 }(x, y) =

(
−1

2
g′′′

2 (y) + 3

2
my5 g′′

2(y) − 5

2
my4 g′

2(y) + 2

3
(3 − 10m)y3 g2(y)

)
x

+ 1

18
y3(9my2 g′′′

2 (y) − m
(
30 + 9my6)yg′′

2(y) + 3
(
6 + 5m2 y6)g′

2(y) + 20m2 y5 g2(y)
)
. (25)

Proof. (i) If V 1(x, y) = g0(y) + g1(y)x and k = 1/3, then

M1 = 〈∇V 1, X〉 − 1

3
div(X)V 1

= (
g0(y) − g′

1(y)
)
x2 +

(
−g′

0(y) + my5 g′
1(y) − 5

3
my4 g1(y)

)
x + 1

3
y3(3mg′

0(y)y2 − 5mg0(y)y + 3g1(y)
)
.

By choosing g0(y) = g′
1(y) the coefficient of x2 in M1 vanishes, and we obtain

M1 =
(

−g′′
1(y) + my5 g′

1(y) − 5

3
my4 g1(y)

)
x + 1

3
y3(3mg′′

1(y)y2 − 5myg′
1(y) + 3g1(y)

)
.

Finally, if g1(y) is a solution of (22) we get (23).
(ii) If k = 2/3 and V 2(x, y) = g0(y) + g1(y)x + g2(y)x2, then

M2 = 〈∇V 2, X〉 − 2

3
div(X)V 2

= (
g1(y) − g′

2(y)
)
x3 +

(
my5 g′

2(y) − 10

3
my4 g2(y) − g′

1(y) + 2g0(y)

)
x2

+
(

2y3 g2(y) + my5 g′
1(y) − 10

3
my4 g1(y) − g′

0(y)

)
x + 1

3
y3(3g1(y) + 3my2 g′

0(y) − 10myg0(y)
)
.

By choosing g1(y) = g′
2(y) and g0(y) = (1/2)g′′

2(y) − (1/2)my5 g′
2(y) + (5/3)my4 g2(y) the coefficients of x2 and x3 in M2

vanish. Then we have (25). �
Remark 4.3. Notice that if g2(y) is a solution of the linear ordinary differential equation

−1

2
g′′′

2 (y) + 3

2
my5 g′′

2(y) − 5

2
my4 g′

2(y) + 2

3
(3 − 10m)y3 g2(y) = 0, (26)

then (19) reduces to a function depending only on the variable y.
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Fig. 3. Regions Ω and S .

Proposition 4.4. For m ∈ [3/5,∞), system (1) has neither periodic orbits nor polycycles.

Proof. We want to apply Proposition 3.3, taking k = 1/3 and V 1(x, y) = g0(y) + g1(y)x, with g0 and g1 as in (i) of
Lemma 4.2. Applying the transformation z = my6/6, Eq. (22) becomes

zg′′
1(z) +

(
5

6
− z

)
g′

1(z) + 5

18
g1(z) = 0,

which is a Kummer equation, see [1, p. 504]. A particular solution of this equation is

g1(z) = z1/6
∞∑
j=0

(− 1
9 ) j

( 7
6 ) j

z j

j! ,

where (a) j := a(a + 1)(a + 2) · · · (a + j − 1) and (a)0 = 1. Therefore we consider

g1(y) =
(

m

6

)1/6

y
∞∑
j=0

(− 1
9 ) j

( 7
6 ) j

(
m

6

) j y6 j

j! ,

which is convergent on the whole of R and satisfies (22). Its derivatives are

g′
1(y) =

(
m

6

)1/6 ∞∑
j=0

(− 1
9 ) j

( 7
6 ) j

(
m

6

) j

(6 j + 1)
y6 j

j! ,

g′′
1(y) =

(
m

6

)1/6 ∞∑
j=0

(− 1
9 ) j

( 7
6 ) j

(
m

6

) j

6 j(6 j + 1)
y6 j−1

j! .

Replacing the above functions in (23) we obtain

M1 =
(

3 − 5m

3

)(
m

6

)1/6

y4 +
(

1

3

)(
m

6

)1/6 ∞∑
j=1

(− 1
9 ) j

( 7
6 ) j

(
m

6

) j( 1

j!
)(

m(6 j + 1)(18 j − 5) + 3
)

y6 j+4.

Since (− 1
9 ) j is negative for all j, it follows that M1 � 0 for m � 3/5, and vanishes only on y = 0. Therefore the result follows

by applying Proposition 3.3. �
5. Uniqueness and hyperbolicity of the limit cycle for m ∈ (1/2,3/5)

In this section we prove that for m ∈ (1/2,3/5), system (1) has at most one limit cycle or one polycycle and the two of
them never coexist. Moreover, we show that when the limit cycle exists, it is hyperbolic. The uniqueness of the limit cycle
was already proved in [10]. Our approach is different and, like in the previous section, it is based on the construction of
a suitable Dulac function. This section ends with the proof of Proposition 1.2.

Lemma 5.1. Let S be the open set bounded by the lines x = ±m−1/4 and y = ±m−1/4 and let Ω be the connected component
containing the origin and bounded by the above four straight lines and the hyperbola xy + 1 = 0, see Fig. 3. Then, for m ∈ (0,1), the
following holds:
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(i) The vector field X associated to system (1) is transversal to the boundary ∂S of the square S except at the two saddle critical
points of system (1).

(ii) If system (1) has a periodic orbit or a polycycle, it must be contained in Ω ⊂ S .

Proof. (i) Consider the function f (x, y) = x − m−1/4. It is not difficult to see that 〈∇ f , X〉 restricted to x − m−1/4 = 0 has
the expression y3 −m−1/4 which is negative for y ∈ (−m−1/4,m−1/4). Analogously, we can see that the direction of X along
∂S is as showed in Fig. 3 (a).

(ii) It is well known that the sum of the indices of all the singularities surrounded by a periodic orbit, or a polycycle is
one. Recall that the indices of the saddle points are −1 and the index of a monodromic point is +1. Hence, if a periodic
orbit or a polycycle Γ exist they must surround only the origin. Moreover, by statement (i), Γ cannot intersect ∂S . Finally,
a simple computation shows that 〈∇(xy + 1), X〉 restricted to xy + 1 = 0 is (1 − m)/x4, which implies that X is transversal
to xy + 1 = 0. Hence X is transversal to ∂Ω and the lemma follows. �
Proposition 5.2. For m ∈ [1/2,3/5), system (1) has at most one limit cycle and one polycycle and both never coexist. Moreover, when
the limit cycle exists it is hyperbolic and a repeller.

Proof. Following statement (ii) of Lemma 4.2 we take k = 2/3 and a function V 2(x, y) = g0(y) + g1(y)x + g2(y)x2 adequate
to apply Proposition 3.3 for proving the uniqueness of the limit cycles or polycycles for system (1).

We will take g2(y) as a truncated Taylor series at the origin of a suitable solution of (26) such that the curve {V 2 = 0}
has an oval surrounding the origin, and that M2 does not change sign in Ω . These two properties will imply the result.

The general solution of (26) is the linear combination of generalized hypergeometric functions

g2(y) = C0

∞∑
j=0

(φ+(m)) j(φ
−(m)) j

( 2
3 ) j(

5
6 ) j

(
m

2

) j y6 j

j! + C1 y
∞∑
j=0

(ϕ+(m)) j(ϕ
−(m)) j

( 5
6 ) j(

7
6 ) j

(
m

2

) j y6 j

j!

+ C2 y2
∞∑
j=0

(ψ+(m)) j(ψ
−(m)) j

( 7
6 ) j(

4
3 ) j

(
m

2

) j y6 j

j! , (27)

where φ±(m) = ±A(m) − 2/9, ϕ±(m) = ±A(m) − 1/18, ψ±(m) = ±A(m) + 1/9, with A(m) = √
(14m − 3)/m/9.

We look for an even solution, so we take C1 = 0. As we will consider C0 
= 0, it is not restrictive to choose C0 = 1. Finally,
the constant C2 = −(3/5 − m)2/3 is fixed after some previous simulations and taking into account that we already know
that at m = 3/5 there is a Hopf-like bifurcation.

Once we have fixed the above constants, we calculate the Taylor polynomial of degree 12 of g2 at y = 0, T12(g2),
obtaining

T12
(

g2(y)
) = 1

89 100
(3 − 10m)(3 + 35m)y12 − 1

6300
(75 − 125m)2/3(3 − 13m)y8

+ 1

90
(3 − 10m)y6 − 1

25
(75 − 125m)2/3 y2 + 1. (28)

So, in (ii) of Lemma 4.2, we fix g2 as T12(g2(y)). Then the corresponding g0 and g1 are given by (24). Thus, M2 is of the
form M2 = (φ(y)x + ψ(y))y4 where

φ(y) = 1

9450

(
7

99
(3 − 10m)(242m + 3)(35m + 3)y11 + (75 − 125m)2/3(86m + 3)(13m − 3)y7

)
,

ψ(y) = − 247

400 950
m2(3 − 10m)(35m + 3)y16 − 13

4050
m2(75 − 125m)2/3(13m − 3)y12

+ 1

7425
(3 − 10m)

(
550m2 + 145m + 3

)
y10 + 2

4725
(75 − 125m)2/3(196m2 − 45m − 9

)
y6

+ 1

15
(3 − 5m)y4 − 2

75
(75 − 125m)2/3(3 − 5m).

The proposition follows if we prove that M2 does not change sign on the region Ω . In fact, it is sufficient to prove that
M := M2/y4 does not change sign on Ω .

The idea is to show that {M = 0} does not intersect Ω . Since M is linear in the variable x, {M = 0} cannot have ovals
inside Ω . If {M = 0} has a component in Ω , this component would have to cross ∂Ω by continuity of the function. Then, it
suffices to see that {M = 0} does not intersect ∂Ω . Moreover, as M satisfies M(x, y) = M(−x,−y), it is sufficient to study M
on half of ∂Ω . To deal only with polynomials we introduce the new variables n = 4

√
m and s = (75 − 125m)2/3. Notice that

s3 = (75 − 125n4)2.
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We split the half of the boundary of Ω into four pieces:

• The segment γ1 = {(x,1/n): −n < x < 1/n},
• The segment γ2 = {(1/n, y): −n < y < 1/n},
• The piece of hyperbola γ3 = {(x,−1/x): n < x < 1/n},
• The corners γ4 = {(1/n,1/n), (1/n,−n), (n,−1/n)}

and we have to prove that {M = 0} ∩ γi = ∅ for each i = 1,2,3,4.
These facts can be seen proving that for n ∈ I := [ 4

√
1/2, 4

√
3/5 ),

• Q 1(x,n, s) := M(x,1/n) 
= 0, for x ∈ (−n,1/n).
• Q 2(y,n, s) := M(1/n, y) 
= 0, for y ∈ (−n,1/n).
• Q 3(x,n, s) := M(x,−1/x) 
= 0, for x ∈ (n,1/n).
• M(1/n,1/n) · M(1/n,−n) · M(n,−1/n) 
= 0.

Lemma 3.6, with r = 0, is a convenient tool to prove the first three items. The proof of the last item is a straightforward
consequence of the Sturm method.

We will give the details of the proof that Q 2(y,n, s) 
= 0, which is the most elaborate case. The remaining two cases
follow similarly.

Writing Q (y,n, s) := 2 806 650nQ 2(y,n, s) we get that

Q (y,n, s) = 1729n9(35n4 + 3
)(

10n4 − 3
)

y16 − 9009n9s
(
13n4 − 3

)
y12 − 21

(
10n4 − 3

)(
242n4 + 3

)(
35n4 + 3

)
y11

− 378n
(
10n4 − 3

)(
550n8 + 145n4 + 3

)
y10 + 297s

(
13n4 − 3

)(
86n4 + 3

)
y7

+ 1188ns
(
196n8 − 45n4 − 9

)
y6 − 187 110n

(
5n4 − 3

)
y4 + 74 844ns

(
5n4 − 3

)
.

Looking at Lemma 3.6 with r = 0, it suffices to prove the following three facts:

(i) When n = 4
√

1/2 ∈ I , Q (y,n, s) 
= 0 for y ∈ (−n,1/n).
(ii) For n ∈ I , �y Q (y,n, s) 
= 0.

(iii) For n ∈ I , Q (−n,n, s) · Q (1/n,n, s) 
= 0.

Since the polynomial has no rational coefficients the proof of item (i) requires some special tricks. Notice that when
n = 4

√
1/2 then s = 5 3

√
10/2. Hence,

R(y) := Q

(
y,

1
4
√

2
,

5

2
3
√

10

)
= 70 889

8
4
√

8y16 − 315 315

32
4
√

8 3
√

10y12 − 106 764y11 − 80 514 4
√

8y10

+ 239 085

2
3
√

10y7 + 51 975

2
4
√

8 3
√

10y6 + 93 555

2
4
√

8y4 − 93 555

2
4
√

8 3
√

10.

We will prove that the above polynomial has no real roots in [−1,12/10] ⊃ (−n,1/n). The Sturm method gives polyno-
mials with huge coefficients and our computers have problems to deal with them. We use a different approach. We know,
that

n := 3002

1785
<

4
√

8 <
37

22
=: n, s := 28

13
<

3
√

10 <
265

123
=: s,

where these four rational approximations are obtained computing the continuous fraction expansion of both irrational
numbers. If we construct the polynomial, with rational coefficients,

R+(y) = 70 889

8
ny16 − 315 315

32
nsy12 − 106 764y11 − 80 514ny10

+ 239 085

2
sy7 + 51 975

2
nsy6 + 93 555

2
ny4 − 93 555

2
ns,

it is clear that for y � 0, R(y) < R+(y). In fact,

R+(y) = 2 622 893

176
y16 − 2 427 117

68
y12 − 106 764y11 − 11 509 668

85
y10

+ 21 119 175

82
y7 + 15 442 875

164
y6 + 314 685

4
y4 − 37 446 948

221

and, now, using the Sturm method it is quite easy to prove that R+(y) < 0 for y ∈ [0,12/10]. Hence, in this interval,
R(y) < R+(y) < 0, as we wanted to prove.
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To study the values of y < 0 we construct a similar upper bound,

R−(y) = 70 889

8
ny16 − 315 315

32
nsy12 − 106 764y11 − 80 514ny10

+ 239 085

2
sy7 + 51 975

2
nsy6 + 93 555

2
ny4 − 93 555

2
ns,

and applying the same method the result follows.
To prove (ii) we compute

�y Q (y,n, s) = n42s3(5n4 − 3
)5(

35n4 + 3
)3(

10n4 − 3
)3

P258(n, s),

where P258(n, s) is a polynomial in n and s of degree 258. Clearly, the roots of the first five factors of the above discriminant
are not relevant for our problem because the corresponding n is not in I . To study whether P258(n, s) vanishes or not we
compute

Res
(

P258(n, s),
(
75 − 125n4)2 − s3, s

) = (
5n4 − 3

)24
P390

(
n2),

where P390(n2) is a polynomial of degree 390 in n2. Applying again the Sturm method we get that P390(n2) has no signif-
icant roots for our study. Finally, the numerator of Q (−n,n, s) · Q (1/n,n, s) is a polynomial in n and s of degree 49. Using
the same trick as above we prove item (iii). In this case the polynomial we have to deal with has degree 152 in n.

Therefore {M = 0} ∩ ∂Ω = ∅ and as a consequence {M = 0} ∩ Ω = ∅.
Finally, it is not difficult to see, because V is quadratic in x, that the set {V (x, y) = 0} has exactly one oval surrounding

the origin. Hence, the proposition follows. �
Proof of Proposition 1.2. Notice that the function V used in the proof of Proposition 5.2 coincides with the function
V (x, y,m) of the statement of the proposition. Taking k = 2/3 we are also under the hypotheses of Corollary 3.4. Therefore
the set Um is contained in W s

0 , as we wanted to prove. �
We remark that following similar ideas as in the above proof we can construct bigger sets contained in W s

0 . For
a given m, let us denote by T�(g2(x; C2)) the Taylor polynomial of degree � at x = 0, of the function (27) with C0 = 1,
C1 = 0. Then for each � ∈ N and C2 ∈ R we can take this function as a new seed g2 for constructing the corresponding V
as in (ii) of Lemma 4.2. Then checking that the oval contained in {V = 0} is crossed inwards by the flow of the system, the
result follows for the function V constructed with these � and C2.

6. Non-existence of limit cycles and polycycles for m ∈ (9/25,0.547]

This section contains new non-existence results for system (1). We split the interval into the subintervals (9/25,1/2) and
[1/2,0.547]. Recall that our numerical study shows that the system has no limit cycles for m < 0.56011 . . . . As m becomes
closer to this bifurcation value the proof of non-existence of periodic orbits and polycycles becomes harder.

Proposition 6.1. For m ∈ (9/25,1/2), system (1) has neither limit cycles nor polycycles.

Proof. We would like to apply Proposition 3.3. To this end we will follow similar steps to the ones in the proof of Propo-
sition 5.2, but with a function V such that the set {V = 0} has no oval in Ω . Recall that Ω is the domain introduced
in Lemma 5.1, where the limit cycles and the polycycles must lie. We take V = V 2(x, y) = g0(y) + g1(y)x + g2(y)x2 with
g1(y) = g′

2(y), g0 = (1/2)g′′
2(y)−(1/2)my5 g′

2(y)+(5/3)my4 g2(y). Now we consider g2(y) = a0 +a2 y2 +a4 y4 +a6 y6 +a8 y8,
with coefficients to be determined. From statement (ii) of Lemma 4.2 it follows that the corresponding M2 is a polynomial
function in x of the form M2 = φ(y)x + ψ(y) where φ(y) and ψ(y) are polynomials in the variable y whose coefficients
depend on a2 j , j = 0,1, . . . ,4. In order to simplify the computations, we change the parameter m by n4 to transform V into
a polynomial in the variables x, y, and n. Since m ∈ (9/25,1/2) we can restrict our study to n ∈ (0.77,0.844).

We consider the values of a4, a6 and a8 such that φ(y) has a zero at y = 0 of multiplicity nine, we choose the value
of a2 by imposing that M2 vanishes at the two saddle points of the system and, finally, we use the freedom of changing
g2(y) by λg2(y), for any 0 
= λ ∈R, to remove all the denominators. We obtain that

g2(y) = 270
(
9 + 51n2 + 213n4 + 535n6 + 924n8 + 756n10) − 756n2(9 + 42n2 + 105n4 + 130n6)y2

+ 3
(
3 − 10n4)(9 + 51n2 + 213n4 + 535n6 + 924n8 + 756n10)y6

− 3n2(3 − 13n4)(9 + 42n2 + 105n4 + 130n6)y8.

The corresponding M2 is of the form

M2(x, y) = 2
y4(φ(y)x + ψ(y)

) =: 2
y4M(x, y), (29)
3 3
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where

φ(y) = 3
(
3 − 10n4)(3 + 35n4)(9 + 51n2 + 213n4 + 535n6 + 924n8 + 756n10)y5

− 3n2(3 − 13n4)(3 + 86n4)(9 + 42n2 + 105n4 + 130n6)y7,

ψ(y) = −756n2(3 − 5n4)(9 + 42n2 + 105n4 + 130n6)
+ 27

(
3 − 5n4)(9 + 51n2 + 213n4 + 535n6 + 924n8 + 756n10)y4

− 12n2(9 + 42n2 + 105n4 + 130n6)(9 + 45n4 − 196n8)y6

− 40n8(3 − 10n4)(9 + 51n2 + 213n4 + 535n6 + 924n8 + 756n10)y10

+ 91n10(3 − 13n4)(9 + 42n2 + 105n4 + 130n6)y12.

Recall that the main hypothesis in Proposition 3.3 is that M does not change sign on Ω . As we will see, this happens
only for n ∈ J := (0.77, ñ ] where ñ ≈ 0.8045592 will be precisely defined afterwards. When n ∈ K := ( ñ,0.844) the result
will be a consequence of the variation of Proposition 3.3 described in Remark 3.5.

For n ∈ J , proceeding similarly to proof of Proposition 5.2, we divide the half of the boundary of Ω in five pieces:

• The segment γ1 = {(x,1/n): −n < x < 1/n},
• The segment γ2 = {(1/n, y): −n < y < 1/n},
• The piece of hyperbola γ3 = {(x,−1/x): n < x < 1/n},
• The corners γ4 = {(1/n,−n), (n,−1/n)},
• The corner γ5 = {(1/n,1/n)}

and we will prove that {M = 0} ∩ γi = ∅ for each i = 1,2,3,4 and that although (1/n,1/n) ∈ ∂Ω , the set {M = 0} does
not enter in Ω . From these results we will have proved that M does not change sign on Ω and, as a consequence, the
proposition will follow for n ∈ J .

To prove the fifth assertion it suffices to study the function M in a neighborhood of the point (1/n,1/n) ∈ ∂Ω . By the
construction of M , it holds that M(1/n,1/n) = 0. By computing the partial derivatives of M at this point we obtain the
tangent vector of the curve at (1/n,1/n). Then, it is easy to see that when n ∈ J , in a punctured neighborhood W of
(1/n,1/n), it holds that W ∩ {M = 0} ∩ Ω = ∅. In fact, ñ ∈ ∂ J is a solution of the equation

num

(
∂M(x, y)

∂x

∣∣∣∣
(x,y)=(1/n,1/n)

)
= 0,

where num(·) denotes the numerator of the rational function. Moreover,

M

(
x,

1

n

)
= −9(nx − 1)

n4

(
88 200n16 + 107 800n14 − 4930n12

− 37 380n10 − 15 855n8 − 2736n6 + 576n4 + 108n2 − 27
)

(30)

and ñ is also the positive root of the polynomial in n appearing in the right-hand side of the above formula. Notice that
when n = ñ, the straight line {y = 1/̃n } is a subset of {M = 0}. This fact is the reason for which this approach only works
for n ∈ J = (0.77, ñ ].

Let us prove the remaining four assertions. As in the proof of Proposition 5.2, they follow by showing that when n ∈ J ,

• R1(x,n) := num(M(x,1/n)) 
= 0, for x ∈ (−n,1/n).
• R2(y,n) := num(M(1/n, y)) 
= 0, for y ∈ (−n,1/n).
• R3(x,n) := num(M(x,−1/x)) 
= 0, for x ∈ (n,1/n).
• M(1/n,−n) · M(n,−1/n) 
= 0.

That R1 has no zeros in J , is a straightforward consequence of (30).
To study R2 and R3 we will use Lemma 5.1. We start computing the discriminants,

S2(n) = �y
(

R2(y,n)
)
, S3(n) = �x

(
R3(x,n)

)
,

and analyze whether they vanish on J or not. Using the Sturm method we get that on J , S2 vanishes only at one value
n2 ≈ 0.8040188 and S3 also vanishes only at one value n3 ≈ 0.8045576. The root n2 of S2 forces us to split the study of
R2(y,n) into the three subcases: n ∈ (0.77,n2), n = n2 and n ∈ (n2, ñ ]. Doing the same type of computations and reasoning
as in the previous section we can prove all the above assertions when n 
= n2. The case n = n2 follows by continuity
arguments, because in this situation R2 has a real multiple root but it is not in (−n2,1/n2). The study of R3 is similar to
the one of R2 and we omit it. We also get that R3 does not vanish on (n,1/n) either.
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The fact that M(1/n,−n) · M(n,−1/n) 
= 0 for n 
= ñ is once more a consequence of the Sturm method.
Therefore, when n ∈ J , we are under the hypotheses of Proposition 3.3, and we will know that the system has no limit

cycles once we have proved that the set {V = 0} has no ovals. We defer the proof of this fact until we have considered the
case n ∈ K = ( ñ,0.844).

When n ∈ K , we know that {M = 0} ∩ Ω 
= ∅ and we are no more under the hypotheses of Proposition 3.3. Let us see
that we can apply the ideas of Remark 3.5. To this end we have to prove that {M2 = 0}∗ ∩Ω is without contact for the flow
of X . Note that {M2 = 0}∗ = {M = 0}∗ .

We need to show that Ṁ = 〈∇M, X〉 does not vanish on {M = 0}∗ ∩ Ω . We study the common points of {M = 0} and
{Ṁ = 0} and prove that they are not in Ω . First, we compute

Ṁ(x, y) = 〈∇M(x, y), X(x, y)
〉 =: y3N(x, y),

and we remove the factor y3. We do not care about the points on {y = 0} because

M(x,0) = 756n2(5n4 − 3
)(

9 + 42n2 + 105n4 + 130n6) 
= 0,

for n ∈ (0,0.88].
The resultant Res(M, N, x) factorizes as

Res(M, N, x) = y2(n2 y2 − 1
)(

Pn,2(y)
)(

Pn,34(y)
)
,

where Pn,2(y) and Pn,34(y) are polynomials in the variable y with respective degrees 2 and 34 and whose coefficients are
polynomial functions with rational coefficients in the variable n.

Clearly, (n2 y2 − 1) does not vanish on −1/n < y < 1/n. By using once more Lemma 3.6 it is not difficult to prove that
Pn,2(y) does not vanish either on −1/n < y < 1/n, for n ∈ ( ñ,0.844). Hence we will focus on the factor Pn,34(y).

We will use again Lemma 3.6. By using the Sturm method we get that �y(Pn,34(y)) has no zeros in the interval K . In
fact one zero is ñ ∈ ∂ K and another one is n∗ ≈ 0.8445 /∈ J and this is the reason for which we can only prove the result
until n = 0.844 < n∗ . By using the Sturm method, it can be shown that Pn,34(−1/n) · Pn,34(1/n) 
= 0 for all n ∈ K and, for
instance, for n = n0 = 83/100 ∈ K , the polynomial Pn0,34(y) has exactly two (simple) zeros in −1/n0 < y < 1/n0. Then,
Lemma 3.6 with r = 2, implies that Pn,34(y) has exactly two (simple) zeros in −1/n < y < 1/n, for all n ∈ K . We call them
y = yi(n), i = 1,2, and they are continuous functions of n. Therefore, we need to prove that the corresponding points in
{M = 0} ∩ {N = 0} are outside of Ω .

Notice that because of the expression of M , given in (29), the points in {M = 0} are on the curve Γ = {(−ψ(y)
φ(y)

, y): y ∈
R \ {0}}. Moreover it can be easily seen that φ(y) 
= 0 on the region that we are considering. Therefore the points in
{M = 0} ∩ {N = 0} are given by the two continuous curves

γi :=
{(

−ψ(yi(n))

φ(yi(n))
, yi(n)

)
: n ∈ K

}
, i = 1,2.

For a fixed n ∈ K it is not difficult to prove that the points in γi , i = 1,2, are outside of Ω . If for some n ∈ K there was
a point inside Ω , by continuity it would be at least one point in one of the pieces of boundary of Ω formed by the straight
line {x − 1/n = 0} and the hyperbola {xy + 1 = 0}. To prove that such a point does not exist we compute the following two
resultants

Res

(
num

(
−ψ(y)

φ(y)
− 1

n

)
, Pn,34(y), y

)
= P1250(n),

Res

(
num

(
−y

ψ(y)

φ(y)
+ 1

)
, Pn,34(y), y

)
= P1260(n),

where P�(n) are given polynomials with rational coefficients and degree �. Both polynomials factorize in several factors and,
using once more the Sturm method, we can easily prove that they do not vanish on K . Hence, {M = 0} ∩ {N = 0} ∩ Ω = ∅
which implies that {M = 0} ∩ Ω is without contact by the flow of X , as we wanted to prove.

Since M is linear in the variable x, {M = 0} cannot have ovals. Therefore, by Remark 3.5, to end the proof we need to
show that the set {V = 0} has no ovals either in Ω . We claim that the set {V = 0} ∩ Ω is without contact by the flow of
the system. If this happens and {V = 0} had an oval then it would be without contact. Then by the Poincaré–Bendixson
Theorem it should surround the origin. However, by considering the straight line passing through the origin y = 9x/10 it
is easy to prove, by using again Lemma 3.6, that the function V (x,9x/10) does not vanish on the interval −1/n < x < 1/n
for all n ∈ (0.77,0.844). Thus, {V = 0} ∩ {y − 9x/10 = 0} = ∅. Hence, V has no ovals inside Ω as we wanted to see and the
proposition follows by using all the above results and the reasoning explained in Remark 3.5.

To prove the above claim, it suffices to see that {M = 0} ∩ {V = 0} ∩ Ω = ∅. This is because precisely, M|{V =0} = V̇ .
Recall that when n ∈ J = (0.77, ñ ] then {M = 0} ∩ Ω = ∅ and so the result follows.
Let us consider the case n ∈ K = ( ñ,0.844). To study if {V = 0} and {M = 0} intersect, we compute the resultant of M

and V with respect to x. We have
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Fig. 4. Positively invariant region R with boundary {V 2 = 0}.

Res(V , M, x) = (
n2 y2 − 1

)
Pn,30(y),

where Pn,30(y) is a polynomial of degree 30 and whose coefficients are polynomial functions in the variable n with rational
coefficients. We want to prove that Res(V , M, x) does not vanish on the interval −1/n < y < 1/n for n ∈ K . It suffices to
study Pn,30(y). We will use once more Lemma 3.6.

The polynomial Pn,30(−1/n) · Pn,30(1/n) has no real roots when n ∈ K . Moreover hypothesis (i) of Lemma 3.6 holds with
r = 0 (no real roots) by considering for instance n0 = 82/100. To see that condition (iii) of the lemma holds, we compute
�y(Pn,30(y)). It is a polynomial of degree 2728 in the variable n which factorizes in several factors, the largest one being
of degree 594. From this decomposition we can prove that �y(Pn,30(y)) has no zeros for n ∈ K . Therefore, by Lemma 3.6
we conclude that Pn,30(y) does not vanish on the whole interval −1/n < y < 1/n for n ∈ K , and the claim follows. �
Proposition 6.2. For m ∈ [0.5,0.547], system (1) has neither limit cycles nor polycycles.

Proof. We will construct a positive invariant region R having the two saddle points in its boundary. As we will see, the
proposition follows once we have constructed this region, simply by using the uniqueness and hyperbolicity of the limit
cycle, whenever it exists. We remark that in this proof we will not use the Bendixson–Dulac theorem.

Assume that such a positive invariant region R exists. By the Index Theory, if the system had a limit cycle, it should
surround only the origin. By Proposition 5.2 we already know that for n ∈ [0.5,0.6) ⊃ L := [0.5,0.547], the limit cycle would
be unique, hyperbolic and a repeller. By the Poincaré–Bendixson Theorem the above facts force the existence of another limit
cycle and so a contradiction. It is straightforward that the existence of this positive invariant region is not compatible with
the existence of a polycycle connecting both saddle points.

To construct R we consider a function V 2(x, y) = g0(y) + g1(y)x + g2(y)x2, with g0 and g1 as in (24) and g2 an even
polynomial function of degree 12 of the form

g2(y) = 1 +
6∑

k=1

a2k y2k,

to be determined. By statement (ii) of Lemma 4.2, the function M2, given in (25), associated to this V 2 and k = 2/3 is of
the form M2 = φ(y)x + ψ(y), where φ(y) and ψ(y) are polynomials in the variable y whose coefficients depend on the
unknowns a2k with k = 1, . . . ,6.

We fix a4 and a6 in such a way that φ(y) has a zero at y = 0 of multiplicity nine; we get the value of a8 by imposing
that V 2 vanishes at the two saddle points; the values of a2 and a10 are chosen so that the curve V 2 = 0 is tangent to both
separatrices at the saddle points of the system. Finally, after experimenting with several values for a12 and m, so that the
region with boundary {V 2 = 0} is positively invariant, we fix a12 = −157(10m − 3)(35m + 3)/44 550 000.

The region R will be the bounded connected component of R2 \ {V 2 = 0} containing the origin, see Fig. 4 (a).
We need to prove that the curve {V 2 = 0} ∩ S (see Fig. 4 (b)) is such that the vector field X points inwards on all its

points. We introduce the new parameter m = n2 and we compute V̇ 2 = 〈∇V 2, X〉 and

Res(V 2, V̇ 2, x) = y8(ny2 − 1)4(Pn,12(y))3 Pn,36(y)

n28(120n3 + 113n2 − 3)6
, (31)

where Pn,12(y) and Pn,36(y) are polynomials of degree 12 and 36, respectively, and whose coefficients are polynomial
functions in the variable n.

Notice that since m ∈ [0.5,0.547] then n ∈ T := [0.707,0.7396]. Since the denominator of (31) is positive, we only need
to study its numerator.

Using once more Lemma 3.6 and the same tools as in the previous sections we prove that Pn,12(y) · Pn,36(y) is positive
for all y ∈ (−1/n,1/n) and n ∈ T . We omit the details.
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Fig. 5. Definition of the maps δ(m) and ys(m) in Proposition 7.2.

Hence, we have proved that the numerator of Res(V 2, V̇ 2, x) is non-negative and it only vanishes on y = 0 and y =
±n−1/2. Therefore the sets {V 2 = 0} and {V̇ 2 = 0} only can intersect on {y = 0}. Indeed, the sets {V 2 = 0} ∩ S ∩ {y = 0}
and {V̇ 2 = 0} ∩ S ∩ {y = 0} coincide and have two points (±̂x(n),0) for each n ∈ T . Studying the local Taylor expansions of
V 2(x, y) and V̇ 2(x, y) at these points we get that the respective curves V 2(x, y) = 0 and V̇ 2(x, y) = 0 have a fourth order
contact point on them and, as a consequence, V̇ 2 does not change sign on {V 2 = 0} ∩ S , as we wanted to prove. That, on
{V 2 = 0}, the vector field X points in, is a simple verification. Hence the proof follows. �
7. Existence of polycycles

This section is devoted to prove that the phase portrait (b) in Fig. 1 can only appear for finitely many values of m. Notice
that this phase portrait is the only one representing a polycycle. As we have already explained, the main difficulty is that we
are dealing with a family that is not an SCFRVF. To see that the control of the existence of polycycles for general polynomial
1-parameter families can be a non-easy task, we present a simple family for which a polycycle appears at least for two
values of the parameter.

Example 7.1. For m = 0 and m = 1, the planar systems{
ẋ = −2y + (3m − 4)x + (4 − 2m)x3 + xy2 − x5 = Pm(x, y),

ẏ = (4 − m)x + xy2 − 2mx3 − x5 = Q m(x, y), m ∈R,
(32)

have a heteroclinic polycycle connecting the saddle points located at (±√
2 − m,0).

Proof. The above family has been cooked to have explicit algebraic polycycles. Consider the family of algebraic curves
Hm(x, y) = y2 − (x2 + m − 2)2 = 0 and compute

Wm(x, y) = 〈∇Hm(x, y),
(

Pm(x, y), Q m(x, y)
)〉
.

Doing the resultant with respect to x of Wm and Hm we obtain

Res
(
Wm(x, y), Hm(x, y), x

) = m4(1 − m)4 y4 R(y,m),

where R is a polynomial of degree 4 in both variables, m and y. This implies that for m = 0 and m = 1 the algebraic
curve Hm(x, y) = 0 is invariant by the flow of (32). These sets coincide with the invariant manifolds of the saddle points
(±√

2 − m,0) and contain the corresponding heteroclinic polycycles. �
We have simulated the phase portraits of (32) for several values of m and it seems that no polycycles appear for other

values of m. In any case, the example shows the differences between SCFRVF, for which as we have discussed in Subsec-
tion 3.1, the polycycle usually appears for a single value of the parameter, and families that are not SCFRVF.

Let us continue the study of system (1). We denote by p±
m = (±m−1/4,±m−1/4) the two saddle points of the system.

Proposition 7.2. Let (0, ys(m)) be the first cut of the stable manifold of p+
m with the O y+-axis. Similarly, let (0, yu(m)) be the first

cut of the unstable manifold of p−
m with the same axis, see Fig. 5 (a). Then the function δ(m) := ys(m) − yu(m) is an analytic function.

Proof. This result is a consequence of the tools introduced in [21]. We only give the key points of that proof.
Fix a value m̂ for which δ(m) is defined. Simply because the O y+ is transversal for the flow, the function δ is well

defined in a neighborhood of m̂. It is clear that it suffices to prove that ys(m) is analytic at m = m̂, because the yu(m) can
be studied similarly. To prove this fact we will write the map ys(m) as the composition of two analytic maps.
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Consider a vertical straight line L := {(x, y): x = m̂−1/4 − ε}, for ε > 0 small enough. Denote by (m̂−1/4 − ε, y1(m)) the
first cutting point of the stable manifold of p+

m with this line. Because L is close enough to the saddle point it can be seen
that the local stable manifold cuts this line transversally. Moreover, the tools given in [21] prove that y1(m) is analytic at
m = m̂, because of the hyperbolicity of the saddle point. Next, consider the orbit starting on L with y-coordinate y1(m̂). In
backward time, this orbit cuts also transversally the O y+-axis at the point with y-coordinate ys(m̂) and needs a finite time
to arrive to this point, see Fig. 5 (b). Because of the transversality to both lines, and the finiteness of the time needed for
going from one to the other, it is clear that the map y2(z) induced by the flow of the system between L and the O y+-axis
is analytic at z = y1(m̂). Since ys(m) = y2(y1(m)), the result follows. �
Proof of (iii) of Theorem 1.1. Notice that each value of m that is a zero of the map δ(m), introduced in Proposition 7.2,
corresponds to a system (1) with a polycycle, i.e. M = {m ∈ (0.547,0.6): δ(m) = 0}. From Proposition 6.2 we know
that δ(0.547) > 0 and from Proposition 4.4 that δ(0.6) < 0. Hence the set M is non-empty. Finally, because of the non-
accumulation property of the zeros of analytic functions, the finiteness of M follows. �
8. Proof of Theorem 1.1

The proof of Theorem 1.1 simply consists in combining the corresponding results proved in the paper. More concretely:

• The non-existence of limit cycles and polycycles when m ∈ (−∞, 0.547] ∪ [3/5,∞) is given in the following results:
– For m ∈ (−∞, 0], trivially in the introduction,
– For m ∈ (0,9/25] in Proposition 4.1,
– For m ∈ (9/25,1/2) in Proposition 6.1,
– For m ∈ [1/2,0.547] in Proposition 6.2,
– For m ∈ [3/5,∞) in Proposition 4.4.

• The existence of at most one limit cycle and one polycycle when m ∈ [1/2,3/5), the fact that they never coexist, and
the hyperbolicity and instability of the limit cycle are given in Proposition 5.2.

• The phase portraits of the system in the Poincaré disc and the study of the origin are given in Subsection 3.2 and
Section 2, respectively.

• The proof of the existence of the phase portrait (b) in Fig. 1, only for finitely many values of m, is given in Section 7.
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