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In this paper, we present an analytical study, in the one space dimensional case, 
of the fluid dynamics system proposed in [3] to model the formation of biofilms. 
After showing the hyperbolicity of the system, we show that, in an open neighbor-
hood of the physical parameters, the system is totally dissipative near its unique 
non-vanishing equilibrium point. Using this property, we are able to prove existence 
and uniqueness of global smooth solutions to the Cauchy problem on the whole line 
for small perturbations of this equilibrium point and the solutions are shown to 
converge exponentially in time at the equilibrium state.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A biofilm is a complex gel-like aggregation of micro-organisms like bacteria, algae, protozoa and fungi. 
They stick together, attach to a surface and embed themselves in a self-produced extracellular matrix of 
polymeric substances, called EPS.

In this paper, we study a fluid dynamics model, introduced in [3], to describe the space–time growth of 
biofilms. This model was built in the framework of mixture theory, see [10] or [1], and conserves the finite 
speed of propagation of the fronts. For simplicity reasons, the model describes a biofilm in which there is 
just one species of micro-organisms, or better, all species are lumped together, but it can be extended to 
other situations. It has been derived starting from the equations for mass and momentum conservation, 
and some physical constraints and assumptions about the behavior of the biological aggregates and their 
interaction with the surrounding liquid. Here we assume that the complex structure of biofilms is described 
by four different phases: bacteria B(x, t), extracellular matrix EPS E(x, t), dead cells D(x, t) and a liquid 
phase L(x, t). The quantities B, E, D, L are the volume fraction of each component, then B, E, D, L ∈ [0, 1]. 
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Since we are dealing with a one dimensional model, then we have x ∈ R, t > 0. Therefore, in this paper we 
consider the whole x-axis. Clearly, the problem with a finite x-domain, i.e. the interval [a, b], with a, b ∈ R, 
a < b, is another interesting problem, but, in this case, our proof of global existence does not work and so 
this problem will be considered in a future work.

For simplicity reasons, we assume that B, E, D have the same transport velocity vS. The reaction terms 
are indicated by ΓΦ, with Φ = B, E, D, L. Imposing the total balance of mass and momentum for each 
phase Φ, we can write the model, see [3] for all details. This model was originally proposed in all space 
dimensions, and in the present case of one space dimension, is given by a system of six partial differential 
equations, which read:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tB + ∂x(BvS) = ΓB ,

∂tE + ∂x(EvS) = ΓE ,

∂tD + ∂x(DvS) = ΓD,

∂tL + ∂x(LvL) = ΓL,

∂t((1 − L)vS) + ∂x((1 − L)v2
S) = −(1 − L)∂xP − γ∂x(1 − L)

+ (M − ΓL)vL −MvS ;

∂t(LvL) + ∂x(Lv2
L) = −L∂xP − (M − ΓL)vL −MvS .

(1.1)

To reformulate our model in a more suitable form, we assume the following volume constraint:

L = 1 − (B + E + D), (1.2)

that is the assumption that the mixture is saturated and no empty space is left. In addition to the balance 
mass of each component, we also have the total conservation of the mass of the mixture by the following 
assumption:

ΓB + ΓE + ΓD + ΓL = 0. (1.3)

The mass constraint in (1.3) states that the mixture is closed, i.e. there is no net production of mass for 
the mixture. According to [3], the reaction terms are given by:

ΓB = KBBL−KDB; (1.4)

ΓD = αKDB −KND; (1.5)

ΓE = KEBL− εE. (1.6)

The birth of new cells at a point depends on the quantity of liquid available in the neighborhood of the 
point, that is why the birth term in ΓB is a product between the volume fraction B of active cells and the 
volume fraction L of liquid. In this way, the mass production term ΓB is the difference between a birth term 
and a death term, where the second is proportional to the fraction B of bacteria, with rate kD. The death 
term in the expression of ΓB gives rise to a creation term of the mass exchange rate for dead cells ΓD, with 
a proportional coefficient α, since a part of the active cells goes into liquid when the cell dies. In ΓD, we 
also find a natural decay of dead cells with a constant decay rate kN . The EPS is produced by active cells 
in presence of liquid and therefore the production term will be proportional to BL, where kE is the growth 
rate of EPS. There is also a natural decay of EPS with rate ε. To conclude this explanation about the mass 
exchange terms, we choose ΓL in order to enforce condition (1.3). See again [3] for more details.
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Let us now further simplify the equations of system (1.1). First, by the volume constraint, the equation 
for the fraction L is no more necessary. Summing the equations for B, E, D, L in (1.1) and using the volume 
constraint (1.2), we obtain

∂x((1 − L)vS + LvL) = 0, (1.7)

which establishes that the derivative of the average of the hydrodynamic velocity vanishes. Since we are 
in one space dimension and since all phases B, E, D, L and velocities vS , vL vanish at infinity, by using 
equation (1.7) we can express the unknown liquid phase velocity in function of the solid phase velocity, and 
then we can eliminate the equation for the liquid phase from system (1.1). Precisely, we have:

vL = L− 1
L

vS . (1.8)

Summing up the fifth and the sixth equations of system (1.1) and using equality (1.8), we have an explicit 
expression of the spatial derivative of the pressure term P , which solves

∂xP = −γ∂x(1 − L) − ∂x((1 − L)v2
S + Lv2

L). (1.9)

Then, substituting equation (1.8) in (1.9), we have

∂xP = −γ∂x(1 − L) − ∂x

(
1 − L

L
v2
S

)
. (1.10)

After some calculations, we obtain an equation for the solid phase velocity vS, and, finally, system (1.1)
becomes a system of only four equations, which are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tB + ∂x(Bv) = ΓB ,

∂tE + ∂x(Ev) = ΓE ,

∂tD + ∂x(Dv) = ΓD,

∂tv + ∂x

[
(3L− 2)v2

2L + γ(L + ln(1 − L))
]

= ΓL −M

L(1 − L)v = Γv,

(1.11)

where, from now on, v := vS . Obviously, we still have the biological constraints (1.2) and (1.3), which close 
system (1.11).

In this paper, we aim to give a first analytical result to the Cauchy problem for this system on the real 
line. The paper is organized as follows. In Section 2, we determine the region of hyperbolic symmetrizability 
of system (1.11), that ensures the local existence of smooth solutions (see [7,6]). Then, we establish some 
conditions in order to have a totally dissipative source. Finally, in the last section, we use this dissipative 
property to prove that, if we have initial data in a small neighborhood – in H2-norm – of the unique 
equilibrium point ū = (B̄, Ē, D̄, ̄v), these smooth solutions are global in time. In the last part of the paper, 
we analyze the asymptotic behavior of our solutions by using energy estimates. More precisely, we show 
that these solutions decay exponentially, in the H2-norm, to the equilibrium point ū.

The proof of global existence of smooth solutions for system (1.11) takes inspiration from [4], but here we 
do not make use of any strictly convex entropy. As we will discuss later, system (1.11) is “totally dissipative”, 
which means that the source term has a particular dissipative property. Our proof of global existence for 
the solutions of (1.11) is based on this totally dissipative property, which means that dissipation prevents, 
for small initial data, the formation of shocks and ensures global existence of the solutions.
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2. The quasilinear hyperbolic dissipative system

Let us rewrite now system (1.11) in a compact form, in order to study its hyperbolic symmetrizability, 
which provides the local existence of smooth solutions (see [7,6]). Let us set

u =

⎛
⎜⎜⎜⎝

B

E

D

v

⎞
⎟⎟⎟⎠ .

The flux function for system (1.11) is

F (u) =

⎛
⎜⎜⎜⎜⎝

Bv

Ev

Dv
(3L− 2)v2

2L + γ(L + ln(1 − L))

⎞
⎟⎟⎟⎟⎠ , (2.1)

and

G(u) =

⎛
⎜⎜⎜⎝

ΓB

ΓE

ΓD

Γv

⎞
⎟⎟⎟⎠ (2.2)

is the vector of the reaction terms. With this notation, we can write system (1.11) in the compact conservative 
form

∂xu + ∂xF (u) = G(u).

To study the properties of (1.11), we need to compute the Jacobian matrix

A(u) =

⎛
⎜⎜⎜⎝

v 0 0 B

0 v 0 E

0 0 v D

η η η (3L−2)
L v

⎞
⎟⎟⎟⎠ , (2.3)

of the flux function F (u). We can now write (1.11) as a quasilinear system of partial differential equation, 
in the following form

∂tu + A(u)∂xu = G(u). (2.4)

2.1. Hyperbolicity and symmetrizability

The main hypothesis of the theorem on local existence of smooth solutions for a general hyperbolic 
quasilinear system in form (2.4) is symmetrizability (see [7,6]), namely the existence of a symmetric positive 
definite matrix A0, such that A0A is also symmetric.

Assume L �= 0 and L �= 1, and set

η := Lγ − v2

2 . (2.5)
(1 − L) L
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It is easy to see that, if η > 0, then a positive symmetrizer for the model in (1.11) is given by the matrix

A0(u) =

⎛
⎜⎜⎜⎝

η 0 0 0
0 Bη

E 0 0
0 0 Bη

D 0
0 0 0 B

⎞
⎟⎟⎟⎠ . (2.6)

Remark 2.1. By the existence of a symmetrizer, system (2.4), (2.3), (2.2) is symmetrizable hyperbolic in 
the following domain

W =
{

u = (B,E,D, v) ∈ [0, 1]3 × R : η > 0, 0 < L < 1
}
. (2.7)

Let us find now the domain of simple hyperbolicity of our model (2.4), (2.3), (2.2). We calculate the 
eigenvalues of A(u) in (2.3), which are the following:

1. λ1,2 = v;

2. λ2,3 = (2L− 1)v
L

±
√

(1 − L)Δ;

where

Δ = Lγ

(1 − L) − v2

L
> 0, (2.8)

in order to have real eigenvalues. Moreover, observing (2.5) we note that

Δ > η > 0.

This inequality is completely in accordance with the general theory about hyperbolic symmetrizable system, 
because (strong) hyperbolicity follows directly from hyperbolic symmetrizability.

Therefore, always if η > 0, we can write the explicit expression of domain of symmetrizability (and then 
hyperbolicity) for system (2.4), (2.3), (2.2), which is

W =
{

u = (B,E,D, v) ∈ [0, 1]3 × R : − L3/2γ1/2

(1 − L)1/2
< v <

L3/2γ1/2

(1 − L)1/2
, 0 < L < 1

}
. (2.9)

Finally, let Ω be a convex open subset of W . This set Ω will be our domain of work for system (2.4), 
(2.3), (2.2).

Let us set now A1(u) = A0A(u). We can write system (2.4), (2.3), (2.2) in the following symmetric form

A0(u)∂tu + A1(u)∂xu = A0G(u), (2.10)

with A0, A, G given respectively in (2.6), (2.3), (2.2).
From symmetrizability, we have local in time smooth solution in H2(W ) for system (2.4), (2.3), (2.2)

with initial data in the same space, thanks to the theorem of local well-posedness of the Cauchy problem 
for quasilinear hyperbolic symmetrizable systems [7].
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2.2. Total dissipativity of the source

Here we are going to show that, under some assumptions, the source term is totally dissipative and, 
then, under some smallness hypothesis on the initial data u0, these solutions are also global in time. This 
dissipative property, in fact, allows to estimate the H2-norm of solution u and to prove that this norm is 
bounded for all t > 0, without the use of strictly convex and strictly dissipative entropy, as done in [4].

Let us give now our definition of Hyperbolic Symmetrizable Totally Dissipative System. In order to clearly 
write this definition, we consider a general one-dimensional n × n hyperbolic symmetrizable system in the 
compact form (2.4), with u ∈ Ω ⊆ R

n, where Ω is a convex open set and A(u), G(u) are smooth enough 
in Ω.

Definition 2.1 ((D)-Condition). Assume that system (2.10) is hyperbolic symmetrizable in a set W . Let Ω
be a convex subset of W , which contains a unique equilibrium point ū for (2.10), i.e. G(ū) = 0. We say that 
system (2.10) is totally dissipative in Ω, if there exists a matrix D = D(u, ū) ∈ Mn×n such that, for every 
u ∈ Ω, we have

• G(u) = D(u, ū)(u − ū);
• A0D(u, ū) is negative definite.

Let us check the totally dissipative property of system (1.11). First of all, we determine the coordinates 
of the point in which the reaction terms vanish. Actually, we have only one isolated equilibrium point ū, 
which is inside of the domain of hyperbolicity.

To see that, set

B̄ =
(

1 − kD
kB

)/(
1 + αkD

kN
+ kDkE

εkB

)
.

Therefore

ū = B̄

⎛
⎜⎜⎜⎜⎜⎜⎝

1
kEkD
εkB
αkD
kN
0

⎞
⎟⎟⎟⎟⎟⎟⎠

= a

1 + αkD

kN
+ kDkE

εkB

⎛
⎜⎜⎜⎜⎜⎜⎝

1
kEkD
εkB
αkD
kN
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.11)

with a := kB−kD

kB
. It has been assumed that B̄, Ē, D̄, L̄ ∈ (0, 1). Then, from (2.11), in order to have positive 

volume fractions B̄, Ē, D̄, we have to assume

kB > kD. (2.12)

Let us observe now that inequality (2.9), which describes the region of hyperbolic symmetrizability of (1.11), 
is verified near the equilibrium point ū. Then, if we take u in a small neighborhood of this point, we are 
within the domain of hyperbolic symmetrizability. For this reason, to show our results of global existence of 
smooth solutions, the idea is to consider an initial data u0 in a convex and compact neighborhood of this 
equilibrium point ū, then we set

Ω = B̄r(ū), (2.13)

for a fixed r > 0. Let us write the matrix D, as in (D)-Condition, for the source term of system (1.11). Then
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G(u) = D(u, ū)(u − ū),

with

D(u, ū) =

⎛
⎜⎜⎜⎝

−BkB −BkB −BkB 0
εĒ(L−B̄)

B̄L̄

−ε(BL+B̄E)
B̄L̄

− εE
L̄

0
kND
B̄

0 −kNB
B̄

0
0 0 0 ΓL−M

L(1−L)

⎞
⎟⎟⎟⎠ . (2.14)

In order to show that system in (2.10), (2.6), (2.3), (2.2) verifies the (D)-Condition in a small neighborhood 
of ū, we have only to prove that matrix A0D(ū, ū) is negative definite. Using the expression of ū, we rewrite 
the expressions of the matrices

A0(ū) =

⎛
⎜⎜⎜⎝

kDγ
(kB−kD) 0 0 0

0 εkBγ
kE(kB−kD) 0 0

0 0 kNγ
α(kB−kD) 0

0 0 0 B̄

⎞
⎟⎟⎟⎠ ,

and

D(ū, ū) =

⎛
⎜⎜⎜⎝

−B̄kB −B̄kB −B̄kB 0
kE(L̄− B̄) −ε− B̄kE −B̄kE 0

αkD 0 −kN 0
0 0 0 − k2

BM
kD(kB−kD)

⎞
⎟⎟⎟⎠ .

Using the Routh–Hurwitz conditions [8] on (A0D)+(A0D)T
2 , we aim to establish the sign of A0D(ū, ū). We 

have (
(A0D)+(A0D)T

2

)
(ū, ū)

=

⎛
⎜⎜⎜⎜⎝

−B̄kBkD
kB

2 [ε(L̄− B̄) − kDB̄] kD

2 [kN − B̄kB ] 0
kB

2 [ε(L̄− B̄) − kDB̄] − εkB(ε+kEB̄)
kE

− εkBB̄
2 0

kD

2 [kN − B̄kB ] − εkBB̄
2 −k2

N

α 0
0 0 0 − k2

BMB̄
kD(kB−kD)

⎞
⎟⎟⎟⎟⎠ . (2.15)

Obviously, we are interested to the internal 3 × 3 matrix which contains the main diagonal of the original 
4 × 4 matrix. Its characteristic polynomial is P (λ), and its general form is

P (λ) = λ3 + a1λ
2 + a2λ + a3. (2.16)

Here, the coefficients ai (i = 1, 2, 3) are all real. We require the conditions on the ai, such that the zeros 
of P (λ) have Reλ < 0. The necessary and sufficient conditions for this to hold are the Routh–Hurwitz 
conditions [8]. For the cubic equation, λ3 + a1λ

2 + a2λ + a3 = 0, the Routh–Hurwitz conditions for Reλ < 0
are given by the following [RH ] conditions:

[RH ]

⎧⎪⎪⎨
⎪⎪⎩

a1 > 0;

a3 > 0;

a a − a > 0.

(2.17)
1 2 3
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Table 1
A list of (dimensional) parameters [3].

Param. Value Unit of meas. Indications

kB 8 · 10−6 1/sec Bact. growth rate
kE 12 · 10−6 1/sec EPS growth rate
kD 2 · 10−7 1/sec Bact. death rate
kN 1 · 10−6 1/sec Dead cells consumption
ε 1.25 · 10−7 1/sec EPS death rate
α 0.25 dimensionless Coeff. liquid dead-cells

In our case, the coefficients of (2.16) are the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = B̄kBkD + ε2kB
kE

+ εB̄ + k2
N

α
;

a2 = ε2B̄k2
BkD

kE
+ εB̄kBk

2
N

α
+ εkBkDk2

N

α
+ B̄kBkD(εB̄kB + εkD + kDkN + ε2)

2

− B̄2k2
B(k2

D + ε2)
2 − k2

D(k2
N + ε2)
4 ;

a3 = ε2B̄k2
Bk

2
DkN

2kE
+ ε2B̄k2

BkDk2
N

αkE
+ εB̄kBkDk2

N (B̄kB + ε + kD)
2α

+ εB̄kBk
2
DkN (ε + B̄kB)

4 − εB̄kBkD(εB̄kBkN + εB̄kBkD + kDk2
N )

4

− ε2kBk
2
D(k2

N + B̄2k2
B)

4kE
− k2

N (ε2k2
D + ε2B̄2k2

B + B̄2k2
Bk

2
D)

4α .

(2.18)

Therefore, we can state our total dissipation result.

Proposition 2.1. Assuming that (2.12) holds. Then, if [RH ] condition is valid for a1, a2, a3 in (2.18), system 
(2.10), (2.6), (2.3), (2.2) satisfies (D)-Condition, and so it is totally dissipative in a neighborhood of its 
equilibrium point.

Now, the first condition of (2.17) for a1 in (2.18) is always verified. Regarding the second two conditions, 
it can be verified that they hold for some ε, α, kB, kD, kE , kN , in particular for the values of the parameters 
in Table 1, which was used in [3].

More generally, if we consider a constant a ∈ [0.5, 1.5], we can restrict our attention at the class of 
coefficients such that

ε = 1.25 · 10−7 � 10−7, kN = 10aε, , kE = 100aε, kD = 2aε, kB = 70aε. (2.19)

By this reduction, condition for a3 (the third condition of (2.17)) becomes a second degree polynomial 
inequality

−3.366175 · 1010a2 + 4.1829869 · 1010a− 8.303370950 · 109 > 0,

that can be easily solved, and the inequality holds for a ∈ [0.5, 1]. Moreover, by a simple numerical verifi-
cation, it can be seen that the second condition in (2.17) is also true in this interval. Then, if we take the 
coefficients as in (2.19), then (D)-Condition holds true for a ∈ [0.5, 1].
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3. Global existence of smooth solutions for small initial data and asymptotic behavior

Let us present now the proof of the global existence of smooth solutions to system (1.11) with initial 
data in a small neighborhood, in H2-norm, of the equilibrium point. We want to follow the proof of global 
existence of smooth solutions for weakly dissipative hyperbolic systems with a convex entropy in [4] and [2]. 
Using (D)-Condition, we can write the L2-norm estimates of the local solution u and of its first and second 
derivatives. Then, global existence of smooth solutions follows from these estimates. We underline that, in 
order to get these estimates, we use only the dissipative property of the source term – (D)-Condition – and 
we do not use any strictly convex and strictly dissipative entropy for system (1.11), which is an assumption 
of the theorem of global existence in [4].

Now, if we take the initial data in a small neighborhood of the equilibrium point ū, and we assume that 
our parameters are such that the (D)-Condition is verified, we are able to prove global existence of smooth 
solutions to model (1.11). Moreover, using the totally dissipative property of (D)-Condition, we can prove 
that this global solution will decay to the unique equilibrium point. In the following, let us state our global 
existence and asymptotic behavior result.

Theorem 3.1. Consider system (1.11) and its unique equilibrium point ū in (2.11) and assume that (2.12)
holds. If this system satisfies (D)-Condition, then there exists a 0 < δ < r such that, if ||u0 − ū||2 ≤ δ, then 
there is a unique global solution u with initial data u0, which verifies

u − ū ∈ C([0,+∞), H2(R)) ∩ C1([0,+∞), H1(R))

and

sup 0≤T<+∞ ||(u − ū)(t)||22 +
T∫

0

||(u − ū)(t)||22 dτ ≤ C(δ)||u0 − ū||2, (3.1)

where C(δ) is a positive constant. Moreover, the global solution u decays exponentially in H2-norm to the 
equilibrium point ū, i.e.

||u − ū||H2(R) ≤ C1e
−βt||u0 − ū||H2(R), (3.2)

where C1, β are positive constants.

In accordance with the hypothesis, we work in a neighborhood Ω of the equilibrium point ū. Let us 
introduce the new unknown

w := u − ū. (3.3)

Then, the equation in (2.10) becomes

A0(w + ū)∂tw + A1(w + ū)∂xw = A0G(w + ū). (3.4)

To prove global existence for (1.11), we follow the approach proposed in [9], see also [5] and [4], and we 
introduce the functional

N2
l (t) := sup 0≤τ≤t ||w(τ)||2l +

t∫
0

||w(τ)||2l dτ, (3.5)

for l = 0, 1, 2.
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Proposition 3.1. Let T > 0, and assume that there exists a smooth solution w of (2.10), (2.6), (2.3), (2.2)
in [0, T ]. Then, there exist ε > 0 and C > 0 such that, if N2(T ) ≤ ε,

N2
2 (T ) ≤ C(N2

2 (0) + N3
2 (T )). (3.6)

In a classical way, the first part of Theorem 3.1 about global existence and uniqueness of smooth solutions 
follows directly from Proposition 3.1 (see [4,9]). The following lemma is the first step of the proof of global 
existence.

Lemma 3.1. If N2(T ) ≤ ε, then

N2
0 (T ) ≤ C1(N2

2 (0) + N3
2 (T )). (3.7)

Usually, to state an estimate as (3.7), a function of convex entropy is used, but here, in our proof of 
Lemma 3.1, we do not use anything but the dissipative property of system (1.11).

Proof. Using (D)-Condition and (3.4), let us consider system (1.11) in the following symmetric form:

A0(w + ū)∂tw + A1(w + ū)∂xw = A0(w + ū)D(u, ū)w. (3.8)

In the previous equation, the new reaction term is

D1(u, ū,w) := A0(w + ū)D(u, ū). (3.9)

Therefore, we have

A0(w + ū)∂tw + A1(w + ū)∂xw = D1(u, ū,w)w. (3.10)

We have the following identities:

(A0(w + ū)∂tw,w) = 1
2∂t(A0(w + ū)w,w) − 1

2(∂tA0(w + ū)w,w); (3.11)

(A1(w + ū)∂xw,w) = 1
2∂x(A1(w + ū)w,w) − 1

2(∂xA1(w + ū)w̄,w). (3.12)

We consider (3.10) and take the inner product with w, which yields

(A0(w + ū)∂tw,w) + (A1(w + ū)∂xw,w) = (D1(u, ū,w)w,w). (3.13)

Using the identities (3.11) and (3.12) in (3.13), we obtain

1
2∂t(A0(w + ū)w,w) + 1

2∂x(A1(w + ū))w,w)

= 1
2(∂tA0(w + ū)w,w) + 1

2(∂xA1(w + ū)w,w) + (D1(u, ū,w)w,w). (3.14)

Therefore, if we integrate equality (3.13) over R × [0, T ], we have

1
2

∫
R

(A0(w(T ) + ū)w(T ),w(T )) dx − 1
2

∫
R

(A0(w(0) + ū)w(0),w(0)) dx

=
T∫

0

dt

∫
R

([
1
2∂tA0(w + ū) + 1

2∂xA1(w + ū) + D1(u, ū,w)
]
w,w

)
dx =: I. (3.15)

To estimate I, we use (3.10) in the following form:
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∂tw = −A(w + ū)∂xw + D(u, ū,w)w. (3.16)

Then

∂tA0(w + ū) = A′
0(w + ū)∂tw, (3.17)

and

∂tA0(w + ū) = A′
0(w + ū)(−A(w + ū)∂xw + D(u, ū,w)w). (3.18)

Therefore, we have

I = −
T∫

0

dt

∫
R

1
2((A′

0A(w + ū)∂xw,w),w) dx

+
T∫

0

dt

∫
R]

1
2((A′

1(w + ū)∂xw,w),w) dx

+
T∫

0

dt

∫
R

D1(u, ū,w) dx +
T∫

0

dt

∫
R

1
2(A′

0D(u, ū)w̄ · w,w) dx. (3.19)

Then

1
2

∫
R

(A0(w(T ) + ū)w(T ),w(T )) dx −
T∫

0

dt

∫
R

(D1(u, ū,w) dx

= 1
2

∫
R

(A0(w(0) + ū)w(0),w(0)) dx +
T∫

0

dt

∫
R

1
2((A′

1(w + ū)∂xw,w),w) dx

+
T∫

0

dt

∫
R

1
2((A′

0D(u, ū)w,w),w) −
T∫

0

dt

∫
R

1
2((A′

0A(w + ū)∂xw),w,w) dx. (3.20)

From (D)-Condition, D1 is negative definite and since A0, A′
1, A′

0D, A′
0A are bounded in a neighborhood 

of the equilibrium point ū, we have

c

2 ||w(T )||20 + c1

T∫
0

||w(t)||20 dt

≤ c2
2 ||w(0)||20 + c3

2

T∫
0

dt

∫
R

|∂xw||w|2 dx + c4
2

T∫
0

dt

∫
R

|∂xw||w|2 dx

+ c5
2

T∫
0

dt

∫
R

|w||w|2 dx

≤ c2
2 ||w(0)||20 + c6

2 ||∂xw||∞
T∫

0

dt ||w||20 + c5
2 ||w||∞

T∫
0

dt ||w||20, (3.21)

where c, c1, c2, c3, c4, c5, c6 ∈ R
+.
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The embedding of H1 in L∞, where α is the constant of the embedding, yields

||w||∞ ≤ α||w||H1 = α(||w||0 + ||∂xw||0). (3.22)

Thus, from the definition of functional N2(t) in (3.5), we have

||∂xw||∞ ≤ α(||∂xw||0 + ||∂xxw||0) ≤ N2(T ), (3.23)

and

||w||∞ ≤ α(||w||0 + ||∂xw||0) ≤ N2(T ). (3.24)

The last term in (3.21) is estimated by

c2
2 N2

2 (0) + c6
2 N3

2 (T ) + c5
2 N3

2 (T ). (3.25)

So, using (3.34), we have

c

2 ||w(T )||20 + c1
2

T∫
0

||w(t)||20 dt ≤ C(N2
2 (0) + N3

2 (T )), (3.26)

and, therefore

||w(T )||20 +
T∫

0

||w(t)||20 dt ≤ C1(N2
2 (0) + N3

2 (T )). � (3.27)

Let us now estimate the first and second order derivatives.

Lemma 3.2. If N2(T ) ≤ ε, then, for l = 1, 2,

sup 0≤t≤T ||w(t)||2l +
T∫

0

||w(t)||2l dt ≤ C(N2
2 (0) + N3

2 (T )). (3.28)

Proof. Apply the first space derivative to system (3.4) and take the inner product with ∂xw, which provides

∂x(A0(w + ū)∂tw + A1(w + ū)∂xw) · ∂xw = [∂x(A0D)w + (A0D)∂xw] · ∂xw. (3.29)

We have the following identities:

∂x(A0(w + ū)∂tw) · ∂xw = 1
2∂t((A0(w + ū)∂xw) · ∂xw) − 1

2(∂tA0∂xw) · ∂xw

+ (∂xA0∂tw) · ∂xw; (3.30)

∂x(A1(w + ū)∂xw) · ∂xw = 1
2∂x((A1(w + ū)∂xw) · ∂xw) + 1

2(∂xA1∂xw) · ∂xw. (3.31)

If we integrate equality (3.29) over R and use the previous identities, the term

∂x((A1(w + ū)∂xw) · ∂xw)
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vanishes and then we have

1
2
d

dt

∫
R

(A0(w + ū)∂xw) · ∂xw dx−
∫
R

((A0D)∂xw) · ∂xw dx

=
∫
R

{
1
2∂tA0∂xw − ∂xA0∂tw − 1

2∂xA1∂xw
}

· ∂xw + (∂x(A0D)w) · ∂xw dx. (3.32)

To estimate the right-end side of (3.32), we use (3.4) in the following form:

∂tw = −A∂xw + Dw. (3.33)

Then

∂tA0 = A′
0∂tw = A′

0(−A∂xw + Dw).

Thus, equality (3.32) is

1
2
d

dt

∫
R

(A0(w + ū)∂xw) · ∂xw dx−
∫
R

((A0D)∂xw) · ∂xw dx

=
∫
R

−1
2((A′

0A∂xw, ∂xw), ∂xw) + 1
2(A′

0∂xwA∂xw, ∂xw) + 1
2(A′

0Dw∂xw, ∂xw) dx

− 1
2((A0A

′∂xw, ∂xw), ∂xw) +
∫
R

(A0D
′(∂xw)w, ∂xw) dx. (3.34)

Using (3.34), we have

||∂xw(T )||20 +
T∫

0

||∂xw(t)||20 dt

≤ C1(ε)
(
||∂xw(0)||20 +

T∫
0

∫
R

|∂xw|2|∂xw| dxdt
)

≤ C1(ε)
(
||∂xw(0)||20 + (||w||∞ + ||∂xw||∞)

T∫
0

||∂xw(t)||20 dt

)
. (3.35)

In the same way, we perform the second space derivative of (3.10) and take the inner product with ∂xxw, 
which provides

∂xx(A0∂tw + A1∂xw) · ∂xxw = ∂xx(A0Dw) · ∂xxw. (3.36)

We have the following identities:

∂xx(A0∂tw) · ∂xxw (3.37)

= 1
2∂t((A0∂xxw) · ∂xxw) − 1

2(∂tA0∂xxw) · ∂xxw (3.38)

+ 2(∂xA0∂xtw) · ∂xxw + (∂xxA0∂tw) · ∂xxw; (3.39)
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∂xx(A1(W)∂xw) · ∂xxw

= 1
2∂x((A1∂xxw) · ∂xxw) + 3

2(∂xA1∂xxw) · ∂xxw + (∂xxA1∂xw) · ∂xxw. (3.40)

If we integrate (3.36) over R and we use the previous identities (3.39)–(3.40), the term

∂x((A1∂xxw) · ∂xxw)

vanishes.
In this way, we have

1
2
d

dt

∫
R

(A0∂xxw) · ∂xxw dx−
∫
R

(A0D∂xxw, ∂xxw) dx

=
∫
R

{
1
2∂tA0∂xxw − 2∂xA0∂xtw − ∂xxA0∂tw

}
· ∂xxw dx

−
∫
R

{
3
2∂xA1∂xxw + ∂xxA1∂xw

}
· ∂xxw + (∂xx(A0D)w, ∂xxw) + ((A0D)∂xw, ∂xxw) dx

=
∫
R

{
− 1

2(A′
0A∂xw, ∂xxw) + 1

2(A′
0Dw, ∂xxw) + (A′

0∂xwA′∂xw, ∂xw)

+ 1
2A

′
0∂xwA∂xxw − 2(A′

0∂xwD′∂xw,w) − 2A′
0∂xwD∂xw −A′

0∂xxwDw

− (A0A
′′∂xw · ∂xw, ∂xw) − (A0A

′∂xxw, ∂xw) + (A′
0D

′∂xxw,w)
}

· ∂xxw dx. (3.41)

Therefore

||∂xxw(T )||20 +
T∫

0

||∂xxw(t)||20 dt

≤ C2(ε)
{
||∂xxw(0)||20 +

T∫
0

∫
[0,1]

(|∂xw|2 + |∂xxw|2)(|∂xw| + |w| + |∂xw|) dxdt

}

≤ C2(ε)
{
||∂xxw(0)||20 + (||w||∞ + ||∂xw||∞)

T∫
0

(||∂xw(t)||20 + ||∂xxw(t)||20) dt

}
. � (3.42)

We note that, by Lemma 3.1 and Lemma 3.2, we are able to prove inequality (3.6). Then, Proposition 3.1
is proved.

To conclude the proof of Theorem 3.1, we are going to prove the statement about the asymptotic behavior 
of solutions.

Let us set

E(t) = 1
2 ||w(t)||22. (3.43)

Taking the time derivative of (3.20) and using the embedding of H2(R) in L∞(R), we have
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1
2
d

dt
||w(t)||20 + c1||w(t)||20 ≤ c2||w(t)||2||w(t)||20. (3.44)

Taking the time derivative of (3.34), we obtain, in the same way, the estimate on the first derivative of w. 
Therefore

1
2
d

dt
||∂xw(t)||20 + c3||∂xw(t)||20 ≤ c4||w(t)||2||∂xw(t)||20. (3.45)

Finally, from the time derivative of (3.41) and using Morrey’s Theorem, we have the second order estimate

1
2
d

dt
||∂xxw(t)||20 + c5||∂xxw(t)||20 ≤ c6||w(t)||2||∂xxw(t)||20. (3.46)

We note that c1, c3, c5 depend on the norm of A0, D, while c2, c4, c6 depend on the norm of A0, A′
0, A, 

A′, D, D′. Summing (3.44), (3.45) and (3.46), from (3.43) we have

∂tE + μE ≤ νE3/2, (3.47)

where μ = c1 + c3 + c5 and ν = c2 + c4 + c6.
Now, thanks to the assumptions, we can choose the initial data small enough such that

E(0) <
(
γ

ν

)2

,

for some 0 < γ < min{μ, ν}. From the smallness of the initial data, we can obtain the inequality

νE3/2 < γE,

at least for small times. Therefore, using (3.47) we have

∂tE ≤ (γ − μ)E,

and (3.2) follows directly from Gronwall’s Lemma, taking β = μ − γ.

References

[1] S. Astanin, L. Preziosi, Multiphase models of tumor growth, in: Selected Topics in Cancer Modeling, in: Model. Simul. 
Sci. Eng. Technol., Birkhäuser Boston, Boston, MA, 2008, pp. 223–253.

[2] S. Bianchini, B. Hanouzet, R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic 
systems with a convex entropy, Comm. Pure Appl. Math. LX (2007) 1559–1662.

[3] F. Clarelli, C. Di Russo, R. Natalini, M. Ribot, A fluid dynamics model of the growth of phototrophic biofilms, J. Math. 
Biol. 66 (7) (2013) 1387–1408.

[4] B. Hanouzet, R. Natalini, Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex 
entropy, Arch. Ration. Mech. Anal. 169 (2003) 89–117.

[5] S. Kawashima, Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and applications, 
Proc. Roy. Soc. Edinburgh Sect. A 106 (1987) 169–194.

[6] T.T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems, JohnWiley & Sons, Ltd., Chichester, 1994, 
x+315 pp.

[7] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, New 
York, 1984.

[8] J.D. Murray, Mathematical Biology: An Introduction, third edition, Interdisciplinary Applied Mathematics, vol. 17, 
Springer-Verlag, New York, 2002. Originally published in: 3rd ed., Biomathematics, vol. 19, 2002, XXIII, 553 pp.

[9] T. Nishida, Nonlinear Hyperbolic Equations and Related Topics in Fluid Dynamics, Publications Mathématiques d’Orsay, 
vol. 78-02, Départment de Mathématique, Université de Paris-Sud, Orsay, 1978.

[10] K.R. Rajagopal, L. Tao, Mechanics of Mixtures, Series on Advances in Mathematics for Applied Sciences, vol. 35, World 
Scientific Publishing Co., River Edge, NJ, 1995.

http://refhub.elsevier.com/S0022-247X(15)00944-0/bib617374616E696Es1
http://refhub.elsevier.com/S0022-247X(15)00944-0/bib617374616E696Es1
http://refhub.elsevier.com/S0022-247X(15)00944-0/bib42484Es1
http://refhub.elsevier.com/S0022-247X(15)00944-0/bib42484Es1
http://refhub.elsevier.com/S0022-247X(15)00944-0/bib63646E72s1
http://refhub.elsevier.com/S0022-247X(15)00944-0/bib63646E72s1
http://refhub.elsevier.com/S0022-247X(15)00944-0/bib484Es1
http://refhub.elsevier.com/S0022-247X(15)00944-0/bib484Es1
http://refhub.elsevier.com/S0022-247X(15)00944-0/bib4B6177617368696D61s1
http://refhub.elsevier.com/S0022-247X(15)00944-0/bib4B6177617368696D61s1
http://refhub.elsevier.com/S0022-247X(15)00944-0/bib4C695461547369656Es1
http://refhub.elsevier.com/S0022-247X(15)00944-0/bib4C695461547369656Es1
http://refhub.elsevier.com/S0022-247X(15)00944-0/bib4D616A6461s1
http://refhub.elsevier.com/S0022-247X(15)00944-0/bib4D616A6461s1
http://refhub.elsevier.com/S0022-247X(15)00944-0/bib4D7572726179s1
http://refhub.elsevier.com/S0022-247X(15)00944-0/bib4D7572726179s1
http://refhub.elsevier.com/S0022-247X(15)00944-0/bib4E697368696461s1
http://refhub.elsevier.com/S0022-247X(15)00944-0/bib4E697368696461s1
http://refhub.elsevier.com/S0022-247X(15)00944-0/bib72616A3935s1
http://refhub.elsevier.com/S0022-247X(15)00944-0/bib72616A3935s1

	Global existence and asymptotic stability of smooth solutions to a ﬂuid dynamics model of bioﬁlms in one space dimension
	1 Introduction
	2 The quasilinear hyperbolic dissipative system
	2.1 Hyperbolicity and symmetrizability
	2.2 Total dissipativity of the source

	3 Global existence of smooth solutions for small initial data and asymptotic behavior
	References


