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1. Introduction

Given two complex Banach spaces E and F , G(E, F ) represents the space of all linear isometries from E
onto F . If E = F we denote the isometry group of E by G(E). For a non-empty set W ⊂ G(E, F ) and v ∈ E, 
we set Wv = {A v : A ∈ W}. We recall that the algebraic closure of W, is the set, W = {T ∈ B(E, F ) :
Tv ∈ Wv, ∀ v ∈ E}. An operator T ∈ W is said to be locally in W. Further, fixing a G1 ⊂ G(E, F ), the 
algebraic closure of W in G1, is defined to be W G1 = {T ∈ G1 : Tv ∈ Wv, ∀ v ∈ E}.

Definition 1.1. (Cf. [6].) The set W is said to be algebraically reflexive relative to G1 if and only if every 
element of G1 that is locally in W is in W, i.e. W G1 = W. If G1 = G(E, F ), then W is algebraically reflexive 
if and only if W = W.

In this paper we study the algebraic reflexivity of some natural subsets of the isometry space, when 
F = C(X), the space of complex-valued continuous functions on a compact Hausdorff space X. We recall 
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that X can be canonically embedded as a subset of the unit ball of C(X)∗, equipped with the weak-∗
topology, see [7] for information on the weak-∗ topology. If one considers the space of all functions f : X → E∗

which are continuous relative to the weak∗-topology on E∗, endowed with the norm ‖f‖∞ = supx∈X ‖f(x)‖, 
this is a Banach space, and we denote it by WC∗(X, E∗). It is well known that the mapping T → T ∗|X
is a surjective isometry between B(E, C(X)) and WC∗(X, E∗). In order to make use of the structure of 
the surjective isometries (see [2] and the monograph [4]) we work under some natural assumptions on the 
range spaces. Similar questions for spaces of compact operators were studied in [5] and [10]. There are no 
satisfactory answers for algebraic reflexivity problem for the group of isometries on the space of bounded 
operators. In this paper we focus on the algebraic reflexivity of some subsets of the isometry group and try 
to do away with conventional assumptions of metrizability or the availability of approximation properties 
for the range or domain space. The monograph [8] also deals with problems similar to the ones considered 
here.

In Section 2, we prove the algebraic reflexivity of the set of surjective isometries in G(WC∗(X, E∗),
WC∗(Y, F ∗)) preserving the constant functions. This result follows from the representation for the surjective 
isometries given by Cambern and Jarosz in [2]. In Section 3, we consider the isometric isomorphism between 
WC∗(X, E∗) and B(E, C(X)), to study the algebraic reflexivity of subsets of the isometry group on a class 
of closed ideals of B(E, C(X)) that contain all compact operators. For the ideal of weakly compact operators 
whose adjoint has separable range, under a reasonable continuity assumption on the class of isometries, we 
show that they are algebraically reflexive in the group of isometries.

In the last section we derive the algebraic structure of the isometry group G(WC∗(X, E∗)) and of certain 
subgroups of the isometry group. We show that under certain assumptions, the isometry group is a direct 
product of the group of C(X)-modulo isomorphisms on WC∗(X, E∗), with the group of homeomorphisms 
on X.

2. The algebraic reflexivity property

We first recall a result due to Cambern and Jarosz that characterizes the linear isometries from 
WC∗(X, E∗) onto WC∗(Y, F ∗). The scalar field R or C is denoted by K.

Theorem 2.1. (Cf. [2].) Let X and Y be compact metric spaces and E∗ and F ∗ be Banach dual spaces 
with trivial centralizer, Z(E∗), Z(F ∗) = K, and let T : WC∗(X, E∗) → WC∗(Y, F ∗) be a surjective linear 
isometry. Then there exist a homeomorphism Φ : Y → X and a function U : Y → G(E∗, F ∗) such that

(Tf)(y) = U(y)f ◦ Φ(y), (1)

for all f ∈ WC∗(X, E∗) and y ∈ Y .

It is easy to see that the surjective isometry T−1 is given by (T−1G)(x) = (U(Φ−1(x)))−1G ◦ Φ−1(x), 
for all G ∈ WC∗(Y, E∗) and x ∈ X. If Const(X, E∗) denotes the set of all constant functions, i.e. e∗(x) =
e∗ ∈ E∗, then T ∈ G(WC∗(X, E∗), WC∗(Y, F ∗)) is said to preserve (fix) the space of constant functions 
if T (Const(X, E∗)) ⊆ Const(Y, F ∗), (T (Const(X, E∗) = Const(Y, F ∗), respectively). This is equivalent to 
say that the function U in equation (1) is constant. The single element in the range of U is an isometry in 
G(E∗, F ∗). For simplicity of notation, it will also be denoted by U . We set A (Ac) to be the set of all isometries 
T ∈ G(WC∗(X, E∗), WC∗(Y, F ∗)) that preserve (fix, respectively) the constant functions. If X = Y and E =
F then the isometry group will be denoted by G(WC∗(X, E∗)). We consider the subspace of WC∗(X, E∗)
consisting of all functions with finite rank, this means all functions f such that for all x, f(x) =

∑n
i=1 λi(x) v∗

i

with λi ∈ C(X) and v∗
i ∈ E∗. This subspace is denoted by WC∗

F (X, E∗) and WC∗
F (X, E∗) represents its 

closure, the space of functions that are continuous when E∗ has the norm topology, in WC∗(X, E∗). The 
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form for the isometries in Theorem 2.1 implies that, given T ∈ G(WC∗(X, E∗), WC∗(Y, F ∗)) that fixes 
the constant functions, then T preserves the subspace of all finite rank functions, thus T WC∗

F (X, E∗) =
WC∗

F (Y, F ∗). The next proposition states the algebraic reflexivity of Ac when restricted to WC∗
F (X, E∗).

Proposition 2.2. Let X and Y be compact metric spaces and E∗ and F ∗ are Banach dual spaces with trivial 
centralizers Z(E∗), Z(F ∗) = K. Then Ac restricted to WC∗

F (X, E∗) is algebraically reflexive.

Proof. Let T ∈ G(WC∗(X, E∗), WC∗(Y, F ∗)) be locally in Ac. The representation for T given in Theo-
rem 2.1 asserts the existence of U and Φ such that (Tf)(y) = U(y)f ◦ Φ(y), for all f ∈ WC∗(X, E∗) and 
y ∈ Y . Since T is locally in Ac then (Tf)(y) = Vff ◦ Φf (y), for some Vf ∈ G(E∗, F ∗) and Φf a homemor-
phism from Y onto X. Thus the equation U(y)f ◦ Φ(y) = Vff ◦ Φf (y) applied to e∗, a constant function, 
yields U(y)e∗ = Ve∗e∗. We observe that the value Ve∗e∗ is independent of y. We define V : E∗ → F ∗, as 
follows: V (e∗) = Ve∗e∗. The operator V is a surjective linear isometry. First we show that V is linear. Given 
e∗ and e∗1 ∈ E∗ and a, b ∈ K, then V (a · e∗ + b · e∗1) = U(y)(a · e∗ + b · e∗1) = a · U(y)(e∗) + b · U(y)(e∗1) =
a · V (e∗) + b · V (e∗1). The surjectivity of V follows from the surjectivity of T . We consider S defined on 
WC∗(X, E∗), given by (SF )(y) = V F ◦ Φ(y). The operator S is in Ac. For a function of the form λ · e∗
with λ ∈ C(X) and positive, we have

T (λ · e∗)(y) = (λ ◦ Φ(y)) · U(y)e∗ = (λ ◦ Φ(y)) · V e∗ = Vλ·e∗λ ◦ Φλ·e∗(y)e∗, (2)

for all y ∈ Y . Since V and U(y) are isometries then λ ◦Φ(y) = λ ◦Φλ·e∗(y) and V e∗ = Vλ·e∗e
∗. This implies 

that Tf = Sf for rank one functions, i.e. functions of the form λ · e∗ with λ a positive and continuous 
function on X. For an arbitrary rank one function f = λ · e∗, there exists a positive real number a such that 
a + λ is positive then

T ((a + λ) · e∗) = aT (e∗) + T (λ · e∗) = aV e∗ + T (λ · e∗) = (a + λ) ◦ Φ · V e∗

implying that T (λ ·e∗) = (λ ◦Φ) ·V e∗ = S(λ ·e∗). Inductively we show that T and S are equal when applied 
to finite rank functions in WC∗(X, E∗). This completes the proof. �

The proof given for Proposition 2.2 allows us to derive the algebraic reflexivity of A provided the isometry 
group of the range space E∗, is algebraically reflexive. See [8] for several examples of such spaces. In 
particular, for 1 < p < ∞, p �= 2, the �p spaces have this property. It may be noted that they also have 
trivial centralizer. The following result is easy to deduce.

Proposition 2.3. Let X and Y be compact metric spaces and E∗ and F ∗ are Banach dual spaces with trivial 
centralizers. If G(E∗) is algebraically reflexive, then A restricted to WC∗

F (X, E∗) is algebraically reflexive.

We now recall a theorem due to Cambern and Jarosz that we will employ to derive the algebraic reflexivity 
of the subset of the isometry space of C(Y )-module isomorphisms. A C(Y )-module isomorphism is an 
isometry S : WC∗(Y, E∗) → WC∗(Y, F ∗) such that for all f ∈ WC∗(Y, E∗) and λ ∈ C(Y ) we have 
S(λ · f) = λ · Sf .

Theorem 2.4. (Cf. Theorem 1 in [2].) Let X and Y be compact topological spaces and let E∗ and F ∗ be Banach 
dual spaces with trivial centralizer. If T : WC∗(X, E∗) → WC∗(Y, F ∗) be a surjective linear isometry, then 
there exist a homeomorphism Φ : Y → X and a C(Y )-module isomorphism S : WC∗(Y, E∗) → WC∗(Y, F ∗)
such that T = S ◦R with R : WC∗(X, E∗) → WC∗(Y, E∗) given by Rf = f ◦ Φ.

For the remainder of this paper we assume X = Y . We start with a general lemma about C(X)-modulo 
isomorphisms, these are surjective isometries S : WC∗(X, E∗) → WC∗(X, F ∗) such that for all 
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λ ∈ C(X) and f ∈ WC∗(X, E∗) we have S(λ · f) = λ · S(f). We denote this class of isometries by 
S(WC∗(X, E∗), WC∗(X, F ∗)) and S(WC∗(X, E∗)) when E = F .

Lemma 2.5. Let X be a compact Hausdorff topological space and E∗ a Banach dual space. Let e∗ ∈ E∗

be a unit functional and e∗ the corresponding constant function. If S is a C(X)-modulo isomorphism on 
WC∗(X, E∗) then the set {x ∈ X : S(e∗)(x) �= 0} is dense in X.

Proof. Suppose {x ∈ X : S(e∗)(x) �= 0} is not dense then there exists an open subset of X, O contained in 
its complement. Hence S(e∗)(x) = 0 for all x ∈ O. Since S is an isometry ‖S(e∗)‖∞ = 1. Let λ : X → [0, 1]
be a continuous map with support contained in O attaining the value 1 at some point in O. Then the function 
λe∗ ∈ WC∗(X, E∗) has norm 1 but S(λe∗) is the zero functional. This absurdity proves the statement of 
the lemma. �

We now prove the algebraic reflexivity of S, the set of C(X)-module isomorphisms.

Corollary 2.6. Let X be compact first countable topological space and let E∗ be Banach dual space with trivial 
centralizer. Then S is algebraically reflexive.

Proof. Let T be a surjective isometry in G(C∗(X, E∗)) that is locally in S. An application of Theorem 2.4
implies that T = S ◦ R. Therefore, for all f ∈ WC∗(X, E∗), we have S ◦ R(f) = Sf (f). In particular for a 
constant function e∗, S(e∗) = Se∗(e∗). There exists a positive and continuous function λ ∈ C(X) with range 
in the interval [0, 1], attaining its maximum value equal to 1 at x and such that λ(y) < λ(x) for y �= x. We 
define f = λ ·e∗. Then λ ◦Φ ·S(e∗) = λ ·Sf (e∗). Since S and Sf are isometries and S(e∗)(x) = Se∗(e∗)(x) �= 0
for a dense set subset of X, then λ ◦ Φ(x) = λ(x), for all x ∈ X. This implies that Φ is the identity map 
and T = S. This completes the proof. �
Remark 2.7. It is easy to see that the group R = {T ∈ G(WC∗(X, E∗)) : Tf = f ◦Φ, Φ a homeomorphism
of X} is algebraically reflexive.

3. Algebraic reflexivity of the isometry group of operator ideals in B(E, F )

In this section we study the algebraic reflexivity of some subsets of the isometry group G(I) of operator 
ideals I in B(E, F ). There are several results in the literature that, under some additional conditions, 
completely describe the isometry group of the ideal of compact operators K(E, F ) and also several partial 
results are available on the algebraic reflexivity of this group, [5] and [10]. Here we consider other operator 
ideals I of B(E, F ) that, as before, contain the compact operators and study the algebraic reflexivity problem 
for certain sets of isometries that preserve the compact operators.

Let W(E, C(X)) denote the space of weakly compact operators. Let I be the ideal {τ ∈ W(E, C(X)) :
τ∗ has separable range}. Clearly I contains all compact operators. We let S, be the set of all isometries 
Φ ∈ G(I) that preserves the constant functions and are sequentially continuous with respect to the adjoint 
strong operator topology. We recall that a map Φ : I → I is sequentially continuous with respect to the 
adjoint strong operator topology, if and only if, for any x ∈ X, τ and a sequence {τn} ⊂ I such that

‖τ∗n(δ(x)) − τ∗(δ(x))‖ → 0

then

‖Φ(τn)∗(δ(x)) − Φ(τ)∗(δ(x))‖ → 0,
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for all x ∈ X. From the isometric isomorphism between WC∗(X, E∗) and B(E, C(X)) we have the following

I = {τ : X → E∗ such that τ is weak-∗ continuous and τ(X) is norm separable}.

In the following theorem we again assume that E∗ has trivial centralizer, but do not assume metrizability 
of X. We prove our result only using local properties of the elements of the operator ideal.

In what follows we use the notations used in the proof of Proposition 2.2.

Theorem 3.1. Let X be a compact topological space, E be a Banach space such that E∗ has trivial centralizer 
and is algebraically reflexive. Let S ⊂ G(I) be as above. Then S is algebraically reflexive in G(I).

Proof. Let Φ be an isometry in the algebraic closure of S. Clearly Φ is an into isometry and preserves the 
constant functions. By continuity we thus have that Φ(K(E, C(X)) = K(E, C(X)). Now as E∗ has trivial 
centralizer, instead of using Theorem 2.1, by applying Behrends’ version of vector-valued Banach–Stone 
theorem [1, Theorem 8.10] on norm continuous functions, and proceeding as in the proof of Proposition 2.2
(see also Proposition 2.3), we have, given a norm continuous function τ : X → E∗, for x ∈ X,

Φ(τ)(x) = V (τ(φ)(x))

for a fixed homeomorphism φ and surjective isometry V of E∗. We next claim that for any τ ∈ I, there is 
a sequence of norm continuous functions, τn : X → E∗, such that ‖τn(x) − τ(x)‖ → 0, for all x ∈ X. From 
this claim and from the continuity assumption on Φ, we have that Φ(τ)(x) = V (τ(φ)(x)), for all x ∈ X. 
This implies that Φ ∈ S.

Now we prove the claim. Let τ ∈ I. Since τ(X) is a weakly compact set that is norm separable, it is 
easy to see that τ(X) is a metric space in the weak topology. Let δ : τ(X) → C(τ(X))∗ be the evaluation 
map. Since C(τ(X)) has a Schauder basis, there exists a norm bounded sequence of finite rank projections 
Pn : C(τ(X)) → C(τ(X)) such that, for all x ∈ X, P ∗

n(δ(τ(x))) → δ(τ(x)), in the weak∗-topology. As 
the projections Pn’s are finite rank operators, we now have by composition and restriction, a sequence 
gn : X → E∗ of norm continuous functions such that, for x ∈ X, gn(x) → f(x), in the weak topology of 
E∗. A standard argument using Mazur’s theorem and the norm separability of τ(X) (see the proof given 
for the corollary in [9]) will lead to a sequence τn : X → E∗, of norm continuous functions, such that 
‖τ(x) − τn(x)‖ → 0 as claimed. �
Remark 3.2. If we assume the global hypothesis that there is a sequence τn of compact operators on E
such that τ∗n → I in the strong operator topology, then the τn in the above proof is easy to produce. This 
hypothesis in particular implies that E∗ is separable. If E∗ has a Schauder basis, then clearly such τn can 
be chosen to be of finite rank.

Remark 3.3. When E is reflexive, the space of weakly compact operators, W(E, C(X)) = B(E, C(X)). Thus 
when X is also metrizable, the above operator ideal coincides with B(E, C(X)) and our result is valid for 
the entire space of operators.

Open problems:

(1) If E is a Banach space such that E∗ has a Schauder basis, when X is a metric space, again by Theorem 4 
in [2], our result holds for the entire space, B(E, C(X)). For a metric space X, we do not know if our 
result is valid for B(E, C(X)) under the assumption E∗ is separable or at least for the larger ideal, 
I ′ = {τ ∈ B(E, C(X)) : τ∗(X) is norm separable} in the non-metrizable case?
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(2) Now consider a general situation when K(E, F ) is the norm closure of the space of finite rank operators 
and also that bounded operators are point-wise limits of bounded nets of compact operators. Suppose 
we know that isometry group of K(E, F ) is described by isometries of the form UTV , where U : F → F

and V : E → E are surjective isometries. What are the analogues of the results above for operator 
ideals containing compact operators?

4. Algebraic structure of G(WC∗(X, E∗))

In this section we investigate the algebraic structure of the group of surjective isometries on WC∗(X, E∗). 
As before we consider X a compact Hausdorff space and E∗ a Banach dual with trivial centralizer. We define 
a bijection between G(WC∗(X, E∗)) and S(WC∗(X, E∗)) ×Hom(X), with S(WC∗(X, E∗)) denoting all the 
C(X)-isomorphisms on WC∗(X, E∗) and Hom(X) denoting all homeomorphisms on X. We first observe 
that the representation given in Theorem 2.4 is unique. If

S ◦R = S1 ◦R1, (3)

then (3) applied to the constant function e∗ yields S(e∗) = S1(e∗). The equation (3) applied to a rank one 
function, λ · e∗ with λ ∈ C(X), yields λ ◦ Φ · S(e∗) = λ ◦ Φ1 · S1(e∗). An application of Lemma 2.5 implies 
that λ ◦ Φ = λ ◦ Φ1. Then Φ = Φ1 and S = S1. This allows us to define the map Ψ : G(WC∗(X, E∗)) →
S(WC∗(X, E∗)) × Hom(X), given by Ψ(T ) = (S, Φ−1), with T = S ◦ R and R the composition operator, 
R(f) = f ◦ Φ.

Theorem 4.1. Let X be compact metric space and let E∗ be Banach dual space with trivial centralizer, 
Z(E∗) = K. Then A is a subgroup of G((WC∗(X, E∗)) isomorphic to the direct product G(E∗) ×Hom(X).

Proof. We observe that for T = S ◦R with S(F )(x) = U(F (x)) and R(F )(x) = F (Φ(x)) then we define Ψ :
A → G(E∗) ×Hom(X), given by Ψ(T ) = (U, Φ−1). We show that Ψ is a group isomorphism. Since T (F )(x) =
UF (Φ(x)) then T−1(F )(x) = U−1F (Φ−1(x) and T1T2(F )(x) = U1[T2(F )](Φ1(x)) = U1U2(F )(Φ2(Φ1(x))). 
Therefore Ψ(T−1) = (U−1, Φ) and Ψ(T1T2) = (U1U2, Φ−1

1 ◦ Φ−1
2 ) = Ψ(T1) � Ψ(T2), with � denoting the 

standard group operation on G(E∗) × Hom(X). �
Remark 4.2. In particular if X is a rigid space, or a space supporting only one homeomorphism, then A is 
isomorphic to G(E∗).

Lemma 4.3. Let X be compact Hausdorff space and let E∗ be Banach dual space with trivial centralizer, 
Z(E∗) = K. Then S is a normal subgroup of G(WC∗(X, E∗)).

Proof. We show that T−1ST = S, with T a surjective isometry on WC∗(X, E∗). Theorem 2.4 implies that 
T = S1 ◦ R1, with S1 a C(X)-module and R1(f) = f ◦ Φ1. Then it is sufficient to show that given S ∈ S
and R we have R−1 ◦S ◦R ∈ S. We observe that R−1 ◦S is a surjective isometry which can be represented 
as follows: R−1 ◦ S = S0 ◦ R0. This equation applied to a constant function e∗ and rank one function λe∗
yields R−1 ◦ Se∗ = S0e∗ and (λ ◦ Φ−1)R−1 ◦ Se∗ = (λ ◦ Φ0)S0e∗. An application of Lemma 2.5 implies 
that λ ◦ Φ−1 = λ ◦ Φ0 and an argument as in the proof for Corollary 2.6 implies that Φ−1 = Φ0. Therefore 
R−1 ◦ S ◦R = S0. �

We use the notation G = H�K to denote the semidirect product of the subgroups of G, H and K where 
H is a normal subgroup of G. We appeal to Theorem 12 (p. 180) in [3] to derive the algebraic structure of 
G(WC∗(X, E∗)).
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Theorem 4.4. (Cf. [3].) Suppose G is a group with subgroups H and K such that H is a normal subgroup 
of G and H ∩K = 1 Then HK is isomorphic to H �K. In particular, if G = HK then G is the semidirect 
product of H and K.

We denote by R the subgroup of all surjective isometries Rf = f ◦Φ with Φ a homeomorphism of X. It 
is an easy observation that R ∩ S is the identity, then we have the following result.

Corollary 4.5. Let X be compact Hausdorff space and let E∗ be Banach dual space with trivial centralizer, 
Z(E∗) = K. Then G(WC∗(X, E∗)) is isomorphic to the semidirect product of S with R, S �R.

References

[1] E. Behrends, M-Structures and the Banach Stone Theorem, Lecture Notes in Mathematics, vol. 736, Springer-Verlag, New 
York, 1979.

[2] M. Cambern, K. Jarosz, Isometries of spaces of weak∗ continuous functions, Proc. Amer. Math. Soc. 106 (1989) 707–712.
[3] D.S. Dummit, R.M. Foote, Abstract Algebra, third edition, John Wiley & Sons, Inc., USA, 2004.
[4] R. Fleming, J.E. Jamison, Isometries on Banach Spaces. Vol. 2. Vector-Valued Function Spaces, Chapman and Hall/CRC 

Monographs and Surveys in Pure and Applied Mathematics, vol. 138, Chapman and Hall/CRC, Boca Raton, FL, 2008.
[5] K. Jarosz, T.S.S.R.K. Rao, Local isometries of function spaces, Math. Z. 243 (2003) 449–469.
[6] J. Li, Z. Pan, Algebraic reflexivity of linear transformations, Proc. Amer. Math. Soc. 135 (2007) 1695–1699.
[7] R. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Mathematics, vol. 183, Springer-Verlag, 1991.
[8] L. Molnar, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture 

Notes in Mathematics, vol. 1895, Springer-Verlag, Berlin, Heidelberg, 2006.
[9] T.S.S.R.K. Rao, Weakly continuous functions of Baire class 1, Extracta Math. 15 (2000) 207–212.

[10] T.S.S.R.K. Rao, A note on the algebraic reflexivity of the isometry group of K(X, C(K)), Expo. Math. 26 (2008) 79–83.

http://refhub.elsevier.com/S0022-247X(15)00624-1/bib62s1
http://refhub.elsevier.com/S0022-247X(15)00624-1/bib62s1
http://refhub.elsevier.com/S0022-247X(15)00624-1/bib636As1
http://refhub.elsevier.com/S0022-247X(15)00624-1/bib64755F6674s1
http://refhub.elsevier.com/S0022-247X(15)00624-1/bib464A31s1
http://refhub.elsevier.com/S0022-247X(15)00624-1/bib464A31s1
http://refhub.elsevier.com/S0022-247X(15)00624-1/bib6A72s1
http://refhub.elsevier.com/S0022-247X(15)00624-1/bib6C70s1
http://refhub.elsevier.com/S0022-247X(15)00624-1/bib6Ds1
http://refhub.elsevier.com/S0022-247X(15)00624-1/bib6D6C31s1
http://refhub.elsevier.com/S0022-247X(15)00624-1/bib6D6C31s1
http://refhub.elsevier.com/S0022-247X(15)00624-1/bib52s1
http://refhub.elsevier.com/S0022-247X(15)00624-1/bib5231s1

	On algebraic reﬂexivity of sets of surjective isometries between spaces of weak* continuous functions
	1 Introduction
	2 The algebraic reﬂexivity property
	3 Algebraic reﬂexivity of the isometry group of operator ideals in B(E,F)
	4 Algebraic structure of G(WC*(X, E*))
	References


