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Let P be a Markov operator with invariant probability m, ergodic on L2(S, m), 
and let (Wn)n≥0 be the Markov chain with state space S and transition probability 
P on the space of trajectories (Ω, Pm), with initial distribution m. Following Wu 
and Olla we define the symmetrized operator Ps = (P + P ∗)/2, and analyze the 
linear manifold H−1 :=

√
I − PsL2(S, m). We obtain for real f ∈ H−1 an explicit 

forward–backward martingale decomposition with a coboundary remainder. For 
such f we also obtain some maximal inequalities for Sn(f) :=

∑n
k=0 f(Wk), related 

to the law of iterated logarithm. We prove an almost sure central limit theorem for 
f ∈ H−1 when P is normal in L2(S, m), or when P satisfies the sector condition. 
We characterize the sector condition by the numerical range of P on the complex 
L2(S, m) being in a sector with vertex at 1. We then show that if P has a real normal 
dilation which satisfies the sector condition, then H−1 =

√
I − PL2(S, m). We use 

our approach to prove that P is L2-uniformly ergodic if and only if it satisfies (the 
discrete) Poincaré’s inequality.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let P be a transition probability on a measurable space (S, S), leaving invariant a probability m on S. 
We denote also by P the Markov operator induced on L2(m) := L2(S, m), which is known [37, p. 65] to be a 
contraction of L2(m), and we denote by P ∗ its adjoint. We assume that P is ergodic (i.e. Pf = f ⇒ f = cte).

Let (Wn)n≥0 be the canonical Markov chain with state space (S, S) associated with P , defined on the 
canonical space of trajectories (Ω, A, Pm) = (SN, S⊗N, Pm) with initial distribution m. We denote by θ the 
shift on Ω, which leaves Pm invariant.

For f ∈ L2(m) we denote Sn(f) :=
∑n

k=0 f(Wk). The purpose of this paper is to obtain limit theorems 
for (Sn(f))n≥0 when f ∈ L2(m) is centered and belongs to an appropriate subspace.
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The work of Kipnis and Varadhan [35] on the central limit theorem (CLT) for reversible Markov chains 
(P = P ∗) inspired L. Wu [51] and Olla [45] to approach the problem for non-symmetric P by looking at the 
symmetrized operator Ps := 1

2 (P+P ∗). They introduced a certain linear manifold H−1, which turns out to be 
precisely 

√
I − PsL

2(m) (see Section 2). For any f ∈ H−1, Wu and Olla obtained a decomposition of Sn(f)
into a forward and a backward martingale plus a coboundary term. When P satisfies the so-called sector 
condition, they proved that if f ∈ H−1, then the CLT holds for (Sn(f))n≥1. Wu also obtained Donsker’s 
invariance principle and, for symmetric operators he proved Strassen’s invariance principle in [52].

Our purpose is two-fold. Firstly, we revisit the symmetrization approach of Wu [51] and Olla [45] (used 
also by Cattiaux, Chafaï and Guillin [9] for continuous time Markov processes), but we define the linear 
manifold H−1 directly as 

√
I − PsL

2(m). This allows us to obtain an explicit forward–backward martingale 
decomposition. Using recent results on martingales and backward martingales (see [10,18] or [15]), we use 
the symmetrization method to obtain other limit theorems, such as Strassen’s functional law of the iterated 
logarithm or the almost sure central limit theorem, for functions in a certain subspace B of H−1 (see below).

Secondly, we provide additional examples of operators to which the method applies, by characterizing 
the sector condition, and by studying conditions under which H−1 =

√
I − PL2(m) (which is important, 

since even for P normal H−1 may be only (I − P )L2(m) [23]).
The paper is organized as follows. In Section 2 we define H−1 and derive its properties, most of them 

given in [52] or [45] (sometimes implicitly). We show that H−1 is invariant under P , and define B as the 
H−1 closure of (I−P )H−1. In Section 3 we obtain an explicit forward–backward martingale decomposition, 
and derive some tightness results for (Sn(f)) when f ∈ H−1. In Section 4 we obtain Donsker’s invariance 
principle and Strassen’s invariance principle for (Sn(f)) when f ∈ B. In Section 5 we prove the almost sure 
CLT, when f ∈ B. In Section 6 we characterize the sector condition (which yields B = H−1 [45]) in terms 
of the numerical range of the action of P on the complex L2(m). In Section 7 we study the relationship 
between H−1 and 

√
I − PL2(m). The main tool here is the existence of a real normal dilation of P , such 

that its complexification has its spectrum in a sector with vertex at 1. This yields the equality B = H−1 =√
I − PL2(m) and several other characterizations. In particular, if the dilation has its spectrum in a Stolz 

region, then f ∈ H−1 if and only if 
∑

‖Pnf‖2 < ∞. In Section 8 we give several examples in which our 
results imply the limit theorems for every f ∈

√
I − PL2(m). In Section 9 we discuss some counter-examples, 

and show that for any Markov operator, convergence of 
∑

n≥0 ‖Pnf‖2 implies that f ∈
√
I − PL2(m), but 

f need not be in B. In Section 10 we use the results of Sections 2 and 3 to obtain the equivalence of (the 
discrete) Poincaré’s inequality and uniform ergodicity of P .

We would like to mention that most of our results may be generalized to the case where f takes its values 
in a separable Hilbert space, see Jiang–Wu [34], where the symmetrization method is applied in that setting, 
with applications. Now, since few auxilliary Hilbert spaces are necessary in our analysis, we prefered not to 
consider that generality here. We shall only mention from time to time the potential extensions.

2. Symmetrization and the space H−1

In this section we study the symmetrization procedure, used (independently) by L. Wu [52] and (in 
continuous time only) by Olla [45] (see also [46,34] or [36]).

Recall that m is an invariant probability for P and that P is ergodic.
We shall denote by ‖ · ‖0 the norm in L2(m).
Define Ps = (P + P ∗)/2, which is symmetric (self-adjoint) on L2(m). The P -invariant probability m is 

invariant for Ps. By the next lemma Ps is also ergodic.

Lemma 2.1. The operators P, P ∗ and Ps have the same fixed points. Consequently Ps is ergodic if and only 
if P is.
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Proof. By a result of Riesz, the L2-contractions P and P ∗ have the same fixed points, so Pf = f ∈ L2(m) =⇒
Psf = f . Conversely, if Psf = f ∈ L2(m), then by uniform convexity, since max{‖Pf ‖0, ‖P ∗f‖0} ≤ ‖f‖0, 
we see that Pf = P ∗f = f . �

Denote L2
0(m) = L2

0(S, m) := {f ∈ L2(S, m) :
∫
f dm = 0}. By ergodicity of P and Ps and the mean 

ergodic theorem, we have the (orthogonal) ergodic decomposition

L2(m) = {constants} ⊕ (I − P )L2(m) = {constants} ⊕ (I − Ps)L2(m), (1)

which yields

L2
0(m) = (I − P )L2(m) = (I − P )L2

0(m) = (I − Ps)L2(m) = (I − Ps)L2
0(m).

Following Derriennic and Lin [21], for a contraction T on a Banach space we define the operator 
√
I − T

by

√
I − T := I −

∑
n≥1

αnT
n =

∑
n≥1

(
(I − T )αn

n−1∑
k=0

T k
)
, (2)

where 
√

1 − t = 1 −
∑

n≥1 αnt
n, 0 ≤ |t| ≤ 1, with αn > 0 and 

∑
n≥1 αn = 1.

Define also a sequence (βn)n≥0, by the power series expansion

1√
1 − t

=
∑
n≥0

βnt
n 0 ≤ |t| < 1 . (3)

Then βn ≥ 0 for n ≥ 0 [21].
The ergodic decomposition shows that 

√
I − PsL

2(m) =
√
I − PsL

2
0(m). We then define H−1 =√

I − PsL
2
0(S, m). By [21], H−1 =

√
I − PsL2(m) = L2

0(m). Let us recall the following description of H−1
from [21], see their Theorem 2.11 and their Corollary 2.12.

Lemma 2.2. The following are equivalent:

(i) f ∈ H−1.
(ii)

∑
n≥0 βnP

n
s f converges in L2(S, m).

(iii) lim infN→∞ ‖ 
∑N

n=0 βnP
n
s f‖0 < ∞.

If any of the above hold, then g :=
∑

n≥0 βnP
n
s f is the unique (in L2

0(S, m)) solution of the equation 

f =
√
I − Psg, and

g =
∑
n≥0

(
βnP

n
s

√
I − Psg

)
=

∑
n≥1

(
αn

n−1∑
k=0

P k
s

√
I − Psg

)
. (4)

By the uniqueness stated in Lemma 2.2, we may define an inner-product on H−1 as follows.

Definition. Let f1, f2 ∈ H−1, and g1, g2 be the unique elements of L2
0(S, m), such that fi =

√
I − Psgi. Then, 

define

〈f1, f2〉−1 := 〈g1, g2〉0,

where 〈·,·〉0 stands for the inner-product on L2(S, m).
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It is not difficult to see that 〈·,·〉−1 is positive-definite and that

‖f‖0 = ‖
√
I − Psg‖0 ≤ 2‖g‖0 = 2‖f‖−1 . (5)

If {fn =
√
I − Psgn} is Cauchy in H−1, then {gn} is Cauchy in L2

0(m), so ‖gn − g‖0 → 0 implies ‖fn −√
I − Psg‖−1 → 0, so (H−1, ‖ · ‖−1) is a (real) Hilbert space.

Remark. Unlike [52] and [45], we have defined H−1 directly, without reference to the space H1 obtained from 
the Dirichlet form 〈f, g〉1 := 〈(I−Ps)f, g〉0. The fact that both definitions coïncide follows from Lemma 2.3
below.

We will need the following lemma from Wu [51]. We give the proofs, for the sake of completeness and 
because some arguments are needed in the sequel.

Lemma 2.3.

(i) For every f ∈ H−1, we have

‖f‖−1 = inf{C ≥ 0 : |〈f, h〉0|2 ≤ C2〈(I − P )h, h〉0, ∀h ∈ L2
0(S,m)}. (6)

Moreover, if for f ∈ L2(S, m) the right-hand-side of (6) is finite, then f ∈ H−1, and (6) holds.
(ii) I−P and I−P ∗ are bounded operators from L2(S, m) to H−1. More precisely, for every f ∈ L2(S, m), 

taking Q ∈ {P, P ∗},

‖(I −Q)f‖−1 ≤
√

2‖f‖0.

Proof. We first note (remember that we are on a real Hilbert space) that for every h ∈ L2,

〈h, (I − P )h〉0 = 〈h, (I − P ∗)h〉0 = 〈h, (I − Ps)h〉0 = ‖
√
I − Psh‖2

0 . (7)

Let us prove (i). Assume that f =
√
I − Psg. Then, using Cauchy–Schwarz, for every h ∈ L2,

|〈f, h〉0|2 = |〈g,
√

I − Psh〉0|2 ≤ ‖g‖2
0〈(I − Ps)h, h〉0 = ‖f‖2

−1〈(I − P )h, h〉 , (8)

which proves that ‖f‖−1 is not smaller than the right-hand-side of (6). To prove the equality, we exhibit 
a sequence (gn)n ⊂ L2(S, m), such that 〈f, gn〉0 → ‖g‖2

0 and 〈(I − Ps)gn, gn〉0 → ‖g‖2
0. By Theorem 2.7 of 

[21] (see (4)), gn =
∑n

k=0 βkP
k
s g satisfies those requirements.

Let f ∈ L2(S, m) be such that the right-hand-side of (6) is finite. Then, using (7) and [21, Theorem 2.13]
we see that f ∈ H−1.

Proof of (ii). For every h ∈ L2(S, m), and for Q ∈ {P, P ∗}, we have, by (7),

2〈h, (I − Ps)h〉0 − ‖(I −Q)h‖2
0 = 2〈h, (I −Q)h〉0 − ‖(I −Q)h‖2

0 = ‖h‖2
0 − ‖Qh‖2

0 . (9)

Let f ∈ L2(m). Then for h ∈ L2(m) we have, by positivity of (9) and (7),

|〈(I −Q)f, h〉0|2 = |〈f, (I −Q∗)h〉0|2 ≤ ‖f‖2
0‖(I −Q∗)h‖2

0 ≤ 2‖f‖2
0〈h, (I − P )h〉0.

By (i), (I −Q)f ∈ H−1 with ‖(I −Q)f‖−1 ≤
√

2‖f‖0. �
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By the definitions, H−1 is invariant under Ps, and Ps is a contraction of H−1. Since Ps has no fixed 
points in L2

0(m) ⊃ H−1, we have that (I − Ps)H−1 is ‖ · ‖−1-dense in H−1.
Lemma 2.3(ii) yields that H−1 is invariant under P and P ∗, with ‖I −Q‖−1 ≤ 2

√
2 for Q ∈ {P, P ∗} and

(I − P )H−1 ⊂ (I − P )L2(S, m) ⊂ H−1.

Lemma 2.4. We have

(I − P )L2(S,m)
H−1 = (I − P )H−1

H−1 (10)

where A
H−1 denotes the closure of A ⊂ H−1 with respect to the ‖ · ‖−1-norm.

When P is normal (i.e. PP∗ = P ∗P ) we have H−1 = (I − P )H−1
H−1 .

Proof. One inclusion is clear. Let us show the converse inclusion. We have (I − P )L2(S, m) = (I −
P )(I − P )L2(S,m)

L2(S,m)
. Hence, if f ∈ (I−P )L2(S, m), there exists g ∈ (I − P )L2(S,m), (gn) ⊂ L2(S, m)

such that f = (I − P )g and (I − P )gn → g in L2(S, m). By item (ii) of Lemma 2.3, (I − P )(I − P )gn → f

in H−1 and (I − P )gn ∈ H−1, which proves (10).
When P is a normal operator, then P commutes with Ps and therefore with 

√
I − Ps. Thus, in that case, 

P is a contraction of H−1, with no fixed points. Hence, by von Neumann’s mean ergodic theorem (see e.g. 
[37, p. 1]) H−1 = (I − P )H−1

H−1 . �
In view of (10), we define B := (I − P )H−1

H−1 . The relevance of the space B will be made clear in 
Section 4.

Note that P has no fixed points in H−1 ⊂ L2
0(m). If P is power-bounded on H−1, i.e. supn≥1 ‖Pn‖−1 < ∞, 

then by the mean ergodic theorem (see e.g. [37, p. 73] and Lemma 2.4), B = H−1. In general, if P is not 
normal, there is no reason why P should be power-bounded, but we know the following (see Corollary 3.3
below for an improvement).

Lemma 2.5. For every f ∈ H−1 we have ‖P
nf‖−1
n → 0. Hence supn

‖Pn‖−1
n < ∞.

Proof. We use Lemma 2.3(ii) and the mean ergodic theorem in L0
2(m) to obtain

‖Pnf‖−1

n
≤ ‖f‖−1

n
+

∥∥ 1
n

n−1∑
k=0

(I − P )P kf
∥∥
−1 ≤

√
2
∥∥ 1
n

n−1∑
k=0

P kf
∥∥

0 + ‖f‖−1

n
→ 0.

The above inequalities, together with (5), yield 1
n‖Pnf‖−1 ≤ (2

√
2 + 1)‖f‖−1.

Similarly, ‖Pn(I − P )f‖−1 ≤ 2
√

2‖f‖−1, so ‖Pn(I − P )‖−1 ≤ 2
√

2. �
Definition 1. We say that an operator T on a Banach space X, such that lim supn→∞ ‖Tn‖1/n ≤ 1, is Abel 
bounded if

sup
0≤λ<1

(1 − λ)‖
∑
n≥0

λnTn‖ < ∞ . (11)

The Abel means Aλ := (1 − λ) 
∑

n≥0 λ
nTn satisfy

f = λ(I − T )(
∑
n≥0

λnTnf) + Aλf . (12)

Let us recall the following well-known lemma see for instance [27, Theorem 2.1] (see also [33, Sec-
tions 18.4–18.6] for the continuous time case).
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Lemma 2.6. Let X be a reflexive Banach space. Let T be Abel bounded on X. Then T has the ergodic 
decomposition

X = {x ∈ X, Tx = x} ⊕ (I − T )X .

Remark. Actually, for any bounded T on a reflexive Banach space X, if f ∈ X satisfies lim infλ→1−(1 −
λ)‖ 

∑
n≥0 λ

nTnf‖ < ∞, then f ∈ {x ∈ X, Tx = x} ⊕ (I − T )X.

The following result may be found in Olla [45] in the continuous time case; see also Jiang–Wu [34]
(Lemma 4.3). We include the proof for the sake of completeness.

Proposition 2.7. (See Olla [45], sector condition.) Assume that there exists K > 0 for which

|〈(I − P )g, h〉0|2 ≤ K〈(I − P )g, g〉0〈(I − P )h, h〉0 ∀g, h ∈ L2
0(S,m) . (13)

Then P is Abel-bounded on H−1, hence B = H−1.

Proof. By Lemma 2.5, supn
1
n‖Pn‖−1 < ∞. Hence, for every 0 ≤ λ < 1, the Abel average operator 

Aλ := (1 − λ) 
∑

n≥0 λ
nPn is well defined on H−1.

Let f ∈ H−1. We will use item (i) of Lemma 2.3 to bound ‖Aλf‖−1. Let g ∈ L2
0(m). By (12) and (13), 

we have, writing fλ :=
∑

n≥0 λ
nPnf .

|〈Aλf, g〉0| ≤ |〈f, g〉0| + |〈(I − P )fλ, g〉0|
≤ ‖f‖−1|〈(I − P )g, g〉0|1/2 + K|〈(I − P )fλ, fλ〉0|1/2|〈(I − P )g, g〉0|1/2 . (14)

On the other hand, using (12) again and the fact that 〈fλ, Aλf〉0 ≥ 0, we infer that

0 ≤ λ〈(I − P )fλ, fλ〉0 ≤ 〈f, fλ〉0 ≤ ‖f‖−1〈(I − P )fλ, fλ〉1/20

Hence,

λ〈(I − P )fλ, fλ〉1/20 ≤ ‖f‖−1 .

To conclude we use the latter bound combined with (14). �
The sector condition (13) means that the operator P is “close” to being symmetric. This heuristic 

statement will be made more precise in Section 6.

3. The forward–backward martingale decomposition

For f ∈ L2(S, m), write Sn = f(W1) + · · · + f(Wn).
Our goal here is to show that whenever f ∈ H−1, f(W1) may be written as the sum of a martingale 

increment, a reverse martingale increment, and a coboundary (for the shift). Since martingales and sums of 
reverse martingale increments enjoy good properties, such as maximal inequalities or the law of the iterated 
logarithm, these properties shall “transfer” to (Sn), allowing us to obtain limit theorems for f ∈ B or even 
f ∈ H−1.

The novelty here is, firstly, that we obtain an explicit form of the (not necessarily unique) forward–
backward martingale decomposition. This explicit form, inspired by Derriennic–Lin [22], is not really needed 
in the sequel, but it might be useful for other problems. Secondly, we obtain a maximal inequality related 
the law of the iterated logarithm.



58 C. Cuny, M. Lin / J. Math. Anal. Appl. 434 (2016) 52–83
Let (Fn)n≥0 be the natural filtration, i.e. Fn = σ{W0, . . . , Wn}, and denote the tail σ-fields by Gn =
σ{Wn, Wn+1, . . .}.

Proposition 3.1. Let f ∈ H−1 and denote gn =
∑n−1

k=0 P
k
s g, where g is the unique centered g ∈ L2(m) such 

that f =
√
I − Psg. Then the series

D+f :=1
2
∑
n≥1

αn(gn(W1) − Pgn(W0)),

D−f :=1
2
∑
n≥1

αn(gn(W0) − P ∗gn(W1)),

Rf :=1
2
∑
n≥1

αn(I − P )gn(W1))

converge in L2(Ω, F , Pm) and

max(‖D+f‖L2(Pm), ‖D−f‖L2(Pm), ‖Rf‖L2(Pm)) ≤ (
√

2/2)‖f‖−1 .

In particular, D+ is a continuous operator from H−1 to L2(Ω, F1, Pm) � L2(Ω, F0, Pm), D− is a contin-
uous operator from H−1 to L2(Ω, G0, Pm) � L2(Ω, G1, Pm) and R is a continuous operator from H−1 to 
L2(Ω, F1, Pm). Moreover,

f(W1) = D+f + D−f + Rf − (Rf) ◦ θ−1. (15)

Proof. It follows from (9), that for every h ∈ L2(S, m) and for Q ∈ {P, P ∗}, we have

‖h‖2
0 − ‖Qh‖2

0 ≤ 2‖
√
I − Psh‖2

0 ; (16)

‖(I −Q)h‖2
0 ≤ 2‖

√
I − Psh‖2

0 . (17)

Let q > p ≥ 1. We have, using (16),

‖
q∑

n=p

αn(gn(W1) − Pgn(W0))‖2
L2(Pm) (18)

= ‖
q∑

n=p

αngn‖2
0 − ‖P

q∑
n=p

αngn‖2
0 ≤ 2‖

q∑
n=p

αn

√
I − Psgn‖2

0 q,p→∞−−−−−→ 0 , (19)

by Lemma 2.2. This proves the convergence of D+f . Now, taking p = 1 and letting q → ∞ in (18) and 
using (4) we see that ‖D+f‖2

0 ≤ 2‖g‖2
0 = 2‖f‖2

−1.
The results about D−f , may be proved similarly. The proof for R follows from (17).
It remains to prove (15). Let n ≥ 1. We have

(I − Ps)αngn(W1) = 1
2αn(gn(W1) − Pgn(W0))

+ 1
2αn(gn(W0) − P ∗gn(W1)) + 1

2αn(I − P )gn(W1)) −
1
2αn(I − P )gn(W0)) .

Summing from n = 1 to p, and letting p → ∞, (15) follows. �
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Write

M+
n :=

n−1∑
k=0

D+f ◦ θk and M−
n :=

n−1∑
k=0

D−f ◦ θk . (20)

Theorem 3.2. Let f ∈ H−1. We have

‖ max
1≤k≤n

|Sk|‖L2(Pm) ≤ 2
√

2
√
n‖f‖−1 ; (21)

lim sup
n→+∞

|Sn|√
2n log logn

≤
√

2‖f‖−1 Pm-a.s. (22)

Moreover, for every 1 ≤ p < 2 there exists Cp > 0 such that

‖ sup
n≥3

|Sn|√
n log logn

‖p ≤ Cp‖f‖−1 . (23)

Remark. The proof makes use of the corresponding results for martingale or reverse martingale differences. 
Those results hold in the context of Hilbert-valued (reverse) martingales, replacing the absolute value with 
the Hilbertian norm. The construction of H−1 as well as the forward–backward decomposition hold in that 
context. Hence, Theorem 3.2 also holds in that context.

Proof. We have

‖ max
1≤k≤n

|Sk|‖L2(Pm) ≤ ‖ max
1≤k≤n

|M+
k |‖L2(Pm) + ‖ max

1≤k≤n
|M−

k |‖L2(Pm)

+ ‖Rf‖L2(Pm) + ‖ max
0≤k≤n−1

|R ◦ θk|‖L2(Pm) .

Notice that for every n ≥ 1, 
(
M−

n −M−
n−k

)
0≤k≤n−1

is a martingale. Hence, using Doob maximal inequality 

twice, we obtain

‖ max
1≤k≤n

|M+
k |‖L2(Pm) ≤ 2‖M+

n ‖L2(Pm) = 2
√
n‖D+f‖0 ≤ 2

√
2‖f‖−1 ;

‖ max
1≤k≤n

|M (−)
k |‖L2(Pm) ≤ 3‖M−

n ‖L2(Pm) = 3
√
n‖D−f‖0 ≤ 3

√
2‖f‖−1 .

On the other hand

‖ max
0≤k≤n−1

|Rf ◦ θk|‖2
L2(Pm) ≤

n−1∑
k=0

‖Rf ◦ θk‖2
L2(Pm) ≤

n

2 ‖f‖
2
−1 .

Combining those estimates, we derive (21).
Let us prove (22). We now apply the LIL for sums of stationary and ergodic differences of martingales 

or of reverse martingales. For the latter, we refer to [18], see also [52] where a bounded LIL is obtained for 
differences of reverse martingales. We have

lim sup
n→+∞

|M−
n |√

2n log logn
= ‖D−f‖L2(Pm) ≤ (

√
2/2)‖f‖−1 Pm-a.s. ,

lim sup
n→+∞

|M+
n |√

2n log logn
= ‖D+f‖L2(Pm) ≤ (

√
2/2)‖f‖−1 Pm-a.s. ,

and Rf ◦ θn/√n → 0 Pm-a.s., by the Borel–Cantelli lemma. This finishes the proof of (22).
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It remains to prove (23). Firstly, (23) holds with M+
n (or M−

n ) in place of Sn, by Theorem 2.3 of [16]. To 
finish the proof it suffices to prove that ‖ supn≥1

|Rf◦θn|
n1/2 ‖p ≤ C‖Rf‖0. But we have

‖ sup
n≥1

|Rf ◦ θn|
n1/2 ‖pp ≤ ‖Rf‖p0 +

∑
n≥0

E(|Rf ◦ θn|p1{|Rf◦θn|≥n1/2‖Rf‖0})
np/2

≤ ‖Rf‖p0 + E
(
|Rf |p

∑
1≤n≤|Rf |2/‖Rf‖2

0

1
np/2

)
≤ C‖Rf‖p0 ,

and the result follows. �
We easily derive the following strengthening of Lemma 2.5.

Corollary 3.3. Let P be a Markov operator on L2(m). For every n ≥ 1, we have ‖Pn‖−1 ≤ 1 + 4
√
n.

Proof. Let f ∈ H−1. By (21) of Theorem 3.2,

‖f + . . . + Pn−1f‖0 = ‖E(Sn|F0)‖L2(Pm) ≤ ‖Sn‖L2(Pm) ≤ 2
√

2
√
n‖f‖−1 .

The end of the proof is like the proof of Lemma 2.5, with 
√
n instead of n in the denominator. �

4. Martingale approximation in (I − P )L2
0(SSS,m)

H−1

In this section, we construct a martingale approximation Mn of Snf , for f ∈ B := (I − P )L2
0(S,m)

H−1 , 
and show that the weak invariance principle and the functional LIL may be derived from the respective 
properties of Mn thanks to Theorem 3.2.

Recall that by Lemma 2.3(ii), (I − P )L2(S, m) ⊂ H−1, and by Lemma 2.4,

B := (I − P )L2(S,m)
H−1 = (I − P )H−1

H−1
.

For every f ∈ L2(S, m), define

D((I − P )f) = f(W1) − Pf (W0) .

Note that D is well-defined since, if (I − P )f1 = (I − P )f2, then f1(W1) − Pf 1(W0) = f2(W1) − Pf 2(W0)
Pm-a.s. (see (24) below).

Now, writing (I − P )f =
√
I − Psg (which is possible by item (ii) of Lemma 2.3), we have

‖f(W1) − Pf (W0)‖2
L2(Pm) = ‖f‖2

0 − ‖Pf ‖2
0 ≤ 2〈f, (I − P )f〉0; (24)

and

〈f, (I − P )f〉0 = 〈f,
√

I − Psg〉0
≤ ‖

√
I − Psf‖0‖g‖0 = 〈f, (I − P )f〉1/20 ‖g‖0.

Hence 〈f, (I − P )f〉0 ≤ ‖g‖2
0 = ‖(I − P )f‖2

−1 and

‖D((I − Pf ))‖L2(P) ≤ 2‖(I − P )f‖−1 .
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Hence D defines a linear operator from (I − P )L2(S, m) ⊂ H−1 to L2(Ω, F1, Pm) � L2(Ω, F0, Pm) that 
may be extended continuously to B. Then

‖Df‖L2(Pm) ≤ 2‖f‖−1 ∀f ∈ B . (25)

Writing Mn = Mn(f) = Df + (Df) ◦ θ + · · · (Df) ◦ θn−1, for f ∈ B, (Mn) is a martingale.
We obtain

Theorem 4.1. Let f ∈ B. We have

‖ sup
1≤k≤n

|Sk −Mk|‖L2(Pm) = o(
√
n) ; (26)

|Sn −Mn| = o(
√

n log logn) Pm-a.s. (27)

In particular, (Sn) satisfies the Donsker invariance principle (WIP) and Strassen’s invariance principle 
(ASIP).

As we shall see the proof is based on Theorem 3.2 and Banach principles. In particular, (26) and (27) hold 
for f taking values in a Hilbert space, and the invariance principles hold as well in that setting (for Strassen’s 
invariance principle, this follows from [16]). The WIP was obtained in [45] and [51] in the real-valued case 
and in [34] in the Hilbert-valued case. The ASIP was obtained in [52] for symmetric Markov operators, in 
the real-valued case.

Proof. We make use of Banach principles. To prove (26), we need a very slight modification of the usual 
Banach principle (see Theorem 7.1 p. 63 of [37]), while to prove (27), we need an almost sure version of it 
(see Theorem 7.2, p. 64 of [37]).

Let us prove (26). Define the maximal operators Mn on H−1 by

Mnf = ‖ sup
1≤k≤n

|Sk(f) −Mk(f)|‖2/
√
n.

By maximal operator we mean that Mn takes values in R+ or in a set of non-negative measurable functions, 
and that it is positively homogeneous and subadditive. By Theorem 3.2, those maximal operators are 
uniformly bounded on H−1, hence, by (a version of) the Banach principle, the set E = {f ∈ H−1 :
limn Mnf = 0} is closed in H−1, for ‖ · ‖−1. But one easily sees that (I − P )L2(S, m) ⊂ E, which is the 
classical Gordin–Lifshitz result [30] (note that Sn((I − P )g) −Mn((I − P )g) = Pg(W0) − Pg(Wn)).

Let us prove (27). Define maximal operators Mn on B by Mnf = |Sn(f) − Mn(f)|/
√
n log logn. By 

Theorem 3.2, for every f ∈ H−1,

sup
n≥1

Mnf < ∞ Pm-a.s.

Hence, by the Banach principle the set of f ∈ B for which (27) holds, is closed in H−1. But the result is 
clear on (I − P )L2(S, m). �
5. The almost sure central limit theorem

We now give an almost sure central limit theorem for f ∈ B. As previously, the proof will make use of 
martingales and reverse martingales. The almost sure central limit theorem in the setting of martingales 
may be found in Lifshits [38] and for reverse martingales in Chazottes–Gouëzel [10].
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Our proof is longer than that of Theorem 4.1 by lack of maximal operators. So in some sense we redo 
the proof of a Banach principle here. Note that (27) is not enough to deduce the almost sure central limit 
theorem for Sn from the one for Mn (the rate o(1/

√
n) would be needed in (27)).

Theorem 5.1. Let f ∈ B. Then, for Pm-a.e. ω ∈ Ω, the sequence of distributions ( 1
log n

∑n
k=1

δSk(ω)/
√

k

k )
converges weakly to the normal distribution N (0, ‖Df‖L2(Pm)).

Proof. For γ ≥ 0, denote by νγ the probability measure associated with N (0, γ), where ν0 stands for the 

Dirac measure at 0. It suffices to prove that for every x, y ∈ Q, x < y, ( 1
log n

∑n
k=1

1[x,y](Sk/
√
k)

k ) converges 
Pm-a.s. to νσ([x, y]) where σ = ‖Df‖L2(Pm). Let 0 < ε < (y − x)/2. We have

1
log n

n∑
k=1

1[x,y](Sk/
√
k)

k
≤ 1

log n

n∑
k=1

1[x−ε,y+ε](Mk/
√
k)

k
+ 1

log n

n∑
k=1

1]ε,+∞[(|Sk −Mk|/
√
k)

k
,

and

1
log n

n∑
k=1

1[x,y](Sk/
√
k)

k
≥ 1

log n

n∑
k=1

1[x+ε,y−ε](Mk/
√
k)

k
− 1

log n

n∑
k=1

1]ε,+∞[(|Sk −Mk|/
√
k)

k
.

Applying the almost sure central limit theorem for martingales (see e.g. [38]), we obtain that

lim sup
n

∣∣∣∣ 1
log n

n∑
k=1

1[x,y](Sk/
√
k)

k
− νσ([x, y])

∣∣∣∣

≤ ν([y − ε, y + ε]) + ν([x− ε, x + ε]) + lim sup
n

1
log n

n∑
k=1

1]ε,+∞[(|Sk −Mk|/
√
k)

k
.

Let η > 0 and g ∈ (I − P )L2(S, m) be such that ‖f − g‖−1 < η. We have

1
log n

n∑
k=1

1]ε,+∞[(|Sk −Mk|/
√
k)

k
≤ 1

log n

n∑
k=1

1]ε/3,+∞[(|Sk(g) −Mk(g)|/
√
k)

k

+ 1
log n

n∑
k=1

1]ε/3,+∞[(|Sk(f − g)|/
√
k)

k
+ 1

log n

n∑
k=1

1]ε/3,+∞[(|Mk(f − g)|/
√
k)

k
.

We have (Sn(g) −Mn(g))/
√
n = (Pg(W0) −Pg(Wn))/

√
n → 0 Pm-a.s., by the Borel–Cantelli lemma. Hence,

lim sup
n→∞

1
log n

n∑
k=1

1]ε/3,+∞[(|Sk(g) −Mk(g)|/
√
k)

k
= 0 Pm-a.s. (28)

Using Proposition 3.1 and the notation (20), we have

Sn(f − g) = M−
n (f − g) + M+

n (f − g) + R(f − g) ◦ θn−1 −R(f − g) ◦ θ−1 . (29)

Using the inequality max(‖D−(f − g)‖L2(Pm), ‖D+(f − g)‖L2(Pm)) ≤ ‖f − g‖−1 and the almost sure central 
limit theorem for martingales and sums of stationary ergodic reverse martingale differences (see [10]), we 
obtain

lim sup
n

1
log n

n∑ 1]ε/3,+∞[(|Sk(f − g)|/
√
k)

k
≤ 4ν(]ε/(9η),+∞[) Pm-a.s.
k=1
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Using ‖D(f − g)‖L2(Pm) ≤ 2‖f − g‖−1 and applying the almost sure central limit theorem for Mn(f − g), 
we obtain

lim sup
n

1
log n

n∑
k=1

1]ε/3,+∞[(|Mk(f − g)|/
√
k)

k
≤ 2ν(]ε/(6η),+∞[) Pm-a.s.

Combining the above estimates and letting η → 0 (along rational numbers), we obtain

lim sup
n

∣∣∣∣ 1
log n

n∑
k=1

1[x,y](Sk/
√
k)

k
− ν([x, y])

∣∣∣∣
≤ ν([y − ε, y + ε]) + ν([x− ε, x + ε]) Pm-a.s.,

which converges to 0 as ε → 0 (along rational numbers) and proves the result. �
Remark. When P is normal, or when P satisfies the sector condition, the theorem applies to f ∈ H−1 = B
(by Lemma 2.4 or Proposition 2.7, respectively).

6. A characterization of the sector condition

In this section we give a characterization of the sector condition (13), in terms of the numerical range of 
P on the complex L2(m). Recall that by Proposition 2.7, the sector condition guarantees that B = H−1.

This characterization will be useful in the next section; it allows us to prove that the sector condition is 
stable by convex combinations.

We begin with some equivalent formulation of (13).

Lemma 6.1. The following are equivalent for P on the real L2(m):

(i) P satisfies the sector condition: there exist K > 0 such that

|〈(I − P )g, h〉0|2 ≤ K〈(I − P )g, g〉0〈(I − P )h, h〉0 ∀g, h ∈ L2
0(S,m) . (30)

(ii) There exists L > 0 such that

|〈(P − P ∗)g, h〉0|2 ≤ L〈(I − P )g, g〉0〈(I − P )h, h〉0 ∀g, h ∈ L2
0(S,m) .

(iii) There exists C > 0 such that

|〈(P − P ∗)g, h〉0| ≤ C
(
〈(I − P )g, g〉0 + 〈(I − P )h, h〉0

)
∀g, h ∈ L2

0(S,m) . (31)

Proof. By (7), on the real L2(m), (30) holds for P if and only if it holds for P ∗, and then (30) holds for Ps

(note that necessarily K ≥ 1). Since 1
2 (P − P ∗) = (I − Ps) − (I − P ), we easily obtain that (i) implies (ii).

Assume (ii). Since I − Ps =
(√

I − Ps

)2, symmetry of Ps and the Cauchy–Schwarz inequality yield

|〈(I − Ps)g, h〉0| ≤ ‖
√
I − Psg‖0 · ‖

√
I − Psh‖0 =

(
〈(I − Ps)g, g〉0〈(I − Ps)h, h〉0

)1/2
.

This together with (ii) yields (i), since I − P = I − Ps + 1 (P ∗ − P ).
2
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(ii) implies (iii) since

|〈(P − P ∗)g, h〉0| ≤
√
L
√

〈(I − P )g, g〉0
√

〈(I − P )h, h〉0

≤ 1
2
√
L
(
〈(I − P )g, g〉0 + 〈(I − P )h, h〉0

)
.

Assume that (iii) holds. For λ ∈ R we replace g in (31) by λg, and obtain

λ〈(P − P ∗)g, h〉0 ≤ |〈(P − P ∗)(λg), h〉0| ≤ λ2C〈(I − P )g, g〉0 + C〈(I − P )h, h〉0 .

We thus have a non-negative quadratic real polynomial, so its discriminant is non-positive, which yields (ii) 
with L = 4C2. �

We shall now characterize the sector condition in terms of the numerical range. Recall that the numerical 
range of an operator T on a complex Hilbert space H is defined by

Θ(T ) := {〈Tf, f〉 : ‖f‖ = 1} .

The numerical range of an operator is a convex set (Hausdorff–Toeplitz Theorem) whose closure contains 
the spectrum of the operator. When the operator is normal (i.e. T ∗T = TT∗), the closure of the numerical 
range is exactly the convex hull of the spectrum, see e.g. [6].

For C ≥ 1, define the regions

ΓC := {z ∈ C, |z| ≤ 1, |1 − z| ≤ C Re(1 − z)}

Γ̃C := {z ∈ C, |z| ≤ 1, | Im z| ≤ C Re(1 − z)} .

For |z| ≤ 1 let αz ∈ (−π, π) be the angle between the line segment [1, z] and the x-axis. Then ΓC =
{|z| ≤ 1 : cosαz ≥ 1/C} and Γ̃C = {|z| ≤ 1 : | tanαz| ≤ C}. By simple trigonometry, for every C ≥ 1,

ΓC ⊂ Γ̃C ≤ Γ(C2+1)1/2 . (32)

Lemma 6.2. Let T be an operator on a real Hilbert space H. The numerical range of the operator T acting 
on the complexified Hilbert space HC is contained in Γ̃C for some C ≥ 1, if and only if for every g, h ∈ H,

|〈(T − T ∗)g, h〉H| ≤ C
(
〈g − Tg, g〉H + 〈h− Th, h〉H

)
.

Proof. First, note that Θ(T ) ⊂ Γ̃C means that, for every f ∈ HC with ‖f‖HC = 1,

| Im(〈Tf, f〉HC)| ≤ C(1 − Re(〈Tf, f〉HC) = C(‖f‖2
HC − Re(〈Tf, f〉HC) .

Let f ∈ HC and write f := g + ih with g, h ∈ H. Then, ‖f‖2
HC = ‖g‖2

H + ‖h‖2
H and

Re〈Tf, f〉HC = 〈Tg, g〉H + 〈Th, h〉H; Im〈Tf, f〉HC = 〈(T ∗ − T )g, h〉.

Since for ‖f‖HC = 1 we have

1 − Re〈Tf, f〉 = ‖g‖2 + ‖h‖2 − 〈Tg, g〉 − 〈Th, h〉 = 〈g − Tg, g〉 + 〈h− Th, h〉,

the result follows. �
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Proposition 6.3. Let P be a Markov operator. Then P satisfies the sector condition if and only if the 
numerical range of P on the complex L2(m) is contained in some Γ̃C .

Proof. By Lemma 6.1, the sector condition (30) is equivalent to (31), which is equivalent to the numerical 
range being contained in some Γ̃C by the previous lemma. �
Corollary 6.4. Let P1, . . . , Pd be Markov operators on L2(m) which satisfy the sector condition. Then any 
convex combination P =

∑
1≤i≤d aiPi also satisfies the sector condition.

Proof. Let Θ(Pi) ⊂ Γ̃Ci
and put C = max{C1, . . . , Cd}. Then Θ(P ) ⊂ Γ̃C . �

As we shall see in the next proposition as well as in the next section, it is interesting to consider other 
types of regions (smaller than some ΓC), known as Stolz regions.

Definition. A Stolz region is a subset of the closed unit disk which is the convex hull of the point 1 and a 
disk centered at the origin with radius strictly less than 1.

Remark. A closed subset A of ΓC (of Γ̃C) is included in some Stolz region if (and only if) A ∩ {z : |z| =
1} ⊂ {1}. In particular, the numerical range of a Markov operator is in a Stolz region if and only if it is 
included in some ΓC and admits only 1 as unimodular complex number.

Stolz regions may be parametrized in the following way. Let α ∈ [0, π/2[ be the angle between the x-axis 
and the tangent line to the disk from the point 1. Then the radius of the disk is sinα. Thus, the Stolz region, 
denoted by Λα, is the convex hull of the disk of radius sinα centered at 0 and the point 1. The boundary 
of Λα consists of an arc of the circle {|z| = sinα} and the two linear segments [1, zα] and [1, ̄zα], where 
zα = 1 − cosαeiα.

The following property is well-known, but we have no reference for a proof, so we give one below.

Lemma 6.5. Let S = Λα be a Stolz region. Then there exists C ≥ 1 such that |1 − z| ≤ C(1 − |z|) for every 
z ∈ S.

Proof. Let r < 1 be the radius of the disk in S. Since −r is the point with |z| ≤ r farthest from 1, we have

|1 − z| ≤ 1 + r = 1 + r

1 − r
(1 − r) ≤ 1 + r

1 − r
(1 − |z|) ∀|z| ≤ r.

The set of z such that |1 −z| ≤ 1+r
1−r (1 −|z|) is convex and contains 1 and the disk of radius r, so contains S. �

It follows from the lemma that any Stolz region is contained in some ΓC . On the other hand, a closed 
subregion of ΓC , whose intersection with the unit circle is (at most) {1}, is contained in some Stolz region.

Example 1. Let S be a Markov operator on (S, S) with invariant probability m which is ergodic, and let 
{pk : k ∈ Z} be a probability distribution on Z. Define P := p0I+

∑
k≥1(p−kS

∗k+pkS
k), which is a Markov 

operator with m invariant. If {k ∈ Z : pk �= 0}, the support of {pk}, is not contained in dZ for any d > 1, 
then P is ergodic. In general P is not normal. Let U be the operator induced by the two-sided Markov shift 
of S, and define Q =

∑
k∈Z

pkU
k. Then Q is a normal operator, and the property of the two-sided shift 

yields that the projection E on S satisfies EUn = Sn and EU∗n = S∗n. A sufficient condition for σ(Q) to be 
contained in Stolz region was given by Bellow, Jones and Rosenblatt [5]: 

∑
k∈Z

k2pk < ∞ and 
∑

k∈Z
kpk = 0. 

In that case, by normality, also Θ(Q) is contained in the same Stolz region. Since EQ = P , we obtain that 
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Θ(P ) is contained in a Stolz region. When S is induced by an invertible ergodic transformation preserving 
m (the case treated in [5]), we can take U = S (and then P is normal).

Next, we give a sufficient condition for the sector condition.

Proposition 6.6. Let T be an operator on a complex Hilbert space H. If for some a > 0 we have

‖f‖2 − ‖Tf‖2 ≥ a|〈(I − T )f, f〉| ∀f ∈ H, (33)

then T is a contraction, the numerical range Θ(T ) is included in a Stolz region, and supn n‖Tn−Tn+1‖ < ∞.

Proof. The inequality (33) yields ‖Tf‖2 ≤ ‖f‖2, so T is a contraction. The (easily checked) identity

‖f‖2 − ‖Tf‖2 + ‖(I − T )f‖2 = 2 Re〈(I − T )f, f〉

and (33) yield |〈(I − T )f, f〉| ≤ 2a−1 Re〈(I − T )f, f〉 for every f . Fix ‖f‖ = 1 and put z = 〈Tf, f〉. Then 
|1 − z| ≤ 2a−1 Re(1 − z), which shows that a ≤ 2. Hence Θ(T ) ⊂ Γ2/a. To show that Θ(T ) is contained in a 
Stolz region, we show that Θ(T ) intersects the unit circle at most at 1. Let |ζ| = 1 and {fn} with ‖fn‖ = 1
such that zn := 〈Tfn, fn〉 → ζ. Then ‖Tfn‖ → 1, and by (33) zn → 1, so ζ = 1. Hence Θ(T ) is contained 
in a Stolz region, which implies (see [11, Proposition 2.3]) that supn n‖Tn − Tn+1‖ < ∞. �
Remark. Dungey [25] proved that (33) implies supn n‖Tn − Tn+1‖ < ∞, using a semi-group “domination”, 
without referring to the numerical range. The beginning of our proof follows the beginning of his proof.

Corollary 6.7. Let P be a Markov operator. If, for some a > 0, P on the complex L2(m) satisfies

‖f‖2 − ‖Pf ‖2 ≥ a|〈(I − P )f, f〉| ∀f ∈ L2(m) (34)

then P satisfies the sector condition.

Theorem 6.8. Let T be a normal contraction of a complex Hilbert space. Then the following are equivalent:

(i) supn n‖Tn(I − T )‖ < ∞.
(ii) σ(T ) is contained in a Stolz region.

Proof. Bellow, Jones and Rosenblatt [5, p. 11] proved that (ii) implies (i), while Nagy and Zemánek [44]
proved that (for any power-bounded operator on a complex Banach space) (i) implies (ii). See [11] for 
additional information and references. �
7. On the relationship between H−1 and 

√
I − PL2(m)

Thanks to the previous section, we know conditions under which B = H−1, hence, under which Theo-
rem 4.1 and Theorem 5.1 hold for every f ∈ H−1. Therefore it remains to find conditions (suitable in view 
of applications) guaranteeing that f ∈ H−1. In particular we shall investigate the relationship between H−1
and 

√
I − PL2(m). This study is motivated by the fact that 

√
I − PL2(m) appears naturally in proving 

the CLT for a normal Markov operator P (as proved by Gordin and Lifshitz [31,7]), and by a recent result 
of Cohen–Cuny–Lin [11] (see Proposition 7.4 below) which characterizes the space 

√
I − PL2(m) when the 

numerical range of P (not necessarily normal) is in a Stolz region.
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Throughout this section P is a Markov operator with invariant probability m, which is ergodic (the only 
fixed points in L2(m) are constants). The operator P acts as a contraction on the real and on the complex 
L2(m) spaces.

Recall that when P is normal, we have B = H−1 by Lemma 2.4. The (annealed) central limit theorem 
of Gordin and Lifshitz [31] (proved in [7, Sections IV.7–IV.9]; see also [22]) says that if P is normal and 
f is real in 

√
I − PL2(m), then 1√

n
Sn converges in distribution, in (Ω, Pm), to a normal distribution. For 

P symmetric, H−1 =
√
I − PL2(m) =

√
I − PL2

0(m) by the definition; however, an example in [23, p. 15]
shows that for P normal it is possible that

B = H−1 :=
√

I − PsL
2
0(m) = (I − P )L2(m) �

√
I − PL2(m).

In such a case (see Proposition 9.6 below for other examples), our limit theorems apply only to coboundaries, 
so have no novelty. We therefore want to study when 

√
I − PL2(m) ⊂ H−1.

In the complex L2(m), when P is normal, a spectral characterization of f ∈
√
I − PL2(m) [21] is

∫

σ(P )

1
|1 − z|ρf (dz) < ∞, (35)

where ρf is the spectral measure of f – a finite measure on the closed unit disk D supported on the spectrum 
σ(P ), such that 〈Pnf, f〉0 =

∫
σ(P ) z

nρf (dz) for every n ≥ 0.
In order to be able to use the spectral theorem, we will work in this section with the complex L2(m); 

since P is positive, the real L2(m) is an invariant subspace, and the consequences of our study will apply to 
real functions. Note that the series expansion [21] of the solution g of 

√
I − Pg = f in the complex L2

0(m)
shows that g is real if f is real.

Proposition 7.1. Let P be normal. Then

H−1 = {f ∈ L2(S,m) :
∫

σ(P )

1
1 − Re z dρf (z) < ∞}. (36)

Consequently, {f ∈ L2(m) :
∑

n≥0 ‖Pnf‖2
0 < ∞} ⊂ B = H−1 ⊂

√
I − PL2(m). If moreover, the spectrum 

of P is included in some region ΓC , C ≥ 1, we actually have B = H−1 =
√
I − PL2(m).

Proof. The equality B = H−1 is in Lemma 2.4. By the functional calculus, Ps = ReP corresponds to 
Re z = (z + z̄)/2. Thus, f ∈ H−1 if and only if f ∈

√
1 − RePL2(m), which yields (36).

Now 0 ≤ 1 − Re z ≤ |1 − z| for |z| ≤ 1 yields that 
∫
σ(P )

1
|1−z|ρf (dz) < ∞ when f ∈ H−1, by (36).

It follows from (36) that f ∈ L2(S, m) is in H−1 if 
∫
D

ρf (dz)
1−|z| < ∞, which is equivalent to

∑
n

‖Pnf‖2
0 < ∞ . (37)

In particular, (37) implies f ∈
√
I − PL2(m).

When σ(P ) is included in ΓC , the equality H−1 =
√
I − PL2(m) follows from (36), (35) and the definition 

of ΓC . �
Corollary 7.2. Let P be a normal Markov operator. If P satisfies the sector condition, then B = H−1 =√
I − PL2(m).
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In general, even for P normal which is mixing, f ∈
√
I − PL2 need not satisfy (37), as shown by the 

example of [23] with H−1 = (I − P )L2(m) �
√
I − PL2(m).

Lemma 7.3. Let Q be a normal contraction on a real Hilbert space H, such that its spectrum on the com-
plexification HC is in some region ΓC . Then

‖
√
I −Qg‖ ≤

√
C‖

√
I −Qsg‖ ≤

√
C‖

√
I −Qg‖ for every g ∈ H.

Proof. By the spectral theorem and the definition of ΓC we have

‖
√

I −Qg‖2
H =

∫

ΓC

|1 − z|ρg(dz) ≤ C

∫

ΓC

(1 − Re z)ρg(dz) = C‖
√
I −Qsg‖2

H.

Similarly, normality always implies ‖
√
I −Qsg‖2 ≤ ‖

√
I −Qg‖2. �

Definition. A contraction P on the real L2(m) admits a real normal dilation if there exists a real real Hilbert 
space H containing L2(m) as a subspace and a normal contraction Q on H, such that Pn = EQn, for every 
n ≥ 1, where E is the orthogonal projection from H onto L2(m). Of course, the two-sided Markov shift 
of P Markovian with invariant probability is a normal dilation, so every such Markovian P has a positive 
normal dilation; our interest will be in normal dilations with particular properties.

It will be important for our study that P have a real normal dilation. Of course, Q on H extends to a 
normal contraction on HC , the complexification of H, still denoted by Q, which is a normal dilation of P
on the complex L2(m).

Note that the numerical range of the dilation Q (on HC) contains the numerical range of P (on the 
complex L2(m)).

Example 1 in the previous section is of an ergodic Markov operator P which has a real normal dilation 
with spectrum in a Stolz region.

Proposition 7.4. Let P be an ergodic Markov operator on L2(m) admitting a real normal dilation Q on H
whose spectrum (on HC) is included in a region ΓC , C ≥ 1. Then the following are equivalent for f ∈ L2(m):

(i) f ∈
√
I − PL2(m);

(ii) f ∈
√
I − PsL

2(m) = H−1;
(iii) supn≥1 E(S2

n(f))/n < ∞;
(iv) supλ→1(1 − λ)E

((∑
n≥0 λ

nf(Wn)
)2)

< ∞;
(v) lim infλ→1

∑
n≥0 λ

n〈f, Pnf〉0 < ∞;
(vi) lim infλ→1

∑
n≥0 λ

n〈f, Qnf〉H < ∞;
(vii) f ∈

√
I −QsH;

(viii) f ∈
√
I −QH;

If moreover, the spectrum of Q is included in a Stolz region, then the above conditions are all equivalent to

(ix)
∑

n≥0 ‖Pnf‖2
0 < ∞.

(x)
∑

n≥0 |〈f, Pnf〉0| < ∞.

Remarks. we will prove in Proposition 9.2 that (ix) ⇒ (i) for any Markov operator. The set of equivalences 
(ii) ⇔ (iii) ⇔ (iv) ⇔ (v), for P satisfying the sector condition, was proved in [34].
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Proof. We first prove (i) ⇒ (ii). Let f ∈
√
I − PL2(m). Then there exists h ∈ L2

0(m) (unique by ergodicity) 
such that f =

√
I − Ph. Since 〈Pnh, g〉0 = 〈Qnh, g〉H for g ∈ L2(m), using Lemma 7.3 we obtain

|〈f, g〉0|2 = |〈
√
I − Ph, g〉0|2 = |〈

√
I −Qh, g〉H|2 ≤ ‖h‖2

0‖
√

I −Q∗g‖2
H

≤ C2‖h‖2
0‖
√
I −Qsg‖2

H = C‖h‖2
0〈(I −Qs)g, g〉H = C‖h‖2

0〈(I − Ps)g, g〉0
= C‖h‖2

0〈(I − P )g, g〉0,

with the last equality by (7) since g is real valued. By Lemma 2.3(i), f ∈ H−1.
(ii) ⇒ (iii) follows from Theorem 3.2, equation (21).
(iii) ⇒ (iv) follows from comparison between Cesàro and Abel means.
Let us prove that (iv) ⇒ (v). Let 0 ≤ λ < 1. We have

E
((∑

n≥0
λnf(Wn)

)2) =
∑
n≥0

λ2nE(f(Wn)2) + 2
∑

0≤n<m

λn+mE(f(Wn)f(Wm))

= ‖f‖2
0

1 − λ2 + 2
1 − λ2

∑
m≥1

λm〈f, Pmf〉0

(v) ⇒ (vi) since the series have the same terms, by the definition of a dilation.
Let us prove that (vi) ⇒ (vii). Denote Qs = 1

2(Q + Q∗) and H−1 :=
√
I −QsH. Since Q acts on a real 

Hilbert space H, we can apply the proof of Lemma 2.3 to Q – all that we needed was that the inner product 
is real – and obtain the characterization of H−1. Also the sector condition can be defined for Q on H, and 
its characterization in Proposition 6.3 is valid, with the same proof.

Since Q on HC is normal, Θ(Q) ⊂ ΓC , and by Proposition 6.3 Q on H satisfies the sector condition (30); 
hence for fixed 0 < λ < 1 and every g ∈ H we have

|〈(I −Q)
∑
n≥0

λnQnf, g〉H|2 ≤ K|〈(I −Q)
∑
n≥0

λnQnf,
∑
n≥0

λnQnf〉H| |〈(I −Q)g, g〉H| .

For λ fixed, the characterization of the H−1-norm in (6) and the identity (12) with P replaced by Q yield

‖〈(I −Q)
∑
n≥0

λnQnf‖2
H−1

≤ K|〈(I −Q)
∑
n≥0

λnQnf,
∑
n≥0

λnQnf〉H|

= K

λ
〈f −Aλf,

∑
n≥0

λnQnf〉H ≤ K

λ
〈f,

∑
n≥0

λnQnf〉H .

By the Banach–Saks Theorem, using (vi), there exists λm → 1 such that the Cesáro averages of ((I −
Q) 

∑
n≥0 λ

n
mQnf)m≥1 converge in H−1, say to h ∈ H−1. By (5), the convergence holds also in H; but in 

that case, by (12), the limit in H is known to be f , so that, f = h ∈ H−1.
The implication (vii) ⇒ (viii) follows from Proposition 7.1.
By Derriennic–Lin [21], for any contraction T on a reflexive Banach space X, f ∈

√
I − TX if and only 

if 
∑

n≥0 βnT
nf converges in X (see (3) for the definition of {βn}). Hence, (viii) ⇒ (i) follows from the 

definition of a dilation.
We now assume that σ(Q) is contained in a Stolz region. Then Θ(Q), the numerical range of Q, is in a 

Stolz region, so Θ(P ) ⊂ Θ(Q) is in a Stolz region, and by [11, Proposition 6.4] (ix) ⇔ (i).
(x) ⇒ (v) is immediate.
We now prove (viii) ⇒ (x). By the spectral theorem (see [21]), f ∈

√
I −QH is equivalent to ∫ 1 ρf (dz) < ∞. Since σ(Q) is contained in a Stolz region, by Lemma 6.5 there exists C > 0
σ(Q) |1−z|
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such that |1 − z| ≤ C(1 − |z|) for z ∈ σ(Q), so 
∫
σ(Q)

1
1−|z|ρf (dz) < ∞. For any positive integer j we have

j∑
n=0

|〈f,Qnf〉H| =
j∑

n=0
|
∫

σ(Q)

znρf (dz)| ≤
j∑

n=0

∫

σ(Q)

|z|nρf (dz) ≤
∫

σ(Q)

1
1 − |z|ρf (dz).

Since 〈f, Pnf〉0 = 〈f, Qnf〉H, letting j → ∞ we obtain

∞∑
n=0

|〈f, Pnf〉0| =
∞∑

n=0
|〈f,Qnf〉H| ≤

∫

σ(Q)

1
1 − |z|ρf (dz) < ∞,

so (x) holds. �
Remarks. 1. Clearly (x) implies

(x′)
∑

n≥0〈f, Pnf〉 converges.

On the other hand, (x′) ⇒ (v) follows from Abel’s Theorem for power series. Thus, when σ(Q) is included 
in a Stolz region, (x′) ⇔ (x).

2. In general, even if the operator is normal, (x) does not imply (ix), nor (i). At the end of [22] there is an 
example of T unitary on L2(m) (induced by a two-sided shift) and f ∈ L2(m) such that 

∑
n≥1 |〈Tnf, f〉| <

∞; since ‖Tnf‖ = ‖f‖ for n ≥ 1, condition (ix) cannot hold. In that example f /∈
√
I − TL2(m).

Corollary 7.5. Let P be an ergodic Markov operator with invariant probability m admitting a real normal 
dilation Q on H such that σ(Q) is included in a region ΓC , C ≥ 1. Then

B = H−1 =
√
I − PL2(m).

Proof. Since Q is normal, the assumption implies that also the numerical range Θ(Q) is included in Γ(C), 
hence also Θ(P ) ⊂ ΓC . Then, by Proposition 6.3, P satisfies the sector condition. Hence B = H−1 by 
Proposition 2.7. By the equivalence of (i) and (ii) of Proposition 7.4, H−1 =

√
I − PL2(m). �

In order to be able to use Proposition 7.4 we shall now characterize the existence of a normal dilation 
whose spectrum is included in a Stolz region.

Definition 2. For ε ∈ (0, 1) and 0 ≤ t ≤ 1 we have the expansion (1 −t)ε = 1 −
∑∞

n=1 a
(ε)
n tn, with a(ε)

n > 0 and ∑
n≥1 a

(ε)
n = 1. Then, for any power-bounded operator T on a (real or complex) Banach space, we define 

(I − T )ε := I −
∑∞

n=1 a
(ε)
n Tn. In particular the series defines (1 − z)ε for z ∈ D.

Lemma 7.6. Let S = Λα be a Stolz region. Then there exists ε ∈ (0, 1) such that supz∈S |1 − (1 − z)1+ε| ≤ 1.

Proof. Fix ε and put an = a
(ε)
n . We have

1 − (1 − z)1+ε = 1 − (1 − z)(1 − z)ε = z +
∞∑

n=1
anz

n(1 − z). (38)

Thus for δ ∈ (1, 2), the function 1 − (1 − z)δ is holomorphic in the open unit disk D and continuous on D.
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We show that there exists γ > 1 (close enough to 1), which depends on α, such that for any δ ∈ (1, γ)
and any z ∈ Λα,

|1 − (1 − z)δ| ≤ 1 . (39)

Since the function z �→ 1 − (1 − z)δ is holomorphic in the interior of Λα and continuous on its closure, by 
the maximum modulus principle, we just have to prove (39) on the boundary of Λα (which consists of an 
arc and two line segments).

Let ε ∈ (0, 1) and put δ = 1 + ε. Since an := a
(ε)
n is decreasing to zero [21], for |z| ≤ r := sinα the 

expansion (38) yields

|1 − (1 − z)δ| = |z + a1z −
∞∑

n=2
(an−1 − an)zn| ≤ r + a1r +

∞∑
n=2

(an−1 − an)rn

≤ r + a1r +
∞∑

n=2
(an−1 − an)r = (1 + 2a1)r.

But a(ε)
1 = ε [21], so max|z|≤r |1 − (1 − z)δ| ≤ (1 + 2ε)r, which tends to r < 1 as ε → 0+, so for ε > 0 small 

enough (fixed) (39) holds for |z| ≤ sinα.
The points on the line segment [1, zα] are of the form z = 1 − reiα, with 0 ≤ r ≤ cosα. For such z we 

have

|1 − (1 − z)δ|2 = |1 − rδeiαδ|2 = 1 + r2δ − 2rδ cos(αδ)

≤ 1 + rδ((cosα)δ − 2 cos(αδ) ) := 1 + rδψα(δ) .

Since ψα(δ) is clearly continuous on [1, 2] and ψα(1) = − cosα < 0, there exists γ > 1, such that for every 
δ ∈ (1, γ) we have ψα(δ) < 0, so (39) holds also on the line segments of the boundary of Λα. �
Remark. The lemma is stated by Dungey [26, p. 1737], and his proof uses some semigroup theory.

Theorem 7.7. Let T be a contraction of a real Hilbert space H. Then T admits a normal dilation Q with 
σ(Q) in a Stolz region if and only if there exists a contraction S on H such that T = I − (I −S)α for some 
α ∈ (0, 1).

Proof. Assume that T = I − (I − S)α for some α ∈ (0, 1), with S a contraction on H. Let U be the 
unitary dilation of S on a larger real Hilbert space K (see for instance [48, Appendix, Section 4]), and 
define Q = I − (I − U)α. Then Q is a normal dilation of T , and by Dungey [26, Theorem 1.1] Q satisfies 
supn n‖Qn −Qn+1‖ < ∞. By Theorem 6.8 σ(Q) on the complexification KC is contained in a Stolz region.

Assume now that Q on K is a normal dilation of T , with σ(Q) (on KC) in a Stolz region. By Lemma 7.6
there is ε ∈ (0, 1) such that supz∈σ(Q) |1 −(1 −z)1+ε| ≤ 1. Then V := I−(I−Q)1+ε is a (normal) contraction, 
by the spectral theorem. Projecting back to the original space we obtain that S := I − (I − T )1+ε is a 
contraction on H. The functional calculus for the normal operator Q yields I − Q = (I − V )1/(1+ε), so 
I − T = (I − S)1/(1+ε) yields the assertion. �
Remark. Theorem 7.7 provides an effective way to build Markov operators admitting a real normal dilation 
whose spectrum is included in some Stolz region: take any Markov operator R on L2(m) and define P :=
I − (I − R)α for some 0 < α < 1. Then, P is a Markov operator with the desired property, when in the 
proof of Theorem 7.7 U is the two-sided shift of R.
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Proposition 7.8. Let P1, . . . , Pd be d commuting contractions of a real space H. Assume that each Pi has 
a normal dilation with spectrum included in a Stolz region. Then, the product P1 · · ·Pd admits a normal 
dilation with spectrum included in a Stolz region, and so does any convex combination α1P1 + . . . + αdPd.

Proof. It is enough to prove the result when d = 2 and then proceed by induction.
Let P1, P2 be commuting contractions admitting each a normal dilation whose spectrum is included in 

a Stolz region. By the proof of Theorem 7.7, there exists ε1, ε2 > 0, such that S1 := I − (I − P1)1+ε1 and 
S2 := I − (I −P2)1+ε2 are contractions. Clearly S1 and S2 commute. Hence, by Andô’s dilation theorem [3]
(see e.g. Theorem 6.1 Chapter I of [49]; the proof is valid also for real spaces), there exist two commuting 
unitary operators U1 and U2 on a larger real Hilbert space K containing H, such that, if E is the orthogonal 
projection from K onto H, we have

Si
1S

j
2 = EU i

1U
j
2 ∀i, j ≥ 0 .

Define Q1 := I− (I−U1)1/(1+ε1) and Q2 := I− (I−U2)1/(1+ε2). Then, Q1Q2 and α1Q1 +α2Q2 are normal, 
and on the complexification KC they have their numerical ranges in Stolz regions. By construction they are 
respectively dilations of P1P2 and α1P1 + α2P2, hence the result. �
Remark. We needed to proceed by induction because Andô’s theorem does not extend to more than two 
contractions, by a result of Parrott [47].

8. Limit theorems for functions in 
√
I − PL2(m) and examples

In this section we combine the results of the previous sections to obtain conditions for our limit theorems 
to hold for f ∈

√
I − PL2(m) (where P is a Markov operator as in the previous sections), and provide some 

examples.

Theorem 8.1. Let P be a Markov operator with invariant probability m which is ergodic. Assume that 
P admits a real normal dilation Q with spectrum σ(Q) contained in a domain ΓC . Let f ∈ L2(m). If 
f ∈

√
I − PL2(m), in particular (see Proposition 9.2 below) if 

∑
n≥1 ‖Pnf‖2

0 < ∞, then f ∈ B and the 
conclusions of Theorems 4.1 and 5.1 hold.

For normal operators, we have the following (see Proposition 7.1).

Theorem 8.2. Let P be a normal Markov operator with invariant probability m which is ergodic. Let f ∈
L2(m). If 

∫
σ(P )

1
1−Re zρf (dz) < ∞, in particular if 

∑
n≥1 ‖Pnf‖2

0 < ∞, then f ∈ B and the conclusions of 
Theorems 4.1 and 5.1 hold.

Corollary 8.3. Let P be a normal Markov operator with invariant probability m which is ergodic. If P satisfies 
the sector condition, then Theorem 8.1 applies to P .

Proof. By (32) and Proposition 6.3, σ(P ) is contained in some ΓC . �
Remarks. 1. Under the assumptions on P in Theorem 8.1, we also have the annealed CLT for every f ∈√
I − PL2(m), by applying (the discrete version of) Olla’s CLT for f ∈ B [45, p. 80]. In general, the annealed 

CLT holds for every f ∈ L2(m) satisfying the Maxwell–Woodroofe condition [41]

∑ ‖
∑n

k=1 P
kf‖

n3/2 < ∞ (40)

n≥1
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with no additional assumptions on P ergodic. If f satisfies (40), then f ∈
√
I − PL2(m) [23]. However, even 

for P symmetric the converse need not be true – see examples in [17]. Note that the CLT may fail for some 
P and f ∈

√
I − PL2(m) [50], while the theorem of Gordin and Lifshitz [31] for P normal applies to all 

functions f ∈
√
I − PL2(m), even those which do not satisfy (40).

For α > 1/2, the rate in the mean ergodic theorem [21, Corollary 2.15] yields that (I − P )αL2(m) is 
contained in the set MW of f ∈ L2(m) satisfying (40). If (I − P )L2(m) is not closed (P is not uniformly 
ergodic), then there exist functions in (I − P )αL2(m) which are not coboundaries [21], so (I − P )L2(m)
is strictly contained in MW ; thus in the example of [23] cited above H−1 = (I − P )L2(m) � MW , while 
under the conditions of Theorem 8.1 MW ⊂ H−1 with no equality in the example of [17]. Hence condition 
(40) and the condition f ∈ H−1 are not comparable, and thus Olla’s CLT gives some new information for 
some non-normal P – see the first two examples below.

2. Cuny [15] obtained the law of iterated logarithm (LIL) for any f ∈ L2(m) satisfying the Maxwell–
Woodroofe condition (40), with no additional assumptions on P . His result supersedes the previous results 
of [43,53,14], who assumed on f various conditions which imply (40). For P symmetric, Wu [52] obtained 
the functional LIL for f ∈

√
I − PL2(m). Theorem 8.1 and Corollary 8.3 apply also to some non-symmetric 

P and functions which do not satisfy (40). This situation is somewhat similar to the annealed CLT – see 
the previous remark.

3. As far as we know, the almost sure central limit theorem under projective conditions has been considered 
only in Merlevède–Peligrad–Peligrad [42]. They worked under a strengthening of the Maxwell–Woodroofe 
condition.

Example 2. Let S be a Markov operator with m an invariant probability which is ergodic, and let P =∑∞
n=1 a

(α)
n Sn, where α ∈ (0, 1) and (1 − t)α = 1 −

∑∞
n=1 a

(α)
n tn for |t| ≤ 1. Then m is P -invariant and also 

P is ergodic. We have P = I − (I − S)α, and by the remark to Theorem 7.7 P has a real normal dilation 
Q with σ(Q) in a Stolz region. Hence Theorem 8.1 applies. If S is not normal, neither is P .

Example 3. Let P1, . . . , Pd be commuting ergodic normal Markov operators on L2(m) which satisfy the 
sector condition and let P =

∑d
i=1 aiPi be a convex combination. If Pf = f , then uniform convexity yields 

that Pif = f for every i, so f is constant; hence P is ergodic. By Corollary 6.4 P satisfies the sector 
condition. By a Theorem of Fuglede [29] (see also [32]), each Pi commutes also with P ∗

j , so P is normal. 
Hence Corollary 8.3 applies.

Example 4. Let P1, . . . , Pd be commuting ergodic Markov operators on L2(m) admitting real normal dilations 
N1, . . . , Nd with σ(N1), . . . , σ(Nd) contained in Stolz regions. Define P = P1 · · ·Pd and R = a1P1+· · ·+adPd. 
By Proposition 7.8, P and R are a Markov operators admitting real normal dilations, M and N respectively, 
with σ(M) and σ(N) in Stolz regions.

Hence Theorem 8.1 applies to P and to R, provided we show that those operators are ergodic. The fact 
that R is ergodic follows from uniform convexity. Let us prove that P is ergodic. It suffices to consider the 
case d = 2.

By Theorem 6.8, we have supn n‖Nn
1 − Nn+1

1 ‖ < ∞ and supn n‖Nn
2 − Nn+1

2 ‖ < ∞. Projecting back 
to the original space, it follows that supn n‖Pn

1 − Pn+1
1 ‖ < ∞ and supn n‖Pn

2 − Pn+1
2 ‖ < ∞. Then by 

commutativity

sup
n

n‖Pn − Pn+1‖ ≤ sup
n

n‖Pn
1 (Pn

2 − Pn+1
2 )‖ + sup

n
n‖Pn+1

2 (Pn
1 − Pn+1

1 )‖ < ∞.

Hence also P has spectrum in a Stolz region, by Theorem 6.8. Denote Ig =
∫
g dm for g ∈ L2(m). By 

ergodicity and the above estimates, Pn
1 g → Ig and Pn

2 g → Ig in norm for every g ∈ L2(m). Since constants 
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are invariant, we have

‖Png − Ig‖ = ‖Pn
1 (Pn

2 g − Ig)‖ ≤ ‖Pn
2 g − Ig‖ → 0,

which shows that P is ergodic. Hence Theorem 8.1 applies to P .
Note that if P1, . . . , Pd are normal, then each Pi commutes with each P ∗

j by [29], so P is normal.

Example 5. Let G be a locally compact Abelian (LCA) σ-compact group G with dual group Ĝ, and let 
{θ(t) : t ∈ G} be a continuous probability preserving ergodic action of G in (S, S, m). For a probability μ on 
G define the μ-average of the action by Pf =

∫
G
f ◦θ(t)dμ(t). Then P is a Markov operator preserving m. We 

assume that the smallest closed group containing the support of μ is G, so P is ergodic (the Choquet–Deny 
theorem). Since G is commutative, the transformations {θ(t)} induce commuting unitary operators. Hence 
P is normal. If μ has a bounded angular ratio, which means that |μ̂(γ)| < 1 for 0 �= γ ∈ Ĝ and

sup
0
=γ

|1 − μ̂(γ)|
1 − |μ̂(γ)| = C < ∞,

then σ(P ) is contained in a Stolz region [11, Proposition 5.3] (for G = Z see [5]). Hence Theorem 8.1 applies.

9. On sufficient conditions for limit theorems for Markov chains

Let P be an ergodic normal Markov operator on L2(m). We know that the CLT holds for f ∈√
I − PL2(m) [31], and by Lemma 2.4 and Proposition 7.1 B = H−1 ⊂

√
I − PL2(m), so the CLT holds 

for f ∈ H−1. In Theorem 8.2 we have shown that the WIP as well as the ASIP hold for f ∈ H−1. A natural 
question is whether for normal Markov operators those results still hold for f ∈

√
I − PL2(m). We answer 

below in the negative.

Proposition 9.1. Let 0 < ε < 1. There exists a normal Markov operator on some L2(m) and f ∈√
I − PL2(m), such that max1≤k≤n |Sk|/

√
n logε n

n→∞
−−−−→ +∞. In particular, the WIP and the ASIP 

cannot hold (so f /∈ H−1 = B).

Proof. Let (X, Σ, m, θ) be an invertible and ergodic dynamical system. We define a unitary (hence normal) 
operator P on L2(m) by setting Pf := f ◦ θ for every f ∈ L2(m). Let (Wn)n∈N be the corresponding 
canonical Markov chain. It is well-known that for any f ∈ L2(m), since P is given by a transformation, 
the law of the process (f(Wn)n∈N under Pm is the same as the law of the process (f(◦θn)n∈N under m. It 
follows from the proof of Theorem 2.5 of [13] that for any 0 < ε < 1, that the exists f ∈ L2(m), such that

max1≤k≤n |f + . . . + f ◦ θn−1|√
n logε n n→∞

−−−−→ +∞ m-a.s. ,

and the first assertion follows. The fact that the ASIP does not hold is obvious. To see that the WIP does not 
hold, notice that otherwise we should have supn≥1 P(max1≤k≤n |f + . . . + f ◦ θn−1| ≥ A

√
n) 

A→∞
−−−−→ 0. �

The next proposition was needed in Theorem 8.1.

Proposition 9.2. If f ∈ L2(m) satisfies 
∑

n ‖Pnf‖2
0 < ∞, then f ∈

√
I − PL2(m).

Proof. Recall that P admits a unitary dilation, that is, there exists a Hilbert space H containing L2(m)
and a unitary operator U on H such that for every n ∈ N, and every f ∈ L2(m), EUnf = Pnf where E is 
the orthogonal projection onto L2(m).
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We first make two observations.

Lemma 9.3. For every n ∈ N and every � ≥ 1, the spaces U−n−�Pn+�L2(m) and (U−nPn −
U−n−1Pn+1)L2(m) are orthogonal (in H).

Proof. Let f, g ∈ L2(m). Let n ∈ N and � ≥ 1. We have

〈(U−nPn − U−n−1Pn+1)f, U−n−�Pn+�g〉H

= 〈U �Pnf, Pn+�g〉H − 〈U �−1Pn+1f, Pn+�g〉H

= 〈Pn+�f, Pn+�g〉H − 〈Pn+�f, Pn+�g〉H = 0 . �
Lemma 9.4. Let f ∈ L2(m). The following conditions are equivalent.

(i)
∑

n∈N
‖Pnf‖2

0 < ∞;
(ii) ‖Pnf‖H → 0 and 

∑
n∈N

n‖U−nPnf − U−n−1Pn+1f‖2
H < ∞.

Proof. Notice that if (i) holds, then ‖Pnf‖ → 0. Hence, in any case, we may assume that ‖Pnf‖ → 0. 
Hence, for every n ∈ N, we have (with convergence in H)

Pnf =
∑
k≥0

(U−kPn+kf − U−k−1Pn+k+1f) . (41)

By the above lemma the terms of that series lie in orthogonal spaces. Hence,

‖Pnf‖2
H =

∑
k≥0

‖U−kPn+kf − U−k−1Pn+k+1‖2
H

=
∑
k≥n

‖U−kP kf − U−k−1P k+1‖2
H ,

where we used that U−1 is an isometry (and a change of variable) for the last identity. The desired result, 
then follows by Fubini. �

Continuation of the proof of Proposition 9.2. Let f ∈ L2(m) be such that 
∑

n ‖Pnf‖2
0 < ∞. By 

lemma [21], we just have to prove that the series 
∑

n βnP
n converges in L2(m), which is equivalent to 

convergence of 
∑

n P
nf/

√
n [21]. We shall check Cauchy’s criterion.

Let q > p ≥ 1 be integers. Denote Vp,qf :=
∑q

n=p
Pnf√

n
. Using (41) and that U−1 is an isometry, we see 

that

‖Vp,qf‖2
H =

∑
k≥0

‖U−kP kVp,qf − U−k−1P k+1f‖2
H

≤
∑
k≥0

(∑
n≥p

‖U−kPn+kf − U−k−1Pn+k+1f‖H√
n

)

=
∑(∑ ‖U−n−kPn+kf − U−n−k−1Pn+k+1f‖H√

n

)2
.

k≥0 n≥p
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For every m ∈ N, denote um := ‖U−mPmf −U−m−1Pm+1f‖H. By Lebesgue dominated theorem for the 
counting measure on N, we just have to prove that

∑
n≥p

un+k√
n p→+∞−−−−−→ 0

and that
∑
k≥0

(∑
n≥1

un+k√
n

)2
< ∞ . (42)

Let k ≥ 0. By Cauchy–Schwarz we have

(
∑
n≥p

un+k√
n

)2 ≤ (
∑
n≥p

1
n
√
n + k

)
∑
n≥p

√
n + ku2

n+k ≤ C
√
p

∑
n≥p+k

√
nu2

n p→+∞−−−−−→ 0 , (43)

by assumption.
Let us prove (42). We first notice that, by Cauchy–Schwarz,

(
k+1∑
n=1

un+k√
n

)2 ≤ (
k+1∑
j=1

1
j1/2 )

k+1∑
n=1

u2
n+k

n1/2 ≤ C(k + 1)1/2
k+1∑
n=1

u2
n+k

n1/2 .

Now, interverting the order of summation twice, we see that

∑
k≥0

(k + 1)1/2
k+1∑
n=1

u2
n+k

n1/2 ≤
∑
k≥0

k+1∑
n=1

(n + k + 1)1/2u2
n+k

n1/2

=
∑
n≥1

1
n1/2

∑
k≥n−1

(n + k + 1)1/2u2
n+k =

∑
n≥1

1
n1/2

∑
k≥2n−1

(k + 1)1/2u2
k

=
∑
k≥1

(k + 1)1/2u2
k

∑
1≤n≤(k+1)/2

1
n1/2 ≤ C

∑
k≥1

(k + 1)u2
k < ∞ ,

by assumption. Hence

∑
k≥0

(
k+1∑
n=1

un+k√
n

)2 < ∞ . (44)

On the other hand, by (43) with p = k + 2, we see that

∑
k≥0

(
∑

n≥k+2

un+k√
n

)2 ≤
∑
k≥0

C√
k + 1

∑
n≥2k+2

√
nu2

n ≤ C ′
∑
n≥2

nu2
n < ∞ . (45)

Combining (44) and (45) with the identity (a + b)2 ≤ 2(a2 + b2), we see that (42) holds. �
By Proposition 9.2, the condition 

∑
n ‖Pnf‖2

0 < ∞ is always stronger than the condition f ∈√
I − PL2(m). For normal operators, or for operators admitting a normal dilation with spectrum in a 

sector, the condition 
∑

n ‖Pnf‖2
0 < ∞ implies that f ∈ H−1 (see Proposition 7.1 or Proposition 7.4), so for 

such operators convergence of 
∑

n ‖Pnf‖2
0 is sufficient for the WIP (and the ASIP).

One may wonder whether this is also true for other operators.
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Proposition 9.5. (See Dedecker [20].)

(i) There exists a Markov operator P on some L2(m) and f ∈ L2(m) with 
∑

n≥1(logn)‖Pnf‖2
0 < ∞, such 

that 1√
n
‖Sn(f)‖L2(Pm) n→∞

−−−−→ +∞. In particular, by Theorem 3.2, f /∈ H−1.
(ii) There exists a Markov operator P on some L2(m) and f ∈ L2(m) with 

∑
n≥1(logn)‖Pnf‖2

0 < ∞, 
such that 1√

n
‖Sn(f)‖L2(Pm) n→∞

−−−−→ 1, but the CLT fails. In particular, f does not satisfy the Maxwell–
Woodroofe condition (40).

Proof. Part (i) of Proposition 9.5 follows from Remark 3 of [20], and part (ii) follows from Corollary 2.4(ii) 
there. The paper [20] is written in the setting of dynamical systems but, as observed for instance in [19], it 
has an equivalent formulation in terms of Markov chains. In that case the Markov operator is a co-isometry 
(P ∗ is an isometry). �
Remarks. 1. Volný [50] constructed an example of a (non-normal, of course) Markov operator P
with f ∈

√
I − PL2(m) for which the CLT does not hold. In his example the asymptotic variance 

limn ‖Sn(f)‖L2(Pm)/
√
n does not exist. In view of Proposition 9.2, in Dedecker’s example given by Propo-

sition 9.5(ii), f is in 
√
I − PL2(m) and has a finite asymptotic variance, but the CLT still does not hold.

2. The function f in Proposition 9.5(ii) is not in B, since by Olla [45, p. 80] the CLT holds for functions 
in B. By the next proposition, f /∈ H−1.

As we shall see now, for co-isometries the symmetrization method does not bring any novelty.

Proposition 9.6. Let P be a Markov operator on L2(m) which is a co-isometry. Then, H−1 =
(I − P )L2(m) = B.

Proof. We already know that (I − P )L2(m) ⊂ B ⊂ H−1. Let f ∈ H−1. We have to prove that f ∈
(I − P )L2(m). By a result of Browder [8], it suffices to prove that

sup
n≥1

‖f + Pf + . . . + Pnf‖0 < ∞ .

Define Vn := I + P + . . . + Pn and fn := Vnf . Let g ∈ L2(m) be such that f =
√
I − Psg. Using (7), we 

obtain

‖fn‖4
0 = 〈Vn

√
I − Psg, fn〉20 ≤ ‖g‖2

0 ‖
√
I − PsV

∗
n fn‖2

0

= ‖g‖2
0 〈(I − P )∗V ∗

n fn, V
∗
n fn〉0 = ‖g‖2

0 〈fn − (P ∗)n+1fn, V
∗
n fn〉0

= ‖g‖2
0 〈fn, (I − Pn+1)V ∗

n fn〉0 .

By the assumption PP∗ = I we have Pn+1V ∗
n = Vn+1 − I, hence (on the real L2)

|〈fn, (I − Pn+1)V ∗
n fn〉0| = |〈fn, V ∗

n fn〉0 − 〈fn, (Vn+1 − I)fn〉0|

|〈fn, V ∗
n fn〉0 − 〈fn, (V ∗

n+1 − I)fn〉0| ≤ 2‖fn‖2
0 .

Hence, ‖fn‖4
0 ≤ 2‖g‖2

0 ‖fn‖2
0, and the result follows. �
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10. Poincaré’s inequality and uniform ergodicity

In this section we use the properties of H−1 to show that P (ergodic with invariant probability m) is 
uniformly ergodic if and only if P satisfies Poincaré’s inequality: there exists C > 1 such that

‖f‖2
0 ≤ C〈f, (I − P )f〉0 ∀ real f ∈ L2

0(m). (46)

Remark. Originally, Poincaré’s inequality was with I − P replaced by −Δ, where Δ is the Laplacian (and 
the functions f taken in the domain of Δ), as a tool for estimating the eigenvalues of Δ. For the history 
of the inequality we refer to Allaire [2]. The book [4] treats the inequality with Δ replaced by a general 
symmetric infinitesimal generator A of a (necessarily reversible) Markov semi-group.

Lemma 10.1. Let P be an ergodic Markov operator with invariant probability m. Then the following are 
equivalent.

(i) P satisfies Poincaré’s inequality (46);
(ii) H−1 = L2

0(m).

Moreover, if any of the above holds, then P is power-bounded on H−1, with supn ‖Pn‖−1 ≤ 2
√
C. In 

particular B = H−1 = L2
0(m).

Proof. Assume (i). Let f, h ∈ L2
0(m). By (46) we have

〈f, h〉2 ≤ ‖f‖2
0 ‖h‖2

0 ≤ C‖f‖2
0〈h, (I − P )h〉 .

Hence by Lemma 2.3(i), f ∈ H−1 and ‖f‖−1 ≤
√
C‖f‖0. Hence, (ii) holds and the norms ‖ ·‖0 and ‖ ·‖−1 are 

equivalent. In particular P is power bounded on H−1. By (5), ‖Pn‖−1 ≤ 2
√
C. For the equality B = H−1

see end of the proof of Lemma 2.4.
Assume that H−1 = L2

0(m). By Lemma 2.2 it follows that 
√
I − Ps is a bijection of L2

0(m). By the open 
mapping theorem it admits a continuous (with respect to ‖ · ‖0) inverse, say Gs. Then for f ∈ L2

0(m) we 
have

‖f‖2
0 = ‖Gs

√
I − Psf‖2

0 ≤ ‖Gs‖2 〈f, (I − Ps)f〉0 = ‖Gs‖2 〈f, (I − P )f〉0 ,

i.e. P satisfies Poincaré’s inequality. �
For p ∈ [1, ∞), the Markov operator P is called Lp-uniformly ergodic if 1

n

∑n
k=1 P

k converges in the 
operator norm on Lp. If P is L2-uniformly ergodic, then it is Lp-uniformly ergodic for any 1 < p < ∞ (by 
the Riesz–Thorin theorem; see also [24, Corollary 3.5]).

Theorem 10.2. Let P be an ergodic Markov operator with invariant probability m. Then P is L2-uniformly 
ergodic if and only if it satisfies Poincaré’s inequality.

Proof. Assume first the P satisfies Poincaré’s inequality. By Lemma 10.1(ii), H−1 = L2
0(m). Then the 

inequality (21) in Theorem 3.2 yields that

sup
n≥1

1
n
‖

n∑
k=1

f(Wk)‖L2(Pm) < ∞ for every f ∈ L2
0(m).

Thus condition (iii) of [24, Theorem 2.2] holds, so P is uniformly ergodic by that theorem.
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Assume now that P is uniformly ergodic. Then I−P is invertible on L2
0(m) (since ‖ 1

n

∑n
k=1 P

k‖L2
0(m) →

0), and (I − P )L2(m) = (I − P )L2
0(m) = L2

0(m). Using Lemma 2.3(ii) we obtain

H−1 ⊂ L2
0(m) = (I − P )L2

0(m) ⊂ H−1,

which yields H−1 = L2
0(m). By Lemma 10.1 P satisfies Poincaré’s inequality. �

Remark. For P symmetric (and ergodic), it has been known for some time that Poincaré’s inequality (46)
is equivalent to P on the complex L2(m) having a spectral gap at 1, i.e. σ(P ) ⊂ [−1, θ] ∪ {1} for some 
0 < θ < 1. Since we have not found a reference for the proof, we give one which is independent of our 
previous results. Let L2

0 be the subspace of the complex L2(m) of functions with integral zero, and let T
be the restriction of P to L2

0. Since P is symmetric 〈Pf , f〉0 is real on the complex L2(m), and it is easy 
to check that (46) implies the same inequality also for every complex valued f ∈ L2(m) with 

∫
f dm = 0. 

Then (46) means

sup{〈Tf, f〉0 : f ∈ L2
0, ‖f |0 = 1} ≤ 1 − 1

C
.

Since T is a symmetric contraction on L2
0, this is equivalent, see [48, Section 107], to σ(T ) ⊂ [−1, 1 − 1

C ]
which, by ergodicity, is equivalent to P having a spectral gap. In particular I−T is invertible on L2

0, so the 
ergodic decomposition yields the uniform ergodicity of P .

Corollary 10.3. Let P be an ergodic Markov operator with invariant probability m. Then P is L2-uniformly 
ergodic if and only if Ps is L2-uniformly ergodic.

Proof. By (7), Poincaré’s inequality is the same for P and for Ps. �
Remark. In continuous time, we have a C0-semi-group {Pt}t≥0 of Markov operators with infinitesimal 
generator A, and the quadratic form 〈f, (I − P )f〉0 in (46) is replaced by the Dirichlet quadratic form 
〈f, −Af 〉0, defined for real f in the domain of A; Ligget [39, Theorem 2.3] proved that Poincaré’s inequality 
is equivalent in that case to L2-operator norm convergence of Pt, as t → ∞, with exponential rate (without 
averaging). In the discrete case, uniform ergodicity still allows for periods, even when P is symmetric (take 
any finite state reversible ergodic Markov chain which is 2-periodic; see [24, Proposition 3.3]).

Proposition 10.4. Let P be an ergodic Markov operator with invariant probability m. Then the following are 
equivalent.

(i) P satisfies Poincaré’s inequality;
(ii) P is L2-uniformly ergodic;
(iii) There exists d ≥ 1 such that {P dn}n≥1 converges in L2 operator norm.

In particular, with the same d ≥ 1 as in (iii), there exist C > 0 and 0 < ρ < 1, such that ‖P dnf−Ed(f)‖0 ≤
Cρn‖f‖0, for every f ∈ L2(m), where Ed is the orthogonal projection on the functions invariant by P d.

Proof. The equivalence of (i) and (ii) follows from Theorem 10.2. The exponential convergence follows easily 
from (iii).

Let us prove that (ii) is equivalent to (iii).
If P is L2-uniformly ergodic, the averages converge also uniformly on the complex L2(m). As shown in 

the proof of [24, Proposition 3.3], all unimodular spectral points of P are simple poles (hence isolated in the 
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spectrum), so there are only a finite number of them. Since P is a positive operator, they are roots of unity, 
and there is d ≥ 1 such that σ(P d) ∩ {λ ∈ C : |λ| = 1} = {1}, by [40, Proposition 1]. Hence the spectral 
radius of P d restricted to (I − P d)L2 is less than one, which implies that {P dn}n≥1 converges in operator 
norm.

The converse follows easily from the operator norm convergence of 1
n

∑n
k=1 P

dk+j , as n → ∞, for each 
0 ≤ j ≤ d − 1. �

The smallest d for which (iii) of Proposition 10.4 holds is called the period of P ; when d = 1 we say that 
P is aperiodic.

Remark. As mentioned above, the analogue of this proposition in continuous-time, the equivalence of 
Poincaré’s inequality and the exponential L2-operator norm convergence of Pt, is well-known [39]. We 
know of no reference for our discrete time result.

Lemma 10.5. Let P be an ergodic Markov operator with invariant probability m. Assume that P satisfies

〈Pf , f〉0 > −1/2 for every real f ∈ L2(m) with ‖f‖0 = 1 . (47)

Then P (on the complex L2(m)) has no unimodular eigenvalue other than 1. In particular, if P is in addition 
uniformly ergodic, it is aperiodic.

Proof. Since P is an ergodic Markov operator, it is well known that the set of unimodular eigenvalues 
of P is a group (see e.g. [1] or [12]). Assume that P on the complex L2 has a unimodular eigenvalue eiθ

with eigenfunction f �= 0. Equality in the Cauchy–Schwarz inequality implies that P ∗f = e−1θf . Hence 
Psf = cos θ · f .

If eiθ is not a root of unity, it generates a dense subgroup of the circle, contradicting (47).
If eiθ is a d-th root of unity with (minimal) d ≥ 2, then for k ∈ {0, . . . , d − 1}, the numbers e2ikπ/d are 

eigenvalues. If d = 2s for some s ≥ 1, taking k = s, we see that −1 is an eigenvalue of P , contradicting (47). 
If d = 2s +1 for some s ≥ 1, taking k = s, we see that cos(2kπ/d) = − cos(π/(2s +1)) ≤ − cos(π/3) = −1/2, 
contradicting (47). �

Our next task is to estimate the exponent ρ in Proposition 10.4(iii) when P is L2-uniformly ergodic and 
aperiodic.

When P is symmetric positive definite, i.e. satisfies (47), the proof of uniform ergodicity in the remark 
preceding Corollary 10.3 yields that C0, the smallest C in Poincaré’s inequality (46), satisfies ρ = 1 − 1

C0
.

Next, observe that if we have Poincaré’s inequality for the multiplicative symmetrization, i.e.

‖f‖2
0 ≤ K〈f, I − P ∗Pf 〉0 for every real f ∈ L2

0(m),

then ‖Pf ‖0 ≤
√

(K − 1)/K‖f‖0, so P is aperiodic with ρ ≤
√

(K − 1)/K.
The next result is inspired by the work of Fill [28] on Markov chains with finite state space.

Proposition 10.6. Let P be an ergodic Markov operator with invariant probability m, which satisfies Poinca-
ré’s inequality (46) with constant C > 1, and assume that for some γ > (C − 1)/C we have

〈Pf , f〉0 ≥ γ〈Pf ,Pf 〉0 ∀f ∈ L2(m). (48)

Then, for every f ∈ L2
0(m)

‖Pnf‖2
0 ≤

(C − 1
γC

)n

‖f‖2
0 ∀n ≥ 1 .
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Proof. Let f ∈ L2
0(m). Using (46) and (48) we have

‖f‖2
0 ≤ C‖f‖2

0 − γC‖Pf ‖2
0 .

Hence,

‖Pf ‖2
0 ≤ C − 1

γC
‖f‖2

0 ,

and the result follows by induction. �
Remarks. 1. Since P1 = 1, necessarily γ ≤ 1.

2. Let C0 be the smallest constant for which (46) is satisfied, and put ρs = (C0−1)/C0. If (48) is satisfied, 
then Ps is positive-definite, so it is aperiodic and ρs yields its rate of convergence. Minimality of C0 yields 
that γ > ρs, so the proposition yields the estimate ρ ≤ ρs/γ.

3. The hypothesis (48) may be rewritten as 〈Psf, f〉0 ≥ γ〈P ∗Pf , f〉0.

Example 6. Let Q be an ergodic L2-uniformly ergodic Markov operator with invariant probability m, and 
define P = 1

2 (I + Q). By Theorem 10.2 Q satisfies Poincaré’s inequality with a constant C, and it is easily 
checked that P satisfies it with a constant 2C; hence P is L2-uniformly ergodic.

4‖Pf ‖2
0 = ‖f‖2

0 + ‖Qf ‖2
0 + 2〈Qf , f〉0 ≤ 2

(
‖f‖2

0 + 〈Qf , f〉0
)

= 4〈Pf , f〉0 (49)

shows that P satisfies (48) with γ = 1, so by the above ρ ≤ ρs.
Note that if we define P = αI + (1 − α)Q with α ∈ (1

2 , 1), we can reduce it to P = 1
2 (I + Q′) for some 

other Markovian contraction Q′, so P satisfies (48) with γ = 1.
A special case is when P is a finite-dimensional ergodic Markov matrix with pi,i ≥ 1

2 for every i (called 
strongly aperiodic in [28]). Q = 2P − I is then Markovian since it is positive and Q1 = 1.

Remarks. 1. Let P satisfy (48) with γ = 1, and define Q = 2P − I. Then the computation in (49) shows 
that necessarily ‖Q‖ ≤ 1. If P satisfies Poincaré’s inequality, so does Q. Since I − Q = 2(I − P ), we have 
(I −Q)L2(m) closed, so Q is L2-uniformly ergodic, and Qf = f implies f constant by ergodicity of P .

2. If Q is as in Example 6, but there is some f with 〈Qf , f〉0 < 0 (i.e. Qs is not positive definite), then for 
α > 0 small enough P (α) := αI+(1 −α)Q does not satisfy (48), nor even (47), since limα→0+〈P (α)f, f〉0 < 0. 
When Q on {0, 1} is given by qi,j = 1 − δi,j , then P (α) does not satisfy (47) for any α < 1

2 .
3. The operator P = αI +(1 −α)Q with Q as in Example 6 and α ∈ (0, 1) is always L2-uniformly ergodic 

aperiodic. Since I − P = (1 − α)(I −Q), we have (I − P )L2 closed, and invertible on L2
0. By Foguel–Weiss 

‖Pn(I − P )‖ → 0, so ‖Pn‖L2
0
→ 0, which yields aperiodicity.

4. A Markov operator P has the representation P = αI + (1 − α)Q with Q Markovian and α ∈ (0, 1) if 
and only if Pf ≥ αf for every f ≥ 0. Indeed, if Pf ≥ αf for every f ≥ 0, we define Q := (P − αI)/(1 − α). 
Then Qf ≥ 0 for f ≥ 0, Q1 = 1, and Q(x, A) := Q1A(x) is a transition probability with mQ = m. Hence Q
is a contraction of L2(m). The converse is obvious.
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