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1. Introduction

Consider the Boltzmann equation with frictional force

fe+& Vaf —au-Vef =Q(f, f), (1.1)

with the initial data

f(O,l‘,g):fo(fE,f) (12)

Here, f = f(t,z,£) € R represents the probability (mass, number) density of gas particles around position

r € R3 with velocity & = (£1,&2,&3) € R3 at time t € RT. The frictional force —au (o > 0) is proportional
Jp £ d€
Jps fFd€
this paper. @ is the nonlinear collision operator which is defined by

to the macroscopic velocity v = u(z,t) = Without loss of generality, we take v = 1 throughout
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1

[ 5€)a(€) + £(€)0(€) ~ F©(e) ~ F€)9(6) Bl — €.1.0) de. 2

R3x S?
S? denotes the unit sphere and 2 € S?. The conservation of momentum and energy gives the following
relations:
¢ =¢-[(E-&) 20,
=6+ [(E-¢&) 20,

in which &, &, are the velocities before collision while &, £, are the velocities after collision. Under the
angular cut-off assumption the cross-section B(|¢ — .|, ) takes the form

—&|,0) = BW)I€ — &, 0= :
B(|¢ = &.1,9) = B()[¢ — & cos el

-3<y<Kl,

where 0 < B(¥) < const.|cos?|. The exponent v is determined by the interaction potential between two
colliding particles which is called the soft potential when —3 < v < 0 and the hard potential when 0 < v < 1,
including the Maxwell model when v = 0 and the hard-sphere model when v = 1. In our previous work [15],
we studied the hard-sphere model. Inspired by recent results in [5] and [6], in this paper we deal with the
more general case when —2 < v < 1.

Clearly, the following global Maxwellian

M= W exp(—[¢%/2) (1.3)
is a stationary solution to (1.1). We set ¢ as a perturbation of our solution f around M:
f=M+VMg. (1.4)
Then the Boltzmann equation (1.1) can be reformulated into
3tg+£'ng—U~Vgg+U~£\/M+%U~59=L9+F(g,g), (1.5)

where L is the linearized collision operator and I" is the corresponding nonlinear collision operator, given
by

1
1
I'(g,9) = WQ(\/MQ, VMy). (1.6)
Now we consider the Cauchy problem of (1.5) with the corresponding initial data
00.2.6) = g0(r.€) = —= (fow.€) = M), (2.6 €R* xR (1.7)

Now we list some notation that will be used in this paper. We use H;\’fg, HY, Hév to denote the Hilbert
spaces H™ (R} x RY), HN(R3), HY (R}), respectively, and L?, L2, L7 are used for the case when N = 0.
When there is no confusion, we use H" to denote H}Y or H)Y, and use L* to denote L2, L2 .. (-,-) denotes
the inner product in the Hilbert space L2 .. We use || - || to denote L* norm. When the norms need to
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be distinguished from each other, we write |- [[r2, [| - [z2 and || - |12 , respectively. For the multi-index
a = (a1, as,az), we denote

T3

3
Oy = 0,1052052, and |af = E .
i=1

For simplicity, we use 9; to denote 0,, for each i = 1,2,3. For multi-indices @ = (a1, a2,a3) and f =
(B1, B2, B3), we denote 9§ = 929;, that is 9§ = 921922003071 0.20,°. A ~ B means tA < B < £, for
generic constant 0 < ¢ < 1. For ¢ > 1, we also define the mixed velocity—space Lebesgue space Z, =
Lg(Lg) = LQ(Rgg L4(R3)) with the norm

oz, = ([ ( [ \g<x,f>!"dx)2/q ds)m, 9= 92,6 € 7,

R3 R3

We use § to denote the Fourier transform of g. (alb) = a - b denotes the complex inner product of com-
plex vectors a and b. Throughout this paper, C' denotes a generic positive (generally large) constant and
k,n denote generic positive (generally small) constants. They may be different from line to line.

The Boltzmann equation with frictional force was first studied in [14], where the authors proved that
there exists a unique global-in-time classical solution which approaches to the global Maxwellian time
asymptotically when the initial perturbation is smooth and close to this given Maxwellian. The analysis in
that paper was based on the macro—micro decomposition introduced in [11,12] through energy estimates.
Recently in [15], we give the existence result of the same model by using a different kind of energy method
which was first developed in [8], we also obtain the optimal time convergence rate of the solutions towards
the equilibrium. For the time-decay part, we are inspired by [3,4], where the time-decay rate can be obtained
by a combination of Fourier analysis and the energy estimates. However, the above results only hold for the
hard-sphere model, the general case when —3 < v < 1 remains open. One of the main difficulties lies in the
fact that the nonlinear velocity growth effect of the term %u - £g cannot be controlled by the dissipation
of the linearized collision operator L when v < 1. For this, we introduce some mixed time—velocity weight
functions as in [5,6] to capture the dissipation for controlling the nonlinear velocity growth. Besides, a
time—{requency/time weighted method is also needed to overcome the large velocity degeneracy in the
energy dissipation for the soft potential case when v < 0. Note that for the soft potentials, as in [6], our
method in this paper only deals with the situation when —2 < v < 0, the very soft potential case when
—3 < v < —2 is left for future discussion.

The rest of the paper is organized as follows. In the next section, we review some basic properties of
the linearized operator L, and give the macro—micro decomposition to build up the working system. In
Section 3, we give a detailed proof of our results for the soft potential case, Theorem 3.1. The results for the
hard potentials, Theorem 4.1, can be proved in a similar way yet much simpler, thus we only give a sketch
of its proof in the last section.

2. Preliminaries
2.1. Basic properties of L

The properties of L are very crucial in energy estimation for the Boltzmann equation. We list them here
for later use.
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(I) L =—v(&) + K, where v(£) is a nonnegative measurable function called the collision frequency, while
K is a self-adjoint compact operator on L?(R3) with a real symmetric integral kernel K (¢, &,). The
explicit representations of ¥ and K are as follows:

e = [ BONE- &) d2ds ~ (L+1¢])"
R3xS2
and
Ku(€) = / B)[E — €. MY2(6,)MY2(€)u(¢') df2 de,
R3xS2

+ / BW)J¢ — €. ['MY(6.)MY2(¢')u(€]) dS2 de.

R3xS2

= [ By - P e M A @ule) an e,

R3x S2

- / K(6.6.)u(e.) d..

R3

(IT) The null space of the operator L is the 5-dimensional space of collision invariants:
N =Ker(L) = span{VM; &VM, i =1,2,3; [¢*VM}.

(IIT) Following from the Boltzmann H-theorem, L is self-adjoint and non-positive in L?(R?). Furthermore,
there exists a constant Ag > 0 such that:

- / gLgde > Ao / V(&) ({T - PYg)2de. Vg e D), (2.1)
RS RS

where P denotes the projection operator from Lg to N and D(L) is the domain of L given by D(L) =
{g€ 12 | v(€)g € L2}, f. [1,7].

2.2. Macro—micro decomposition

Now we give the macro—micro decomposition to prepare for the later energy estimates.

g(tvxvg) =g + 92,

glnge-/\[a
3

9= {a(tyx) + Zbi(t,x)fi + c(t,x)|§|2}\/ﬂ, (2.2)

g2=9-g1=1-P)geN*.

Then Eq. (1.5) can be rewritten as

1
5t91+f'vzgl—U'V§91+U'§VM+§U'§91:T'H'f‘ha (2.3)
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with
r= 7815927
1
l=—§ Vg2 +u-Vega — 5“'592+Lg27

h=1I(g,9)-

Next we derive the evolution equations for (a, b, ¢). In fact, by putting (2.2)3 into (2.3) and collecting the
coefficients w.r.t. the basis {ex, k = 13} consisting of

\ M7 (51 \% M)1<i<37 (‘§l|2 \ M)lgigga (glgj \ M)1<i<j<3’ (|£|2§l \ M)lgigy (24)
we have the following macroscopic equations on the coefficients (a, b, ¢) of g;:

da—u-b=~0
4D

Z

Otb; + 0;a + uza — 2u;c + u; =
Orc + 0;bi + uib; = %(2)’

1)
Oic+ cu; = 72(3),
b

here 7 # j, with u = ————.
where ¢ #£ j, with u T

(2.5)

All terms on the right hand side are the coefficients of r 4+ [ + h with respect to the corresponding elements
in the basis {e13} and are given by:

A0 = 5,70 41O 4 pO)
ORI IO
2B = ) 4 4 ),

71(5 = —(9tr(2 + l(2 + hg ,
7P =—o7? +17 + n?,

where i # j, with r = —0,F. (2.6)

Based on (2.5)3 and (2.5)4, the macroscopic component b = (by, ba, b3) satisfies an elliptic-type equation

—0;05b; = =3 0i(7) = (wiby +uib)) + 305 (4P — wibi) — 205 (4§ —wsby).  (2.7)

ij
i#] i#]

Also, (a,b,c) satisfies the local macroscopic balance laws. In fact, multiplying Eq. (1.1) by the collision
invariants 1, &, %|§ |2, integrating the products on £, then, using the perturbation (1.4) and the decomposi-
tion (2.2), direct calculation one has the macroscopic balance laws on the coefficients (a, b, ¢) of g1:

1
8tCL—v:v /§|§‘2£\/Mg2d§ :’U,'b,

R3

3tbi + 8Z(a + 50) + Vz : /ffz\/ﬂgg df = —bi,

1 1 1 1
Bc+ =Vy b+ =V, - / Z|€)PeV/ Mgy de = —=u - b.
3 3 2 3

R3
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3. The soft potential case

In this section we give a detailed proof of our results for the soft potential case, i.e. —2 < v < 0. First,
let us introduce the following mixed time—velocity weight function

w(t,€) = (¢ o), (3.1)

where 7 € R, 0 < A< 1,6 > 0, and (£) := (14 |£]?)1/2. We need to define the following energy functionals:

Oy= X lwpat 590, (32)
lee|+IBISN
where N > 8 is an integer, and [ > N is a constant.
2
Eny ~ Hg(t)]]N,z' (3.3)
1 TP 1 o 12
Dy, = Z ||V2(5)W|,@|—l(t7f)3592” er Z H<5>W|ﬂ|—l(t75)aﬂ92”
lo|+IBISN lee+1BI<N
o 2
HBIP+ > Va0 (a b0 (3.4)
la|<N-1
and the time-weighted temporal sup-energy
Xny= sup Enyg+ sup (1+ t)%&v,l_l. (3.5)
0<s<t 0<s<t
Now the main result for the soft potential case when —2 < v < 0 is stated as follows:
Theorem 3.1. Let —2 <~y <0, N >8, [y > % andl > 1—|—max{N LU 1} with 0 <A< 1and 0< 60 < %.
Assume that fo = M + M%go. There exist constants eg > 0, Cy > 0 such that if
Z l|wi1-1(0,€)0g g0 || + [|(€) 770 HZ1 €0, (3.6)

lal+[BISN

then the Cauchy problem (1.5), (1.7) admits a unique global solution g(t,x,§) satisfying f(t,z,§) = M +
Mig(t,x,&) and

SUP{ [[g(t)HNl + 1+ t)% [[ (t)]]N,l—l} < Ceo. (3.7)

t>0

3.1. Some basic properties

Lemma 3.1. (See [13].) Let -3 <y <0, 7€ R, 0< ¢ <K 1, and w,4(§) = <§>'V"e‘i<5>2 be the velocity weight
function. If |B| > 0, then for any n > 0, there is Cy) > 0 such that

[ 20(©0:09)059d6 > [ (€02 (O l0ngl de
R3

R3

Y ()05, g1% e — C, / Xiei<ac, (€7 |gPde. (3.8)
|ﬂ1|<|ﬂ|R3
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If |B] > 0, then for any n > 0, there is Cy, > 0 such that

'¥w376(£)6ﬁ(Kg)hdf‘ s {nw%ﬁ(@[ ”(f)wz,q(fﬂaﬁrlgl?df)é

1

0 [ugeac oo ac) | ([rieuzi@iia)’. e

R3 R3

Lemma 3.2. (See [6].) Let 1 >0, 0 < A < 1. It holds that

(I(9:9).9) < Cll(@,b, )| 1 [ Ve (.5, |2 02

O{ITae byt 3 [0l el (3.10)
lal+]BI<N
and
(I(g,9),02,(t:€)g2) < C||(a,b, )| s [V (as b, ||| 2 gol| + CEE vrw(t, Ogo] > (3.10)
Lemma 3.3. (See [6].) Let 1 > |B], 1 < |a| +|8] < N and 0 < A < 1. For given g = g(t,z,§), define gop as

gap = 0%g if |B| =0 and gap = 0592 if |B] = 1, then, it holds that

(9579, 9), 0 1(t:€)9as) < CJ| (@b, yu [V (@, )|y 7% gas]| + CEL (D (B). (3.12)

Lemma 3.4. (See [2].) For the nonlinear part h represented as h(®), h(l) h(z), hg), hE ) given in (2.6) we have
the following estimate for the soft potential case:

ST Sl [r© 80, hP R hP|F < CenaDR . (3.13)

y 145 5 1%
la|<N i)

For the coefficients of the separated part ¥ and the linear part I, it holds that

PN L N Rt Al e Wi (AT

la|<N-1 ij lo]<N—-1
>0 Dl 5P PP <o 3 viase”
|| SN=1 45 lo|<N

Those terms containing the microscopic part go can be bounded by the microscopic dissipation rate:

ST 08Va - [(EPEVM, go), (€ @ VM, g P <€ Y |[rEaces|”.

la]<N-1 0<|a| <N

3.2. Time decay for the evolution equation

Consider the linearized homogeneous equation
g +€-Vog+b-&VM = Lg, (3.14)

with initial data go(z, ). We define e!? as the solution operator to (3.14).
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Lemma 3.5. Set = pu(€) :== (€)"2. Let =3 <~v<0,1>0,lp >3, a >0, m=|a|, and suppose
1" go| 5, + [ln"*"0%go| < oo. (3.15)
Then, the evolution operator e'P satisfies
'€ B goll < O+ 1) ([[u*ogo|l ,, + |00 g0]]) (3.16)

with o[g,m] = %(% —35)+

NI
w3

Proof. We prove this lemma in two steps.
Step 1. The Fourier transform of (3.14) gives

Og+i€-kg+b-6VM = Ly. (3.17)

Taking the complex inner product with g, integrating it over RZ’ and taking the real part, we obtain

1 X
30allzy + Re [ (b-¢vM19) de = Re [ (Lalg) . (318)

R3 R3

Then, we can deduce

A 1 ~ 2 A~
Olll7z + wllv2 {T = Pg}{[1, + [bI* < 0. (3.19)

Similar to the procedure in Section 2, one can derive a hydrodynamic system of linear equations

O(a+3c)+V,-b=0, (3.20)
Obj + 0j(a+3¢) +20;,¢+ > OmAjm ({T = P}g) +b; =0, (3.21)
1 1
e+ Ve bt o > 0;B;({I-Plg) =0, (3.22)
J
and
3t [Ajj ({I — P}g) —|— 26] + 28_7'[)]‘ = Ajj(R), (323)
Oy [Ajm ({I - P}g)] + ajbm + ambj = Ajm(R)a Jj#m, (3.24)
O [B;({I-P}g)] +109;c = B;(R), 1<j,m<3, (3.25)

Ajm(g) = ((§&m — 1)V M, g),
Bj(g) = ((I¢* = 5)& VM, g),
R=—¢ V. {I-Plg+L{I-Plg,

and with direct calculation we can obtain

1
9, [Z 9 Ay ({1~ P}g) + 50 Ao ({1 P}g) | = Aubis — 00D
J

= % Y OmAji(R) — Z 9 Ajm(R), (3.26)

j#m
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for some fixed m. Similar as in Lemma 4.1 in [15], using (3.20) to (3.26) we have for any t > 0, k € R3 that

k|2
1+ k|2

O ReEM(9) + & (1B + [¢]* + |a + 3¢]*) < (JHV%{I_P}gHig +Cb? (3.27)

for some r1 > 0. Where £!(§) takes the form

znt A _ ] . ~ 1 ’Lkm _ . _A

+nlzj:<Bj({1—P}g) 1+|k|2 >+Z< ‘1+|k|2 +3é)>. (3.28)

Therefore, for 0 < k2 < 1, a suitable linear combination of (3.19) and (3.27) gives

L
T TERE

[Hg||L2 + Ko ReEM(g)] + K{Hzﬂ{I - (16> + [ + |a + 3¢]?) + |l§|2} <0, (3.29)

Step 2. Taking the complex inner product of (3.17) with 12'§ and integrating it over Rg’ , one has

1 1
S2ial[3, + A (1= PYalf3, =~ Re [~ PYalu*'Pg) + Re [ (K{L-PYg|u® (1~ P)g) de
R3 R3

— Re / (b-evVM|u?g) de. (3.30)

R3

Here, the estimation for the right-hand terms comes from Cauchy—Schwarz’s inequality and (3.9) cf. [6]. By

. 2|k|?
using the fact 1#—)“'2)(“6‘221 > 1, we can deduce

2 1 112 1
Ol 9| Laximz= + wl|v2 T = PR o xppz1 < C(HV“‘ {1-
Applying {I — P} to (3.17) we have
OAL — PYg+ i€ - k{1 —P}g = L{I — P}§ + Pi¢ - kj — it - kP (3.32)

By further taking the complex inner product of the above equation with ?'{I —P}§ and integrating it over
Rg’, one has

1
SO T =Py, + sl {1 - PYg

< Re/(K{I —P}ilu P}g) d¢ + Re/(Pi§ kg — i€ kPG|p P}g) d¢. (3.33)
R3 R3
Similar as in [6] we have
O || I — P}§||2L§X|k\2<1 + || HI - P}§||2X\k|2<1
1 |]€| — |2
C<||u2{I— + @) (3.31)
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For properly chosen constants 0 < k3, k4 < 1, set

Ei(9) = ||§||ig + ka2 Regmt(ﬁ) + H3|W§Hig><|k\2>1 + H4||Ml{1 - P}.@Hig)ﬂk\?gh

k[

W(W +¢]* + |a+ 3¢[*) + |b]*.

Dy(g) = ||n"~{I-P}g

2
2t
‘We have

OE(§) + kDy(g) < 0. (3.35)

As ||§H2L§ + kg Re EM(g) ~ ||§||2L§, it is straightforward to check that

E@) ~ [i'dl5z Dul@) > wp(W)Eia (@), p(k) = T (3:36)

Therefore, we arrive at
O E(9) + kp(k)Er—1(9) <0, (3.37)

for any ¢ > 0, k € R?® and for any [ > 0. The same as in Theorem 3.1 in [6], we can deduce for given Iy > 3/2,
we fixing J > 3/2, p > 1 such that lp = J + p — 1, and hence

E(§) < C[1+ p(k)t] ™ iy, (d0).

Since J > 3/2, in the completely same way as in [5] and [3] by considering the frequency integration over
R} = {|k| < 1} U{|k| > 1} with a little modification of the proof in [9,10], one can derive the desired
time-decay property. This completes the proof of our lemma. O

3.3. Energy estimates

Proposition 3.1. Assume —2 < v < 0,let N >28, I >N, 0< A< 1land0 <60 < i. Suppose that the
a priori assumption

sup Xnu(t) <9 (3.38)
0<t<T

holds for 6 > 0 small enough. Then, there is En () such that

d

%EN,l(t) + xDn,(t) <0 (3.39)
holds for any 0 <t < T.

Proof. Step 1. Energy estimates without any weight:
In the proof we use the a priori assumption (3.38) and the equivalent relationship between w and b:

b

= — .4
Y 1+a+ 3¢ (3.40)

Also, the following Sobolev inequality is frequently used in performing our energy estimates:

1
lgllz= < C|Vg|Z||V2g||* < C|[Vgllan-
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1). First, we multiply (1.5) by g and take the integration over R? x R3:

1d 9 1 9 1 / 9
5 7 / gd{dm+2 / &-Vyg°dede 2 u-Veg” dé dx
R3 xRR3 R3 xRR3 R3 xR3
1
+ / u~£\/Mgd§dx+§ / u- g2 dé dx
R3xR3 R3 xR3
= / gLg d¢ dz + / 9l (g, g) d dx. (3.41)
R3 xR3 R3 xR3

First we notice [ps, ps & - Vag? déda = [ps, psti - Veg? dédx = 0. Then we use (2.1) and Lemma 3.2
to obtain the estimates involving Lg and I'(g,g). Terms involving the frictional force u are estimated as

follows:
. _ 2 5. (a+3c) b S (11— 2
/ u 5\/Mgd§dx—/|b| dx /—1+a+3c dx > (1 —C9)|bl|7,
R3XR3 R3 R3
1 2 1 2 1 2
5 | wetdd=5 | uggtdsdrt | wgpgdsdrt g | u-gideda.

R3 xR3 R3 xR3 R3 xR3 R3 xR3

Using (3.38) and (3.40), direct calculation gives

1 9 1 1 a+ dc¢ 9 9
f— . = — . = - < .
5 / u-&gi d€ dx 2/(a+5c)u bdx 2/1+a—|—3c|b| dz < Co||b]]
R3 X R3 R3 R3

Using the Cauchy inequality and again the a priori assumption (3.38) together with (3.40) we have
12
u-&g192 A€ du < O[3 g5 ||” + Cob]>
R3 xRR3
At last use (3.40) to obtain
o)
T [ e

R3xR3 R3 xR3 R3 xR3

1
3 / u- g3 dédr < Csup |u / |€]g3 da d€ <

Combining estimates of all terms we obtain the estimates on the zero-th order:

co
(1+41)¢

d 1
g + slbll” + sl 2 g2 < / €195 d d€ + C3]|V.a(a.b,0)| .

R3 xRR3

DN | =

2). We rewrite (1.5) as

a+ 3c

O e M+ Lg+ T . 42
1+a+3665 +Lg+1I'(g,9) (3.42)

1
atg—i—b-f\/M:—f-ng—iu-fg—i—u-Vgg—l-

We take derivatives 0% (1 < |a] < N) of (3.42) and multiply the resulting equation by 9%g, then integrating
over R3 x R3, we have
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d 1
o]+ wollvd ool + lon

N =

=— / 0%g -V, (0%g) du d€ + / 0%g0*(u - Veg) dx d€

R3xR3 R3 <R3
o aa a+ 3c 1 o aa

+ / 9%gd <1+a+30b) &V M dux de 5 / 9%gd* (u - £g) da dE

R3 xR3 R3 xRR3

+ / 0%g0“I'(g,9) dx d§. (3.43)

R3 xR3

The first term on the right hand side equals to 0. Using Lemma 3.3 we can obtain the estimate of the last
term on the right hand. For the fourth term on the right hand of (3.43) we have

Lemma 3.6. Let N > 4, 1 < |a| < N and 1 > 0, then it holds that

1
1 / W2 (£,€)0%g0° (u - £g) du de

2
R3 xR3
<O|Valab, )| gnn D A€ 2woi(t,€)0%g2||* + [[0(a, b, ).
1<]al<N
Proof.
1
5 [ 00 gg)dud

Now, we do calculation as follows:

Ji1 = —<8a <%U : 591),w21(t, E)aa9>

=— Y cgl<%§-6a—“1u6algl,w31(t,£)8(’g>

lar]<] e

<C Z ‘30‘7“1u||5‘°‘1(a,b,c)’H80‘gHL§da:
la1|<elgs

< {Csup”” 0% (a,b, O rulll%gll, it fou] < 12,

Csup, [0~ ul[|9° (a,b,¢) [[0%g], if | > 15,

Ji2 = _<8a (%u : ggQ) ) w%l(tv §)6a91>

1
- 3 o (§e 0 .00,

[ | <
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<o Y [lpmmaljon(ab ol o7 g dr

la1|< g3
_ {CSUPz 109 go [ 22110 (a, b, ) |0~ ull,if o] < 151,
Csup,, [0°~*ul[|0%(a, b, c)[[[[0* g, if Jon| > 151,

Jiz = —<aa (%U : §g2> ,—w?(t, f)aa92>

1
> cgl<5f'aaaluaauh,w%xué>aa92>

[ar <

<¢ >0 [lorallllglFwn (60" g alllE 2wt 0% || de

la1|<elgs
_ {CSUM 1€/ w_i(t, )0 gall 2 ||| Fwi(t, )0 ga[[|9°~ 1 ul| i o | < 151,
Csup,, [0 ul[[[€]Fw i (t, )0 ga|[[|€[ Fwi(t, €)0°gall,  if | > 5]

Therefore, Lemma 3.6 follows by collecting all above estimates. O
For the second term on the right hand of (3.43) we have

Lemma 3.7. Assume —2 <y <0. Let N 24, 1< |a| <N andl > 0, then it holds that

(0%(u-Veg),w?,(t,£)0%g)
< C[|Vala,b,0) || yu > {1€)wior -1t )0 ga|* + [[0%(a,b, 0.

1< al+|BI<N, BT
Proof. We write it as

<8a(u ' vfg)a wz—l(t7 f)aag>
= (u-Ved*g,w” ()0%) + D> CH (0™ u- Ved™ g1, w?(t,€)0%)

1< |<] o

+ <ao¢1u . Vgaa—‘“gg,wzl(t, §)aag>]

3
= Z Joi. (3.44)
i=1
Here

1
J21=<u-V53“g,wil(t,£)8ag>:—§ / u- Vew?,(t,€)|0%g|” d de.

R3xR3

To estimate Jy7, notice

2x(¢)?

Ve (1,€) = (~29){E) V()07 + AN/ (1+ 1) (€) TV (e e

< Ol DT < Cle? (1,6), (3.45)
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1 and the fact that both A/(1 +¢)? and V¢(¢) are bounded by a constant independent of ¢

where (£) >
and ¢ was used. Then we have

Jo1 < Csup\u|(”(§ % _i(t,6)0 92H + HV a,b,c HHN 1)

< Csup pl([(€) V2w i(t,€)0%ga||” + | V@, b, 0)|| yyav_s)-

For Jogq,, it is straightforward to estimate it by
J22a1 = Cgl <aa1u : Vﬁaa_algh Ole(tv 6)8ag>
C’/|6a1u||6°‘*“1(a,b, | (w16, 00%0s] 5 + |0%(a,b,)) dr

), i fea] < 55,

|), 1f |011| > 5

1(t,£)0%gal + [10%(a, b, c)
(ta g)aag2|| + Haa ((1, ba C)

- { Csup,, [0%ul[| 0% (a, b, ¢) | ([lw-
Csup, [0%7* (a, b, )[[|0** u]| (J|lw—s

Now we have
(3.46)

Jorey < OlIVala,b,0) | s (Ve 0,0) [ + 0-a(, 0% ).

Note that (€)772 > 1 due to —2 < v < 0 so that
(3.47)

21(t,8) < (Ewi—i(E)w_i.

Thus
Ja3ay = (0™ u - Ved* 1 ga,w?(t,£)0%)
o L e

<OVl X w5l + w0l
l+]BI<N, |81

Here and in the following proof we have used the facts

sup’@alu’ < C’HV$(a,b, c)HHN,l, H(’?”QUH < CHV,;(a,b, C)HHN,17

for || < &, |ag| > &
By collecting all the above estimates, it then completes the proof of the lemma. O

For the third term on the right hand of (3.43), we have

/aa a<1i+i63 )-gmdxdg
R3 xR3
(3.48)

a1 aaf @t3c 2
/a b-d (1+ ey )<C||vm(a,b7c)||HN_1||vz(a7b,c)}|HN_1.
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Now we conclude

2dt||3°‘9|| +w[llv20%ga]* + [0°0]]"] < CoDw (o).

Step 2. Energy estimates with the weight function wyg—;(t,¢):
First we rewrite (1.5) as

1
0192 +&-Vaga —u-Vega +v(§)g2 = Kga + I'(g,9) — JuEg2 + [P, I]g, (3.49)

where Ity =& -V —u- Ve + %u - £. By multiplying the above equation by w?;(t,£)g2 and integrating over
R3 x R? we have

1d d
3 g lo-i(t. 0l + [ st O - 5{ G20, Ll

= <K92’w%l(t>£)g2> + <F(g7g)’wzl(t7§>g2> - <%u . 592>w2l(t75)92>

+ <u ’ v592’w2—l(t7£)92> + <[P7 Fu]ng%l(ta g)g2>

5
= Z Js;. (3.50)
i=1
For the left-hand third term, notice
d A0 9 9
- b1
dtw l(t 5) (1 + t)1+9 <£> wfl(t7£)a (3 D )

then we have —2(£w?,(t,€), |g2]?) = %H(le(t,g)ggn? For the right-hand side terms, we have the
following estimates:

Using Lemma 3.1 we have

J31 = (Kgo,w?,(t,€)g2)
<nllvrwoi(t, g2 + Collxieco, (€) g [ Fw—i(t, €)ga||

| 2

< 2|vrwi(t,€)gs|) + Cyl|v2 g2

Lemma 3.2 implies
J3g = < , W l(t 5) >
C[&vz ) [vAwit 0] + @b, ) s [ Talasb, o) [ el |

By the Cauchy—Schwarz inequality we have

i = = - € w202 ) < Cowp ) Foa (1. e

b

1 ,
Taa = (u- Vega, w2y o (£,8)g2) = =5 (u- Vew?, (t,€), |92]*) < C'sup [ul[|(€) 2wi(t, €) g2 ’

J35 = <[P7 Fu]nggl(t7£)g2>
<nllvE g + Co{llvE Vage| + | Vala by e)||*} + CollulZe { | w—i(t €)go||” + | Vala, b, ¢)|[ 51 }-
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By collecting all above estimates we obtain

A0

m||<5>w4(taf)gz||2

1d
5 g o1t gl + All3 (©w-s(t go|* +
< CDN () + C{||Valasb, o) ||” + |2 Vaga || + || g2 |°}-
For the weighted estimate on the terms containing only x derivatives, we directly use (1.5). In fact, take

< |a] < N, and by applying 02 to (1.5) and multiplying it by w?,(t,£)0% and integrating over R3 x R3,
one has

%%Hw-z(t,oa‘“gHZ + (1(§)0%g2, %, (1,6)0%) + (1 +/\tgl+0 )it )07l
= (K0%gy,w?,(t,£)0%g) — (0%u - &V M, w? (t,£)0"g)
+ <8°‘F(g,g) _oe (%u - £g> +0%(u- vgg),wil(t,g)aag>. (3.52)
For the left-hand terms, one has
(V(£)0% g2, 02, (1,€)%g) = [|[(©)w_i(t. €)% ga||” + ((€)% g2, w? (1.€)0% 1)
—|| Ew_y(t,€)0 gQH - C||0*(a, b, c)” , (3.53)
and
aﬁ%u woi(t,E)0% | > (1+A76>1+9”< o, g|* — Clo* @b’ (3.54)
For the right-hand side we only give the estimates of
—(0%u - €V M, w2 (t,€)0%g)
< nl[vEw_it, ©)%g||” + Cyl|ou|* < nljvEw_i(t,€)8%ga||” + Cyl|Vala, b, ¢)|[5n—s- (3.55)

The rest terms on the right hand side follow from Lemma 3.1, Lemma 3.3, Lemma 3.7 and Lemma 3.6.
Thus,

lomi(t. 09" + 5 D7 |lv? (©woi(t, 02 + W 3 et g

1d
2dt
1<[al<N 1<[al<N 1<]al<N

<omngrof X rHOrn] + Vool |

1<]a|<N

For the weighted estimate on the mixed 2 — £ derivatives, we use Eq. (3.49) of go. Let 1 < m < N. By
applying 0 with [8] = m and |a| + |B] < N to (3.49), multiplying it by wﬁmfl(t,g)aggz and integrating
over R? x R3 one has

)

d 1d
EHW|,3|71<?§>€)8§92H2 + <8/3{V8a92}7w\25|71(t,5)8392> + < 2dtw|5‘ l(t £),

1
2

1
= <8§ (F(g,g) +u-Vegs — ju- 592>7w|2ﬁ|z(t»§)a§gz>
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+ <85K6a92aw%ﬁ‘fl(taé’)agg?> + <ag[P7Fu]gaw‘23|fl(t7g)agg2>
+ (—05 (& - Vaga), wiy_y(t,€)05 g2)- (3.56)

For the left-hand second term of (3.56), from Lemma 3.1 one has

(0p{v0° g2}, W\QﬁH(ta )05 92)

> |vrws it €050 —n Y [vEwe -t €05, 92| — CullXje1<2c, €)1V 0% g ||
1811<18]

> vrwpi(t 050l —n D [viws-i(t. 95,0 — Ollv2 0% g (3.57)
[B11<18]

The right-hand first term is bounded by CdDy (), it follows from Lemma 3.3 and similar method to the
proof of Lemma 3.7 and Lemma 3.6. The right-hand first term follows from Lemma 3.1. For the right-hand
third term, we have

(05(P, L], W\2ﬁ|71(ta £)9592)

<alroganl” + 1+ @b ol ) (9t + 3 Iwtorael). @59)
la|<N

The right-hand third term is estimated as

<—8§(§ - Vag2), w|2,8\—l(tv 5)3§g2>

- Z CEl@Blg ’ Vwag—ﬁlg%wfmfz(t’5)5’392>
Bi1=1

< nl[vEwg—i(t, )982 || + CoZjaps181<ni8s=181-1 ||V ) -1 (1, €)05, 02|,

where we have used the fact that for o = 8 — 51, |81 =1

wiy 1 (t,€) = wigp4 1 1(t )wigy 4111 €) < Cv2wyg it E)v2wig, (¢, ).

Therefore, summing over {|3| = m, |a|+ |8] < N} for each given 1 < m < N and then taking the proper
linear combination of those N — 1 estimates with properly chosen constants Cy,, > 0 (1 < m < N) and
1 > 0 small enough, one has

1d 1
5@07" Z ||w|ﬂ\—l(tv§)8§92||2+” Z Hﬂwlﬂl—z(tf)agngQ

la+[BISN,|B|=m || +IBISN,|8]>1

+W > l@ws it 98"

lee+BISN,|B]>1

<060N,l+0{ S [vrw(t 0% + ||vm<a,b7c)|\im}.

la| <N

Step 3. Now we turn to the estimation on the macroscopic dissipation rate. The main result of this part
is the following lemma:
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Lemma 3.8.
d a 1l aa o
2G(00) + X [l0°Va(ab.o)’ \C{ S wrovge|* + EnvaDra+ Y HawbHQ}. (3.59)
la|<N-1 la|<N la|<N -1

Here,

Glg) == > D [Gs:(9(t) +G5i(a(t) + G5 (9(®)) + G2 (a(t))],

lo|<N—1 i=1

with

Ga . (g(t)) = (827", 0,:0%a),

G4 (g) = =3 (027, 0,000:) + 3 (097, 0;00b:) + 2(027Y, 9:02b;),
J#i i

Gs.:(9(t) = (927", dr02c),
ggfi (g(t)) = <asbi; 3¢3§a>.

Gai(g(t), Ghi(g(t), and G ,(g(t)) stand for the interactive energy functionals between the microscopic
part go with the macroscopic part a, b and c separately, while ng’i(g(t)) stands for the interactive energy
functional between a and b.

The proof of Lemma 3.8 is similar to the proof of Lemma 3.2 in [15], the only difference lies in Lemma 3.4.
Step 4. Now we define

o= 28] S orgl] 4 9lae) )+l + Y ool

lal<N 1<|al<N

2 et ©)08 " (3.60)
o +181 <N |l=m

Here M; > 0, i = 1,2,3 are suitably large. Then, taking a proper linear combination of those estimates in
the previous three steps we can prove

d

ESN’Z + Dy, < 0. (3.61)
This completes the proof of Proposition 3.1. O
3.4. Global existence and optimal convergence rate

To close the energy estimates under the priori assumption (3.38), one has to obtain the time-decay
of Ex,—1. The following lemma is crucial in this direction.

Lemma 3.9. Assume —2 < v < 0. Fiz parameters N,lg,l, 0 and X as stated in Theorem 3.1. Suppose that
the priori assumption holds true for 6 > 0 small enough. Then, one has

Xn(t) < C{ed, + X3,(0)}, (3.62)
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for any t > 0, where ey is defined by

evi= > [lwie—i(0.995 90| + [1€) % gol .. (3.63)
la]+[BISN

As preparation, we need to prove the following lemma firstly.
Lemma 3.10. Under the assumptions of Lemma 3.9, one has
o)l < C(1+t)_%{€N,l + XN}, (3.64)
and
Hvzg@ﬂhéaﬁwg)<<7u-%w—%{eNJ+-XNJ@>L (3.65)
forany0 <t <T.

Proof. By the Duhamel principle, the solution g to the Cauchy problem can be written as the mild form
t
g(t) = etBgo + /e(t_S)BG(s)ds, (3.66)
0

where G(s) = I'(g,9) +u-Veg — 2u- &g+ (b—u) - &/M. Using Lemma 3.5, one has

t

/e(tfs)BG(s) ds

la®I < lle™ g0l +

0
t
: 2lo
<o+ H g, + /<1+t—s>-%y|<5> FG(s)|| . ds
0
||v$g(t)||L§(H£"2) S C(1+t>7%(}|<£ 7T090||Z +1[¢¢) Ea ngHLg(H;V—?))

2lo

(15 G ), + 40 % VaG6)| 1y gy d:

t
+/1+t—s —i(
0

We claim that

&G, + 3 © 0G0 < Cenu (), (3.67)
la|<N-1
for any 0 <t <T,1>1+max{N,% — }

The term containing I'(g,g) can be bounded by CEn,—1(t), this can be found in [6]. We only give the
estimate on terms containing w. Direct calculations yield

H<s> # (u Veg - g+ (0- )6V )

C([146) 7% llullzz {1 Vegllzz + (llgllzz Iz + l1Blllla+ 3e])

4
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_ﬂl
< C(lll{]}(&)* Veg|| + [[€) = +g|l} + I18llla + 3¢l
<SO(bl{llw_1y Vegll + llw_sg . 1 911} + 18]l lla + 3ell)
< CEN-1(2),
where we have used the assumption [ —1 > 2 — = By applying L2°-norm to the lower-order derivative

term and using Sobolev’s inequality, one has

2

lal<N-1

< CH(a,b, C)HHN Z ’|W|B|,(l,1)(t,§)agg” + CHb — u”HN—l < CENJ_l(t). (3.68)
lal+|B|<N

© %0 (- Veg - gu-tot 00V )|

Now we can conclude

oG, + > © oG
la| <N =1

3

< CENI_1(s) < C(1+5)"2 sup (145)2En-1(s) < C(1+ )" Xn(t).
<

Hence we obtain

la®)]| < C+ 6~ H|[©) % gol| 5, + Xna(®)}, (3.69)
and
Vo9 @)l 2 g2y < CA+1)” e @goHZl+!|<€>‘%ngo|\Lg<Hgfz)+XN7l<t>}- (3.70)

This completes the proof of Lemma 3.10. 0O

Proof of Lemma 3.9. From Proposition 3.1, we know

sup EN,Z(S) g ENJ(O) g Cf?\/,r (371)

0<s<t

Take 0 < € < % small enough. Notice that (3.39) also holds true when [ is replaced by [ — 1 since all the
conditions of Proposition 3.1 are still satisfied under the assumption that [ > N+1 and supgc . Xn,i(s) < 0
with § > 0 small enough. Thus, it holds that

d
EgNl 1+I€DN1 1 <0. (3.72)

Multiplying the above inequality by (1 +t)2+ gives
d 34e S4e 3 lie
%[(1+t)2 5]\]71_1] +r(l+1t)2 Dnj-1 < B +e)(1+1)2 ENJ-1- (3.73)

Similarly, we have

d 1
T [(1+ t)%JregN,z—%] +r(l+ t)%JreDN,l—% < (5 + €> (1+ t)_%JregN,Z—%

< CgN,l 1. (3.74)
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For any given [

I

Dy i) + [[(@ 0" > wx 1 (1). (3.75)

Then, from taking the time integration over [0,¢] of (3.74), (3.73) and (3.39) and further taking the appro-

priate linear combination one has

(14 1)+ Enyo1(t) < CEN(0) + C/<1 +5)2+|(a, )| ds
0

< CEN(0) + O+ 1) (X + XRra (1)), (3.76)
which implies

sup (1+8)2En-1(s) < C (& + X30,(1)). (3.77)

1<s<t

This completes the proof of this lemma. O

Proof of Theorem 3.1. In fact, by the continuity argument, Lemma 3.9 implies that under the priori as-
sumption (3.38) for 6 > 0 small enough, one has

Xno(t) < Celyyy 0<t<T, (3.78)

provided that ey defined by (3.9) is sufficiently small. Recalling the condition (3.6) for initial data go
which coincides with (3.9), the priori assumption (3.38) can be closed. Then, the global existence follows,
and Xy ; < Ceg holds true from (3.2), (3.3), (3.5) and (3.78). This completes the proof of Theorem 3.1. O

4. The hard potential case

In this section we give the main results for the hard potential case. Inspired by [5], we introduce a mixed
time—velocity weight function

Alg]

Wy(t,€) = (€)2et+07, (4.1)

where (&) := (14 |¢]>)'/? and £ € R, A > 0,0 > 0 are suitably chosen constants.
Define the energy functionals as

Enet) ~ llgllve = Y [loe(t, ©)959(1)]),

lal+]BI<N
Invat)y= > |[rE©@e(t, O g | + 12+ Y [ Va0 (a,b,0)]7,
|| +[B8|<N la|<N—1
and
Znao(t) = sup (141)2En,. (4.2)

0<s<t

We make the a priori assumption:
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sup Zne(t) <6, (4.3)
0<t<T

where ¢ > 0 is a sufficiently small positive constant. Then, we have

Theorem 4.1. Let 0 < v < 1, N 24, > 2 and 0 < 0 < i. Assume that fo = M +M%go. There are
constants €9 > 0, Cy > 0 such that if

Z |@¢(0,£)05 gol| + llgollz, < eo, (4.4)
la]+|B|<N

then the Cauchy problem (1.5), (1.7) admits a unique global solution g(t,xz,&) satisfying f(t,z,§) = M +
M3 g(t,x,€) and

sup{(1+ ) lglln.e()} < Ceo. (4.5)

In order to prove Theorem 4.1, we only need to prove the following lemma which is similar to Lemma 3.9
in the last section:

Lemma 4.1. Assume 0 < v < 1. Fiz parameters N,{ as stated in Theorem 4.1. Suppose that the priori
assumption (4.3) holds true for 6 > 0 small enough. Then, one has

Zne(t) < Cleh, + 25,0} (4.6)

for any t > 0, where ey ¢ is defined by

ENg = Z [|@¢(0,€)08 90| + llgoll z, - (4.7)
la|+|BI<N

Remark 4.1. The proof of Lemma 4.1 and Theorem 4.1 is very similar to the soft potential case, only much
simpler. We need the time decay result, the non-weight energy estimates, the weighted energy estimates and
the macroscopic dissipation estimates to close the a priori estimates. For the hard potential case, we can
directly adopt some of the estimates in our previous work [15] on the hard sphere model, such as the time
decay result, the macroscopic estimation. While for the weighted part, the estimation relies on the weighted
estimates on the integral operator K and the nonlinear collision term I'(f, g) with respect to the weight
function @, (t, &) defined in (4.1). In order to prevent the duplication, we do not give the details here.
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