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1. Introduction

Let A be an Archimedean f -algebra with (multiplicative) unit e �= 0. It is well known that Archimedean 
f -algebras are commutative. We next proceed by defining the objects we study in this paper.

Definition 1. An abelian group (H,+) is an A-module if and only if an outer product · : A ×H → H is well 
defined with the following properties, for each a, b ∈ A and for each x, y ∈ H:

(1) a · (x + y) = a · x + a · y;
(2) (a + b) · x = a · x + b · x;
(3) a · (b · x) = (ab) · x;
(4) e · x = x.

An A-module is a pre-Hilbert A-module if and only if an inner product 〈 , 〉H : H ×H → A is well defined 
with the following properties, for each a ∈ A and for each x, y, z ∈ H:
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(5) 〈x, x〉H ≥ 0, with equality if and only if x = 0;
(6) 〈x, y〉H = 〈y, x〉H ;
(7) 〈x + y, z〉H = 〈x, z〉H + 〈y, z〉H ;
(8) 〈a · x, y〉H = a 〈x, y〉H .

For A = R conditions (1)–(4) define vector spaces, while (5)–(8) define pre-Hilbert spaces. We will use 
Latin letters a, b, c to denote elements of A, Latin letters x, y, z to denote elements of H, and Greek letters 
α, β to denote elements of R.

It is well known that1

〈x, y〉2H ≤ 〈x, x〉H 〈y, y〉H ∀x, y ∈ H.

We can thus conclude that each z ∈ H induces a map f : H → A, via the formula

f (x) = 〈x, z〉H ∀x ∈ H,

with the following properties:

– A-linearity f (a · x + b · y) = af (x) + bf (y) for all a, b ∈ A and for all x, y ∈ H;
– Boundedness There exists c ∈ A+ such that f (x)2 ≤ c 〈x, x〉H for all x ∈ H.

In light of this fact, we give the following definition:

Definition 2. Let A be an Archimedean f -algebra with unit e and H a pre-Hilbert A-module. We say that 
H is self-dual if and only if for each f : H → A which is A-linear and bounded there exists y ∈ H such that

f (x) = 〈x, y〉H ∀x ∈ H.

The goal of this paper is to provide conditions on A and H that will allow us to conclude that a 
pre-Hilbert A-module H is self-dual. Our initial motivation comes from Finance. There, Hilbert modules 
are the extension of the notion of Hilbert spaces that the analysis of conditional information requires, 
as first shown by Hansen and Richard [24]. In particular, self-duality is key to represent price operators 
through traded stochastic discount factors. Our results provide the general mathematical framework where 
conditional asset pricing can be performed.

Examples Consider a probability space (Ω,F , P ) and assume that G is a sub-σ-algebra of F . Denote by 
L0 (F) = L0 (Ω,F , P ) and L∞ (F) = L∞ (Ω,F , P ), respectively, the space of F-measurable functions and 
the space of F-measurable and essentially bounded functions. Similarly, define L0 (G) and L∞ (G). Define 
also

L2,0 (Ω,G,F , P ) =
{
f ∈ L0 (F) : E

(
f2||G

)
∈ L0 (G)

}
and

L2,∞ (Ω,G,F , P ) =
{
f ∈ L0 (F) : E

(
f2||G

)
∈ L∞ (G)

}
.

The inner product, in both cases, can be defined by (f, g) 
→ E (fg||G). In Section 6, we show that 
L2,0 (Ω,G,F , P ) is a pre-Hilbert L0 (G)-module and L2,∞ (Ω,G,F , P ) is a pre-Hilbert L∞ (G)-module. Both 

1 See Huijsmans and de Pagter [28, Theorem 3.4] and also Proposition 4 below.
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spaces are of particular interest in Finance. The first space is the one originally used in the seminal paper 
of Hansen and Richard [24]. On the other hand, in Filipovic, Kupper, and Vogelpoth [15] (see also [36]), 
the second space has been shown to represent the family of all continuous and L∞ (G)-linear operators 
from L2 (F) to L2 (G).2 In other words, L2,∞ (Ω,G,F , P ) can be interpreted as the space of all conditional 
stochastic discount factors (state price densities).

Related literature The literature on self-dual modules can be roughly divided in two main streams. The 
first one introduced the notion of Hilbert A-modules and considers complex C∗-algebras A. In particular, it 
started by considering algebras that admit a concrete representation as a space of continuous functions over 
a compact space. The second focuses on a particular algebra of functions, namely, L0 (G) = L0 (Ω,G, P ). The 
notion of pre-Hilbert A-module was introduced by Kaplansky [30]. Kaplansky [30] considers modules over 
commutative (complex) AW ∗-algebras A with unit and shows that a pre-Hilbert A-module H is self-dual if 
and only if H satisfies some extra algebraic property (Definition 9). Paschke [39] investigates the properties 
of self-dual modules defined over complex B∗-algebras. Two other related papers are Frank [16] and [17]
(see also [34], for a textbook exposition). In both papers, when A is assumed to be a W ∗ complex algebra, 
a pre-Hilbert A-module H is shown to be self-dual if and only if the unit ball (properly defined) of H is 
complete with respect to some linear topology. On the other hand, Guo, in [21] and [22], studies pre-Hilbert 
L0 (G)-modules H, where L0 (G) can either be real or complex, and shows that they are self-dual if and only 
if H is complete with respect to a particular metrizable topology.3 Finally, Guo [19] and [20] introduced, 
among other things, the notion of random inner product module.

Our contributions We provide (topological) conditions on A and H that will allow us to conclude that a 
pre-Hilbert A-module H is self-dual. We start by considering A to be an algebra of L∞ type (Subsection 2.1). 
In this case, H can be suitably topologized with several norm topologies. In particular, two norms stand out: 
‖ ‖H and ‖ ‖m (Subsection 3.1). When A is of L∞ type and H is a pre-Hilbert A-module, in Theorem 3, 
we show that the following conditions are equivalent:

(i) H is self-dual;
(ii) BH is “weakly” compact (where BH is the unit ball induced by ‖ ‖H);
(iii) H is “weakly” sequentially complete;
(iv) BH is complete with respect to ‖ ‖m.

Conditions (ii) and (iii) are novel conditions.4 On the other hand, a condition of completeness, similar to 
Condition (iv), has been found also in the complex case by Frank [16] (see the proof of [34, Theorem 3.5.1]). 
When A = R, it is easy to show that ‖ ‖H and ‖ ‖m are equivalent (Proposition 9). Thus, in this case, prop-
erties (i)–(iv) are well known to be equivalent and we can conclude that our Theorem 3 is a generalization 
of the classical Riesz representation theorem for Hilbert spaces.

We then move to consider A to be an f -algebra of L0 type (Subsection 5.3). In this case, H can be 
topologized with an invariant metric dH . When A is of L0 type and H is a pre-Hilbert A-module, in 
Theorem 5, we show that the following conditions are equivalent:

(i’) H is self-dual;
(ii’) H is complete with respect to dH .

2 L2 (F) = L2 (Ω,F, P ) is the space of F-measurable and square integrable functions.
3 In this paper, we focus on Hilbert modules. For the Banach case, we refer to Cerreia-Vioglio, Kupper, Maccheroni, Marinacci, 

and Vogelpoth [11] and the references therein. There are three independent pioneering works on the subject: Schweizer and Sklar 
[42], Guo [18–20], and Haydon, Levy, and Raynaud [25].
4 Regarding condition (ii), at the proof stage, we found a connected result in Constantinescu [12] that provides a compactness 

condition related to ours. The key difference is that our work proceeds by elementary methods, that is, it does not rely on 
complexification arguments.
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We are thus able to obtain Guo’s self-duality result ([21] and [22], see also [23]). Despite being different, 
our proof shares some similarities with the one that appears in [22].5 The contribution of our Theorem 5
to the literature is to show the connection with the self-duality result for modules on algebras of L∞ type. 
In fact, we show that each pre-Hilbert L0-module H contains a dense pre-Hilbert L∞-module He. Thus, 
verifying the self-duality of H amounts to verify the self-duality of He, which can then be extended to H
via a density argument, using completeness. Finally, our result applies to a larger class of f -algebras when 
one focuses on the real case.

Outline of the paper Section 2 introduces the two kinds of algebras A we will consider in studying the 
self-duality problem. Subsection 2.1 deals with Arens algebras, that is, real Banach algebras which admit 
a concrete representation as a space of continuous functions. Algebras of L∞ type will belong to this class 
(Definition 5). Instead, Subsection 2.2 deals with f -algebras of L0 type (Definition 6).

In Section 3, we show how a pre-Hilbert A-module naturally turns out to be a vector space that can also 
be topologized in several different and useful ways. In Subsection 3.2, we study the corresponding topological 
duals.

Section 4 deals with the study of the dual module, that is, the set H∼ of all A-linear and bounded 
operators from H to A. The set H∼ turns out to be an A-module which can also be topologized and 
its study is key in dealing with the self-duality problem. From a topological point of view, the structure 
of H∼ differs depending if A is of L∞ type or of L0 type. In Subsection 4.1, we study the first case. In 
Subsection 4.2, we study the second case. Finally, in Subsection 4.3, we show that H∼ can be identified 
with the norm dual of some Banach space when A is of L∞ type.

Section 5 contains our results on self-duality. First, we discuss the case when A is of L∞ type. An 
important subcase is when A is finite dimensional, which we discuss right after. We conclude the section by 
discussing the case in which A is an f -algebra of L0 type. In Section 6 we discuss five examples of pre-Hilbert 
A-modules that, given our results, turn out to be self-dual. We relegate to the Appendix the proofs of some 
ancillary facts.

2. Function algebras

2.1. Arens algebras

Given a commutative real normed algebra A with multiplicative unit e, we denote by ‖ ‖A the norm of A. 
We denote by A∗ the norm dual of A and by 〈 , 〉 the dual pairing of the algebra A, that is, 〈a, ϕ〉 = ϕ (a)
for all a ∈ A and ϕ ∈ A∗. Unless otherwise specified, the norm dual A∗ of A is endowed with the weak* 
topology and all of its subsets are endowed with the relative weak* topology. In the first part of the paper, 
we will mostly consider commutative real Banach algebras A that admit a concrete representation. These 
real Banach algebras were first studied by Arens [8] and Kelley and Vaught [31].6

Definition 3. A commutative real Banach algebra A with unit e such that

‖e‖A = 1 and ‖a‖2
A ≤

∥∥a2 + b2
∥∥
A

∀a, b ∈ A

is called an Arens algebra.

Given an Arens algebra A, define

S = {ϕ ∈ A∗ : ‖ϕ‖A∗ = ϕ (e) = 1}

5 For example, the function fn, in the proof of our Theorem 5, is conceptually similar to ĨBn
f in [22, Theorem 48].

6 For two more recent studies, see also Albiac and Kanton [2] and [3]. Recall that a Banach algebra is such that ‖ab‖A ≤ ‖a‖A ‖b‖A
for all a, b ∈ A.
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K = {ϕ ∈ S : ϕ (ab) = ϕ (a)ϕ (b) ∀a, b ∈ A} .

The set K is compact and Hausdorff. Denote by C (K) the space of real valued continuous functions on K. 
We endow C (K) with the supnorm. It is well known that A admits a concrete representation, that is, the 
map T : A → C (K), defined by

T (a) (ϕ) = 〈a, ϕ〉 ∀ϕ ∈ K,∀a ∈ A,

is an isometry and an algebra isomorphism (see [31,2,3]).
The cone generated by the squares of A induces a natural order relation on A itself: a ≥ b if and only 

if a − b belongs to the norm closure of 
{
c2 : c ∈ A

}
. By using standard techniques, the above concrete 

representation of A implies that (A,≥) is a Riesz space with strong order unit e and T is also a lattice 
isomorphism. In particular, K coincides with the set of all nonzero lattice homomorphisms and A is an 
Archimedean f -algebra with unit e. We also have that each element ϕ ∈ K is positive. Finally, ‖ ‖A is a 
lattice norm such that

‖a‖A = min {α ≥ 0 : |a| ≤ αe} and
∥∥a2∥∥

A
= ‖a‖2

A ∀a ∈ A.

In light of these observations, note that for each a ≥ 0, there exists a unique b ≥ 0 such that b2 = a. From 
now on, we will denote such an element by a

1
2 or 

√
a.

Note that if A admits a strictly positive linear functional ϕ̄ : A → R, then we could also renorm A
with the norm ‖ ‖1 : A → [0,∞), defined by ‖a‖1 = ϕ̄ (|a|) for all a ∈ A. It is immediate to see that 
‖a‖1 ≤ ‖ϕ̄‖A∗ ‖a‖A for all a ∈ A, and so the ‖ ‖A norm topology τA is finer than the ‖ ‖1 norm topology τ1; 
i.e., τ1 ⊆ τA. We will denote the norm dual of A with respect to ‖ ‖1 by A′. Finally, we have that A′ ⊆ A∗. 
If A admits a strictly positive linear functional ϕ̄ : A → R, then we could also consider A endowed with the 
invariant metric d : A × A → [0,∞), defined by d (a, b) = ϕ̄ (|b− a| ∧ e) for all a, b ∈ A. It is immediate to 
see that d (a, b) = ϕ̄ (|b− a| ∧ e) ≤ ϕ̄ (|b− a|) = ‖b− a‖1 for all a, b ∈ A, and so the ‖ ‖1 norm topology τ1
is finer than the d metric topology τd; i.e., τd ⊆ τ1.

The existence of a strictly positive linear functional ϕ̄ : A → R will play a key role in the rest of the paper.7
We conclude the section by exploring the extent of this assumption and its relation with the existence of a 
measure m on K whose support separates the points of A. Before presenting the formal result, we provide 
a definition:

Definition 4. Let A be an Arens algebra and m a finite measure on the Borel σ-algebra of K. The measure 
m separates points if and only if the support of m separates the points of A.

Proposition 1. Let A be an Arens algebra and ϕ̄ ∈ A∗. The following statements are equivalent:

(i) The functional ϕ̄ is strictly positive and such that ‖ϕ̄‖A∗ = 1;
(ii) There exists a (unique) probability measure mϕ̄ = m on the Borel σ-algebra of K such that suppm = K

and

ϕ̄ (a) =
∫
K

〈a, ϕ〉 dm (ϕ) ∀a ∈ A; (1)

(iii) There exists a probability measure mϕ̄ = m that separates points and satisfies (1).

7 Without loss of generality, ϕ̄ can always be assumed to be such that ‖ϕ̄‖A∗ = 1.
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Remark 1. From now on, when we will be dealing with an Arens algebra that admits a strictly positive 
linear functional ϕ̄ on A such that ‖ϕ̄‖A∗ = 1, the measure m will be meant to be mϕ̄. Vice versa, if A
admits a measure that separates points, then ϕ̄ will be meant to be defined as in (1).

We conclude by defining a particular class of Arens algebras which are isomorphic to some space 
L∞ (Ω,G, P ) (see [1, Corollary 2.2]).

Definition 5. Let A be an Arens algebra. We say that A is of L∞ type if and only if A is Dedekind complete
and admits a strictly positive order continuous linear functional ϕ̄ on A.

2.2. f -algebras

Assume that A is an Archimedean f -algebra with unit e �= 0 (see Aliprantis and Burkinshaw [6, Defini-
tion 2.53]). It is well known that e is a weak order unit. If A is Dedekind complete and a ≥ 1

ne for some 
n ∈ N, then there exists a unique b ∈ A+ such that ab = e. We denote this element a−1. If a ≥ 0 is such 
that there exists a−1 and b ∈ A, then we alternatively denote ba−1 by b/a. By [27, Theorem 3.9], if A is 
also Dedekind complete, for each a ≥ 0, there exists a unique b ≥ 0 such that b2 = a. Also in this case, we 
will denote such an element by a

1
2 or 

√
a. The principal ideal generated by e is the set

Ae = {a ∈ A : ∃α > 0 s.t. |a| ≤ αe} .

It is immediate to see that Ae is a subalgebra of A with unit e. If A is an Arens algebra, then Ae = A. If 
there exists a linear and strictly positive functional ϕ̄ : Ae → R, then we can define d : A ×A → [0,∞) by

d (a, b) = ϕ̄ (|b− a| ∧ e) ∀a, b ∈ A.

As in the case of an Arens algebra, d is an invariant metric. As already noted, an Arens algebra, in particular 
one of L∞ type, is an Archimedean f -algebra with unit. In this paper, other than algebras of L∞ type, we 
focus also on another particular class of f -algebras:

Definition 6. Let A be an Archimedean f -algebra with unit e. We say that A is an f -algebra of L0 type if 
and only if Ae is an Arens algebra of L∞ type and A is Dedekind complete and d complete.

By [5, Theorems 2.28 and 4.7], if A is an f -algebra of L0 type, d is generated by the Riesz pseudonorm 
c 
→ ϕ̄ (|c| ∧ e), and then it is easy to prove that the topology generated by d is linear, locally solid, and 
Fatou. Moreover, it can be shown that A is universally complete and such that:

1. If an ↓ 0 and b ≥ 0, then anb ↓ 0 and anb 
d→ 0;

2. If b ≥ 0 and an
d→ a, then ban

d→ ba.

3. The vector space structure of H

In this section, we will first show that a pre-Hilbert A-module has a natural structure of vector space. 
Next, we will show that the A valued inner product 〈 , 〉H shares most of the properties of standard real 
valued inner products. In particular, under mild assumptions on A, we will show that it also induces a real 
valued inner product on H, thus making H into a pre-Hilbert space.

We use the outer product · to define a scalar product:

·e : R×H → H

(α, x) 
→ (αe) · x .
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We next show that ·e makes the abelian group H into a real vector space.

Proposition 2. Let A be an Archimedean f -algebra with unit e and H an A-module. (H,+, ·e) is a real vector 
space.

Proof. By assumption, H is an abelian group. For each α, β ∈ R and each x, y ∈ H, we have that

(1) α ·e (x + y) = αe · (x + y) = (αe) · x + (αe) · y = α ·e x + α ·e y;
(2) (α + β) ·e x = ((α + β) e) · x = (αe + βe) · x = (αe) · x + (βe) · x = α ·e x + β ·e x;
(3) α ·e (β ·e x) = (αe) · ((βe) · x) = ((αe) (βe)) · x = ((αβ) e) · x = (αβ) ·e x;
(4) 1 ·e x = (1e) · x = e · x = x. �

From now on, we will often write αx in place of α ·e x.

Corollary 1. Let A be an Archimedean f -algebra with unit e and H an A-module. If f : H → A is an 
A-linear operator, then f is linear.

If A is an Arens algebra, given a probability measure m on the Borel σ-algebra of K we can also define 
〈 , 〉m : H ×H → R by

〈x, y〉m =
∫
K

〈〈x, y〉H , ϕ〉 dm (ϕ) ∀x, y ∈ H.

For each ϕ ∈ K, we also define and study the functionals 〈 , 〉ϕ : H ×H → R defined by

〈x, y〉ϕ = 〈〈x, y〉H , ϕ〉 ∀x, y ∈ H.

Note that 〈 , 〉ϕ = 〈 , 〉δϕ for all ϕ ∈ K where δϕ is the Dirac measure at ϕ. We next show that 〈 , 〉m is a 
symmetric bilinear form which is positive semidefinite on H ×H.

Proposition 3. Let A be an Arens algebra and H a pre-Hilbert A-module. The following statements are true:

1. 〈 , 〉m is a positive semidefinite symmetric bilinear form;
2. 〈x, x〉m = 0 implies x = 0, provided m separates points;
3. 〈x, y〉2m ≤ 〈x, x〉m 〈y, y〉m for all x, y ∈ H;
4. 〈x, a · y〉m = 〈a · x, y〉m for all a ∈ A and for all x, y ∈ H;
5. 〈x, y〉m = ϕ̄ (〈x, y〉H) for all x, y ∈ H, provided m separates points.

Proof. We here prove points 2. and 5. and leave the remaining easy ones to the reader. Assume that m
separates points. Define ϕ̄ as in (1). By Proposition 1, it follows that

ϕ̄ (a) =
∫
K

〈a, ϕ〉 dm (ϕ) ∀a ∈ A (2)

is a strictly positive and linear functional.
5. By definition of 〈 , 〉m and (2), observe that for each x, y ∈ H

〈x, y〉m =
∫

〈〈x, y〉H , ϕ〉 dm (ϕ) = ϕ̄ (〈x, y〉H) .

K
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2. By assumption, 〈x, x〉H ≥ 0 for all x ∈ H. By point 5., if 〈x, x〉m = 0, then ϕ̄ (〈x, x〉H) = 0. Since ϕ̄ is 
strictly positive, we have that 〈x, x〉H = 0, proving that x = 0. �
Corollary 2. Let A be an Arens algebra and H a pre-Hilbert A-module. If A admits a measure m that 
separates points, then (H,+, ·e, 〈 , 〉m) is a pre-Hilbert space.

Proposition 4. Let A be an Arens algebra and H a pre-Hilbert A-module. The following statements are true:

1. 〈x, y〉2H ≤ 〈x, x〉H 〈y, y〉H for all x, y ∈ H;
2. |〈x, y〉H | ≤ 〈x, x〉

1
2
H 〈y, y〉

1
2
H for all x, y ∈ H;

3.
∥∥∥〈x, y〉2H∥∥∥

A
≤ ‖〈x, x〉H‖A ‖〈y, y〉H‖A for all x, y ∈ H;

4. ‖〈x, y〉H‖A ≤ ‖〈x, x〉H‖
1
2
A ‖〈y, y〉H‖

1
2
A for all x, y ∈ H.

Proof. By Proposition 2 and Corollary 1 and since A is, in particular, an Archimedean f -algebra with unit, 
point 1. is an easy consequence of [28, Theorem 3.4]. Since A is an Arens algebra, each positive element 
admits a unique square root and point 2. also follows. Since A is an Arens algebra and ‖ ‖A is also a lattice 
norm, we have that for each x, y ∈ H

‖〈x, y〉H‖2
A =

∥∥∥〈x, y〉2H∥∥∥
A
≤ ‖〈x, x〉H 〈y, y〉H‖A ≤ ‖〈x, x〉H‖A ‖〈y, y〉H‖A ,

proving points 3. and 4. �
Remark 2. If A is a Dedekind complete Archimedean f -algebra with unit e, then points 1. and 2. are still 
true and their proofs remain the same.

3.1. Topological structure

Since a pre-Hilbert A-module H is also a vector space, we can try to endow H with a topology induced 
by either a norm or an invariant metric. In fact, given the structure of A and H, we have several different 
competing norms and topologies. The next subsections are devoted to the study of these norms and metric 
and their relations. Before starting, note that if A is an Arens algebra or a Dedekind complete Archimedean 
f -algebra with unit, then 〈 , 〉H defines a vector-valued norm, N : H → A+,8 via the formula

N (x) = 〈x, x〉
1
2
H ∀x ∈ H.

If A were equal to R, then N would be a standard norm and we would say that

xn → x
def⇐⇒ N (x− xn) → 0.

Since R is always endowed with the usual topology, this definition would be unambiguous. When A �= R, 
such a statement is not true anymore, since we could endow A with different linear topologies changing the 
meaning of N (x− xn) → 0. In other words, by combining the topological structure of A with N we are able 

8 In particular, N is such that

1. N (x) = 0 if and only if x = 0;
2. N (a · x) = |a|N (x) for all a ∈ A and for all x ∈ H;
3. N (x + y) ≤ N (x) + N (y) for all x, y ∈ H.
.
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to induce different topologies on H (see point 5. of Proposition 5, point 3. of Proposition 6, equation (5), 
and point 2. of Proposition 7).

3.1.1. The ‖ ‖H norm
Assume A is an Arens algebra. Define ‖ ‖H : H → [0,∞) by

‖x‖H =
√
‖〈x, x〉H‖A ∀x ∈ H.

For each ϕ ∈ K, define also ‖ ‖ϕ : H → [0,∞) by

‖x‖ϕ =
√

〈x, x〉ϕ ∀x ∈ H.

Proposition 5. Let A be an Arens algebra and H a pre-Hilbert A-module. The following statements are true:

1. ‖ ‖ϕ is a seminorm for all ϕ ∈ K;
2. ‖ ‖H is a norm;
3. ‖x‖H = maxϕ∈K ‖x‖ϕ =

√
maxϕ∈K 〈x, x〉ϕ for all x ∈ H;

4. ‖a · x‖H ≤ ‖a‖A ‖x‖H for all a ∈ A and all x ∈ H;
5. ‖x‖H = ‖N (x)‖A for all x ∈ H.

Proof. Points 1. and 2. follow from routine arguments.
3. Recall that T : A → C (K) is a linear isometry. Thus, we have that

‖x‖2
H = ‖〈x, x〉H‖A = ‖T (〈x, x〉H)‖∞ = max

ϕ∈K
|T (〈x, x〉H) (ϕ)| = max

ϕ∈K
|〈〈x, x〉H , ϕ〉|

= max
ϕ∈K

∣∣∣〈x, x〉ϕ∣∣∣ = max
ϕ∈K

〈x, x〉ϕ = max
ϕ∈K

‖x‖2
ϕ ∀x ∈ H,

proving the statement.
4. Given any a ∈ A and x ∈ H, it holds

‖a · x‖2
H = ‖〈a · x, a · x〉H‖

A
=
∥∥a2 〈x, x〉H

∥∥
A
≤
∥∥a2∥∥

A
‖〈x, x〉H‖

A
≤ ‖a‖2

A ‖〈x, x〉H‖
A

proving the statement.
5. Since A is an Arens algebra, it follows that ‖√a‖A =

√
‖a‖A for all a ∈ A+.9 This implies that

‖x‖H =
√
‖〈x, x〉H‖A =

∥∥∥∥
√

〈x, x〉H
∥∥∥∥
A

= ‖N (x)‖A ∀x ∈ H,

proving the statement. �
By Proposition 4, it readily follows that

‖〈x, y〉H‖
A
≤ ‖x‖H ‖y‖H ∀x, y ∈ H. (3)

9 Recall that if a ≥ 0, then a 1
2 = b is the unique positive element such that b2 = a. Since A is an Arens algebra, it follows that 

‖a‖A =
∥∥b2∥∥

A
= ‖b‖2

A = ‖√a‖2
A, proving that

∥∥√a
∥∥
A

=
√

‖a‖A ∀a ∈ A+.
.
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Corollary 3. Let A be an Arens algebra and H a pre-Hilbert A-module. For each y ∈ H, the operator 
〈·, y〉H : H → A is A-linear, ‖ ‖H − ‖ ‖A continuous, and has norm ‖y‖H .

Proof. Fix y ∈ H. It is immediate to see that the operator induced by y is A-linear, thus, linear. Continuity 
easily follows from (3). Since the norm of the linear operator is given by

sup
{
‖〈x, y〉H‖

A
/ ‖x‖H : x �= 0

}
,

the statement easily follows from (3) and the definition of ‖ ‖H . �
In light of these observations and since ‖ ‖H can be defined for any pre-Hilbert A-module when A is an 

Arens algebra, we make the following definition:

Definition 7. Let A be an Arens algebra and H a pre-Hilbert A-module. We say that H is an Hilbert 
A-module if and only if H is ‖ ‖H complete.

3.1.2. The ‖ ‖p norm
Assume A is an Arens algebra that admits a strictly positive linear functional ϕ̄ such that ‖ϕ̄‖A∗ = 1. 

Define ‖ ‖p : H → [0,∞) by

‖x‖p = ϕ̄
(
〈x, x〉

1
2
H

)
∀x ∈ H.

Proposition 6. Let A be an Arens algebra and H a pre-Hilbert A-module. If A admits a strictly positive 
functional ϕ̄ such that ‖ϕ̄‖A∗ = 1, then the following statements are true:

1. ‖ ‖p is a norm;
2. ‖a · x‖p ≤ ‖a‖A ‖x‖p for all a ∈ A and for all x ∈ H;
3. ‖x‖p = ϕ̄ (N (x)) = ‖N (x)‖1 for all x ∈ H.

Proof. Since ϕ̄ is strictly positive, note that

x = 0 ⇐⇒ 〈x, x〉H = 0 ⇐⇒ 〈x, x〉
1
2
H = 0 ⇐⇒ ϕ̄

(
〈x, x〉

1
2
H

)
= 0 ⇐⇒ ‖x‖p = 0.

Second, since ϕ̄ is linear, observe that for each α ∈ R and for each x ∈ H

‖αx‖p = ϕ̄
(
〈αx, αx〉

1
2
H

)
= ϕ̄

(
|α| 〈x, x〉

1
2
H

)
= |α| ϕ̄

(
〈x, x〉

1
2
H

)
= |α| ‖x‖p .

Third, by Proposition 4, note that for each x, y ∈ H

〈x + y, x + y〉H = 〈x, x〉H + 2 〈x, y〉H + 〈y, y〉H ≤ 〈x, x〉H + 2 〈x, x〉
1
2
H 〈y, y〉

1
2
H + 〈y, y〉H

=
(
〈x, x〉

1
2
H + 〈y, y〉

1
2
H

)2
.

We can conclude that 〈x + y, x + y〉
1
2
H ≤ 〈x, x〉

1
2
H + 〈y, y〉

1
2
H for all x, y ∈ H. Since ϕ̄ is positive and linear, 

the triangular inequality for ‖ ‖ follows.
p
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2. Given any a ∈ A and x ∈ H, since ϕ̄ is positive and linear, it holds

‖a · x‖p = ϕ̄
(
〈a · x, a · x〉

1
2
H

)
= ϕ̄

(
|a| 〈x, x〉

1
2
H

)
≤ ϕ̄

(
(‖a‖A e) 〈x, x〉

1
2
H

)
≤ ‖a‖A ϕ̄

(
〈x, x〉

1
2
H

)
= ‖a‖A ‖x‖p ,

proving the statement.
3. The statement follows by definition of ‖ ‖p and ‖ ‖1. �

3.1.3. The ‖ ‖m norm
Assume A is an Arens algebra that admits a strictly positive linear functional ϕ̄ such that ‖ϕ̄‖A∗ = 1 or, 

equivalently, a probability measure m that separates points (see Proposition 1). Define ‖ ‖m : H → [0,∞)
by

‖x‖m =
√

〈x, x〉m =

√√√√∫
K

〈x, x〉ϕ dm (ϕ) ∀x ∈ H. (4)

By Propositions 1 and 3, 〈 , 〉m is an inner product on H and it is immediate to see that ‖ ‖m is a norm 
and

‖x‖m =
√
ϕ̄ (〈x, x〉H) =

√
ϕ̄
(
N (x)2

)
∀x ∈ H. (5)

3.1.4. The dH metric
Assume that A is either a Dedekind complete Archimedean f -algebra with unit that admits a strictly 

positive linear functional ϕ̄ : Ae → R or A is an Arens algebra that admits a strictly positive linear functional 
ϕ̄ : A → R. In the second case, assume also that ‖ϕ̄‖A∗ = 1. Define dH : H ×H → [0,∞) by

dH (x, y) = ϕ̄ (N (x− y) ∧ e) ∀x, y ∈ H. (6)

Recall that the hypothesis of Dedekind completeness is needed to define N (x) = 〈x, x〉
1
2
H when A is an 

Archimedean f -algebra with unit.

Proposition 7. Let A be either a Dedekind complete Archimedean f -algebra with unit e or an Arens algebra 
and H a pre-Hilbert A-module. If A admits a strictly positive functional ϕ̄ : Ae → R, then the following 
statements are true:

1. dH is an invariant metric;
2. dH (x, y) = d (0, N (x− y)) for all x, y ∈ H.

Proof. 1. Since ϕ̄ is strictly positive, we have that

dH (x, y) = 0 ⇐⇒ ϕ̄ (N (x− y) ∧ e) = 0 ⇐⇒ N (x− y) ∧ e = 0

⇐⇒ N (x− y) = 0 ⇐⇒ x = y.

It is immediate to see that dH (x, y) = dH (y, x) for all x, y ∈ H as well as

dH (x + z, y + z) = dH (x, y) ∀x, y, z ∈ H.
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Finally, by [6, Lemma 1.4] and since N (x + y) ≤ N (x) + N (y) for all x, y ∈ H, we can conclude that

dH (x, y) = ϕ̄ (N (x− y) ∧ e) = ϕ̄ (N ((x− z) + (z − y)) ∧ e)

≤ ϕ̄ ((N (x− z) + N (z − y)) ∧ e) ≤ ϕ̄ (N (x− z) ∧ e + N (z − y) ∧ e)

= dH (x, z) + dH (z, y) ∀x, y, z ∈ H,

proving the statement.
2. By definition of dH , d, and N , we have that

dH (x, y) = ϕ̄ (N (x− y) ∧ e) = ϕ̄ (|N (x− y) − 0| ∧ e) = d (0, N (x− y)) ∀x, y ∈ H,

proving the statement. �
3.1.5. Relations among norms

Assume A is an Arens Algebra that admits a strictly positive linear functional ϕ̄ such that ‖ϕ̄‖A∗ = 1. 
First, by Propositions 1 and 5 and by equation (4), we have that

‖x‖m ≤ ‖x‖H ∀x ∈ H.

We can conclude that

xn
‖ ‖H→ 0 =⇒ xn

‖ ‖m→ 0.

The ‖ ‖H norm topology τH is thus finer than the ‖ ‖m norm topology τm; i.e., τm ⊆ τH . Similarly, by 
Proposition 1, we have that

‖x‖p = ϕ̄
(
〈x, x〉

1
2
H

)
=
∫
K

〈
〈x, x〉

1
2
H , ϕ

〉
dm (ϕ) =

∫
K

〈〈x, x〉H , ϕ〉
1
2 dm (ϕ)

≤
√√√√∫

K

〈〈x, x〉H , ϕ〉 dm (ϕ) = ‖x‖m ∀x ∈ H.

We can conclude that

xn
‖ ‖m→ 0 =⇒ xn

‖ ‖p→ 0. (7)

The ‖ ‖m norm topology τm is thus finer than the ‖ ‖p norm topology τp; i.e., τp ⊆ τm. Summing up, we 
have that

‖x‖p ≤ ‖x‖m ≤ ‖x‖H ∀x ∈ H. (8)

Finally, note that

dH (x, y) ≤ ‖x− y‖p ∀x, y ∈ H. (9)

The ‖ ‖p norm topology τp is thus finer than the dH topology τdH
; i.e., τdH

⊆ τp.
We next explore the continuity/boundedness properties of A-linear operators: f : H → A. We then 

conclude by showing that our three norms are equivalent when A is finite dimensional.
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Proposition 8. Let A be a Dedekind complete Arens algebra and H a pre-Hilbert A-module. If A admits a 
strictly positive linear functional ϕ̄ such that ‖ϕ̄‖A∗ = 1, the following statements are true:

1. An A-linear operator f : H → A is bounded if and only if f is ‖ ‖H − ‖ ‖A continuous;
2. If f : H → A is A-linear and ‖ ‖H − ‖ ‖A continuous, then f : H → A is ‖ ‖p − ‖ ‖1 continuous;
3. If f : H → A is A-linear and ‖ ‖H − ‖ ‖A continuous, then f : H → A is ‖ ‖m − ‖ ‖1 continuous;
4. For each x, y ∈ H,

|ϕ̄ (〈x, y〉H)| ≤ ϕ̄ (|〈x, y〉H |) = ‖〈x, y〉H‖1 ≤ ‖x‖p ‖y‖H ;

5. For each x, y ∈ H,

|ϕ̄ (〈x, y〉H)| ≤ ϕ̄ (|〈x, y〉H |) = ‖〈x, y〉H‖1 ≤ ‖x‖m ‖y‖H .

Proof. 1. By Corollary 1 and since f is A-linear, f is linear. If f is bounded, then there exists c ∈ A+ such 
that

f2 (x) ≤ c 〈x, x〉H ∀x ∈ H.

Since ‖ ‖A is a lattice norm and A is an Arens algebra, this implies that

‖f (x)‖2
A =

∥∥f2 (x)
∥∥
A
≤ ‖c 〈x, x〉H‖

A
≤ ‖c‖A ‖〈x, x〉H‖

A
∀x ∈ H,

that is, ‖f (x)‖A ≤
√
‖c‖A ‖x‖H for all x ∈ H. We can conclude that f is ‖ ‖H−‖ ‖A continuous. Vice versa, 

assume that f is ‖ ‖H −‖ ‖A continuous. It follows that there exists k ≥ 0 such that ‖f (x)‖A ≤ k ‖x‖H for 
all x ∈ H. Fix x ∈ H. Since f is A-linear, it follows that for each a ∈ A

∥∥a2f2 (x)
∥∥
A

= ‖af (x)‖2
A = ‖f (a · x)‖2

A ≤ k2 ‖〈a · x, a · x〉H‖A = k2 ∥∥a2 〈x, x〉H
∥∥
A
.

Since A is a Dedekind complete Arens algebra, this implies that f2 (x) ≤
(
k2e
)
〈x, x〉H .10 Since x was 

arbitrarily chosen, it follows that f is bounded.
2. By point 1. and since A is a Dedekind complete Arens algebra, if f : H → A is ‖ ‖H −‖ ‖A continuous, 

then there exists c ∈ A+ such that

|f (x)| ≤ c 〈x, x〉
1
2
H ∀x ∈ H.

Since ϕ̄ is (strictly) positive, we have that

0 ≤ ‖f (x)‖1 = ϕ̄ (|f (x)|) ≤ ϕ̄
(
c 〈x, x〉

1
2
H

)
≤ ϕ̄

(
(‖c‖A e) 〈x, x〉

1
2
H

)
= ‖c‖A ϕ̄

(
〈x, x〉

1
2
H

)
= ‖c‖A ‖x‖p ∀x ∈ H.

3. By the proof of point 2. and (7), the statement follows.

10 For a Dedekind complete Arens algebra A, it is true that if c, d ∈ A+ are such that

‖bc‖A ≤ ‖bd‖A ∀b ∈ A+,

then c ≤ d. In our case, c = f2 (x), d = k2 〈x, x〉H , and, given Subsection 2.1, it is enough to observe that A+ =
{
a2 : a ∈ A

}
.
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4. By Proposition 4 and since ϕ̄ is (strictly) positive and linear, we have that

|ϕ̄ (〈x, y〉H)| ≤ ϕ̄ (|〈x, y〉H |) ≤ ϕ̄
(
〈x, x〉

1
2
H 〈y, y〉

1
2
H

)
≤ ϕ̄

(
〈x, x〉

1
2
H

(∥∥∥〈y, y〉 1
2
H

∥∥∥
A
e
))

=
√

‖〈y, y〉H‖
A
ϕ̄
(
〈x, x〉

1
2
H

)
= ‖y‖H ‖x‖p ∀x, y ∈ H,

proving the statement, since ϕ̄ (|〈x, y〉H |) = ‖〈x, y〉H‖1 for all x, y ∈ H.
5. By point 4. and (8), the statement follows. �

Remark 3. It is important to note that in the proof of point 1. the existence of a strictly positive functional 
ϕ̄ did not play any role. Similarly, in the proof of points 4. and 5. the assumption of Dedekind completeness 
was not used.

Proposition 9. Let A be an Arens algebra and H a pre-Hilbert A-module. If A is finite dimensional, then A
admits a strictly positive linear functional ϕ̄ such that ‖ϕ̄‖A∗ = 1 and the norms ‖ ‖p, ‖ ‖m, and ‖ ‖H are 
equivalent.

Proof. Since A is finite dimensional, we have that K is finite (see Semadeni [43, Corollary 6.4.9 and Propo-
sitions 6.2.10 and 7.1.4]). Since K is finite, consider m = mϕ̄ such that m ({ϕ}) = 1

|K| for all ϕ ∈ K. By 
Proposition 1, ϕ̄ is strictly positive, linear, and such that ‖ϕ̄‖A∗ = 1. Consider now a generic strictly positive 
linear functional ϕ̄. By Proposition 1 and since K is finite, it is immediate to see that m ({ϕ}) > 0 for all 
ϕ ∈ K. Consider a sequence {xn}n∈N

⊆ H. By Proposition 1, Proposition 6, point 3. of Proposition 5, and 
since K is finite, it follows that

xn

‖ ‖p→ 0 ⇐⇒ ‖xn‖p → 0 ⇐⇒
∫
K

〈
〈xn, xn〉

1
2
H , ϕ

〉
dm (ϕ) → 0

⇐⇒ ‖xn‖ϕ → 0 ∀ϕ ∈ K ⇐⇒ ‖xn‖H → 0 ⇐⇒ xn
‖ ‖H→ 0,

proving that ‖ ‖p and ‖ ‖H are equivalent. By (8), the statement follows. �
3.2. The norm duals of H

Assume A is an Arens algebra that admits a strictly positive functional ϕ̄ such that ‖ϕ̄‖A∗ = 1. Recall 
that on H we have at least two competing norms for H: ‖ ‖H and ‖ ‖m. We denote by BH the closed unit 
ball with respect to ‖ ‖H and by Bm the closed unit ball with respect to ‖ ‖m.

In this subsection, we study the norm duals these norms induce. We denote them, respectively, H∗ and H ′. 
Since ‖x‖m ≤ ‖x‖H for all x ∈ H, we have that H ′ ⊆ H∗ and, given l ∈ H ′, that

‖l‖H′ = sup {|l (x)| : ‖x‖m ≤ 1} ≥ sup {|l (x)| : ‖x‖H ≤ 1} = ‖l‖H∗ . (10)

Consider ϕ ∈ A∗ and y ∈ H. By Corollary 1, note that ϕ ◦ 〈 , y〉H is a linear functional. By Corollary 3, 
the ‖ ‖H continuity of ϕ ◦ 〈 , y〉H follows, since the operator 〈 , y〉H is ‖ ‖H −‖ ‖A continuous and ϕ is ‖ ‖A
continuous. On the other hand, by Proposition 8 (see also Remark 3), if ϕ ∈ A′ ⊆ A∗, ‖ ‖m continuity of 
ϕ ◦ 〈 , y〉H follows since the operator 〈 , y〉H is ‖ ‖m − ‖ ‖1 continuous and ϕ is ‖ ‖1 continuous.

Lemma 1. Let A be an Arens algebra and H a pre-Hilbert A-module. If A admits a strictly positive functional 
ϕ̄ such that ‖ϕ̄‖A∗ = 1 and S : H → H ′ ⊆ H∗ is defined by

S (y) = ϕ̄ (〈 , y〉 ) ∀y ∈ H,
H
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then:

1. S is well defined and linear;
2. kerS = {0};
3. S is such that ‖S (y)‖H′ = ‖y‖m for all y ∈ H. In particular, S is ‖ ‖m − ‖ ‖H′ continuous.

Proof. 1. Note that ϕ̄ ∈ A′ ⊆ A∗. By the arguments preceding the proof, we have that for each y ∈ H the 
functional S (y) is linear and ‖ ‖H and ‖ ‖m continuous, so that, S is well defined. For each α1, α2 ∈ R and 
y1, y2 ∈ H, we also have that

S (α1y1 + α2y2) (x) = ϕ̄ (〈x, α1y1 + α2y2〉H) = ϕ̄ (〈x, α1y1〉H + 〈x, α2y2〉H)

= ϕ̄ (〈x, (α1e) · y1〉H + 〈x, (α2e) · y2〉H)

= ϕ̄ ((α1e) 〈x, y1〉H + (α2e) 〈x, y2〉H)

= ϕ̄ (α1 〈x, y1〉H + α2 〈x, y2〉H)

= α1ϕ̄ (〈x, y1〉H) + α2ϕ̄ (〈x, y2〉H)

= α1S (y1) (x) + α2S (y2) (x) ∀x ∈ H,

proving S is linear.
2. Consider y ∈ H. Assume that S (y) = 0. It follows that

ϕ̄ (〈x, y〉H) = S (y) (x) = 0 ∀x ∈ H.

By choosing x = y and since ϕ̄ is strictly positive, we have that

ϕ̄ (〈y, y〉H) = 0 =⇒ 〈y, y〉H = 0 =⇒ y = 0.

This yields that kerS = {0}.
3. By Corollary 2 (see also Proposition 3), recall that H with the inner product 〈 , 〉m is a pre-Hilbert 

space. It follows that

|S (y) (x)| = |ϕ̄ (〈x, y〉H)| = |〈x, y〉m| ≤ ‖x‖m ‖y‖m ∀x, y ∈ H.

We can conclude that ‖S (y)‖H′ = ‖y‖m for all y ∈ H. �
Next proposition shows that S : H → H∗ is an isometry when H is endowed with the norm ‖ ‖p and H∗

is endowed with the norm ‖ ‖H∗ .

Proposition 10. Let A be a Dedekind complete Arens algebra and H a pre-Hilbert A-module. If A admits a 
strictly positive linear functional ϕ̄ such that ‖ϕ̄‖A∗ = 1, then ‖S (y)‖H∗ = ‖y‖p for all y ∈ H.

Proof. Consider l ∈ S (H). It follows that there exists y ∈ H such that l (x) = ϕ̄ (〈x, y〉H) for all x ∈ H and

‖l‖H∗ = sup
x∈BH

ϕ̄ (〈x, y〉H) .

First, consider the problem supx∈BH
〈x, y〉H . If x ∈ BH , then ‖〈x, x〉H‖

A
≤ 1 which yields 〈x, x〉

1
2
H ≤ e. By 

Proposition 4, this implies that
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〈x, y〉H ≤ 〈x, x〉
1
2
H 〈y, y〉

1
2
H ≤ 〈y, y〉

1
2
H ∀x ∈ BH .

Since A is Dedekind complete, it follows that A � supx∈BH
〈x, y〉H ≤ 〈y, y〉

1
2
H . Next, we show that ‖y‖p =

ϕ̄
(
〈y, y〉

1
2
H

)
= supx∈BH

ϕ̄ (〈x, y〉H) = ‖l‖H∗ . Consider an = 〈y, y〉
1
2
H + 1

ne ≥ 0 for all n ∈ N. Since 〈y, y〉
1
2
H ∈

A+, it is immediate to see that an is invertible for all n ∈ N. Define yn = a−1
n · y for all n ∈ N.

Claim. For each n ∈ N,

〈yn, yn〉H =
〈
a−1
n · y, a−1

n · y
〉
H

≤ e.

Moreover, 0 ≤ 〈yn, y〉H ≤ 〈y, y〉
1
2
H for all n ∈ N, 〈yn, y〉H ↑, and 〈yn, y〉H

‖ ‖A→ 〈y, y〉
1
2
H .

Proof of the Claim. See the Appendix. �
We can conclude that ‖yn‖H ≤ 1 for all n ∈ N. Since ϕ̄ ∈ A∗ is positive and 〈y, y〉

1
2
H ≥ supx∈BH

〈x, y〉H ≥
〈z, y〉H for all z ∈ BH , it follows that

ϕ̄
(
〈y, y〉

1
2
H

)
≥ ϕ̄

(
sup

x∈BH

〈x, y〉H
)

≥ ϕ̄ (〈z, y〉H) ∀z ∈ BH ,

that is, ϕ̄
(
〈y, y〉

1
2
H

)
≥ supx∈BH

ϕ̄ (〈x, y〉H). Vice versa, since ϕ̄ ∈ A∗ is positive, note that

supx∈BH
ϕ̄ (〈x, y〉H) ≥ supn∈N ϕ̄ (〈yn, y〉H) = limn ϕ̄ (〈yn, y〉H) = ϕ̄

(
〈y, y〉

1
2
H

)
, proving the statement. �

Remark 4. Observe that, under the assumptions of the previous proposition, the completion of H with 
respect to ‖ ‖p, denoted by Hp, can be identified with the ‖ ‖H∗ closure of S (H) in H∗. We will always 
adopt this identification.

We conclude the section with an ancillary lemma which will be instrumental in proving one of our main 
results on self-duality.

Lemma 2. Let A be a Dedekind complete Arens algebra and H a pre-Hilbert A-module. If A admits a strictly 
positive functional ϕ̄ such that ‖ϕ̄‖A∗ = 1, then 〈 , 〉m = ϕ̄ ◦ 〈 , 〉H admits a unique bilinear extension from 
H ×Hp to R, denoted 〈 , 〉−m, such that:

1.
∣∣∣〈x, y〉−m∣∣∣ ≤ ‖x‖H ‖y‖p for all x ∈ H and y ∈ Hp;

2. If 〈x, y〉−m = 〈x, y′〉−m for all x ∈ H, then y = y′.

Proof. Denote the dual pairing of H and H∗ by 〈 , 〉H,H∗ . Note that for each x, y ∈ H

〈x, S (y)〉H,H∗ = S (y) (x) = 〈x, y〉m .

Moreover, by Proposition 10, 
∣∣∣〈x, S (y)〉H,H∗

∣∣∣ ≤ ‖x‖H ‖S (y)‖H∗ = ‖x‖H ‖y‖p for all x, y ∈ H. Since Hp can 

be identified with 
(
cl‖ ‖H∗ (S (H)) , ‖ ‖H∗

)
, by defining 〈 , 〉−m = 〈 , 〉H,H∗ , the main statement and point 1. 

follow. We next prove uniqueness. Assume that 〈 , 〉◦m is a bilinear extension of 〈 , 〉m satisfying 1. Consider 

y ∈ Hp and x ∈ H. There exists {yn} ⊆ H such that yn
‖ ‖p→ y. Thus,
n∈N
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∣∣∣〈x, y〉−m − 〈x, y〉◦m
∣∣∣ ≤ ∣∣∣〈x, y〉−m − 〈x, yn〉◦m

∣∣∣+ ∣∣〈x, yn〉◦m − 〈x, y〉◦m
∣∣

=
∣∣∣〈x, y〉−m − 〈x, yn〉−m

∣∣∣+ ∣∣〈x, yn〉◦m − 〈x, y〉◦m
∣∣→ 0,

proving that 〈x, y〉−m = 〈x, y〉◦m. Since x and y were arbitrarily chosen, uniqueness follows. Finally, we have 
that if y, y′ ∈ Hp are such that for each x ∈ H

〈x, y〉−m = 〈x, y′〉−m ,

then, 〈x, y〉H,H∗ = 〈x, y′〉H,H∗ , yielding y = y′. �
4. Dual module

Given an Archimedean f -algebra A with unit e and a pre-Hilbert A-module H, we define

H∼ =
{
f ∈ AH : f is A-linear and bounded

}
.

Proposition 11. If A is a Dedekind complete Archimedean f -algebra with unit e and H a pre-Hilbert 
A-module, then H∼ is an A-module.

Proof. Define + : H∼ ×H∼ → H∼ to be such that for each f, g ∈ H∼

(f + g) (x) = f (x) + g (x) ∀x ∈ H.

In other words, + is the usual pointwise sum of operators. Define · : A × H∼ → H∼ to be such that for 
each a ∈ A and for each f ∈ H∼

(a · f) (x) = af (x) ∀x ∈ H.

It is immediate to verify that H∼ is closed under + and ·.11 In particular, (H,+) is an abelian group. Note 
that for each a, b ∈ A and each f, g ∈ H∼:

1. (a · (f + g)) (x) = a ((f + g) (x)) = a (f (x) + g (x)) = af (x) + ag (x) = (a · f) (x) + (a · g) (x) =
(a · f + a · g) (x) for all x ∈ H, that is, a · (f + g) = a · f + a · g.

2. ((a + b) · f) (x) = (a + b) f (x) = af (x) + bf (x) = (a · f) (x) + (b · f) (x) = (a · f + b · f) (x) for all 
x ∈ H, that is, (a + b) · f = a · f + b · f .

3. (a · (b · f)) (x) = a ((b · f) (x)) = a (bf (x)) = (ab) f (x) = ((ab) · f) (x) for all x ∈ H, that is, a · (b · f) =
(ab) · f .

4. (e · f) (x) = ef (x) = f (x) for all x ∈ H, that is, e · f = f . �
If A is Dedekind complete, then define S∼ : H → H∼ by

S∼ (y) = 〈 , y〉H ∀y ∈ H.

Given Remark 2 and the properties of 〈 , 〉H , the map S∼ is well defined. We next study the (topological) 
properties of this map and its connection to the self-duality problem. Since the topologies involved are 

11 Dedekind completeness yields the existence of the square root for positive elements of A. This property is used to show that 
the sum of two bounded A-linear operators is bounded.
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different, we split this study in two cases: Dedekind complete Arens algebras and f -algebras of L0 type. 
Before starting, we need one more definition:

Definition 8. Let H1 and H2 be two A-modules and S∼ : H1 → H2. We say that S∼ is a module homomor-
phism if and only if

S∼ (a · x + b · y) = a · S∼ (x) + b · S∼ (y) ∀a, b ∈ A,∀x, y ∈ H1.

We say that S∼ is a module isomorphism if and only if it is a bijective module homomorphism.

4.1. Dual module: Arens algebras

If A is a Dedekind complete Arens algebra (see Proposition 8 and Remark 3), we have that

H∼ =
{
f ∈ AH : f is A-linear and ‖ ‖H − ‖ ‖A continuous

}
.

In this case, we define ‖ ‖H∼ : H∼ → [0,∞) by

‖f‖H∼ = sup
x∈BH

‖f (x)‖A ∀f ∈ H∼.

Recall that if f ∈ H∼, then f is linear. Thus, in this case, we have that H∼ ⊆ B (H,A), where the latter is 
the set of all norm bounded linear operators from H to A when H is endowed with ‖ ‖H and A is endowed 
with ‖ ‖A.

Proposition 12. Let A be a Dedekind complete Arens algebra and H a pre-Hilbert A-module. The following 
statements are true:

1. H∼ =
{
f ∈ AH : f is A-linear and ‖ ‖H − ‖ ‖A continuous

}
.

2. H∼ is a ‖ ‖H∼ complete A-module.
3. S∼ is a well defined module homomorphism and ‖S∼ (y)‖H∼ = ‖y‖H for all y ∈ H.
4. If H is self-dual, then S∼ is onto and H is ‖ ‖H complete.

Proof. 1. It follows from point 1. of Proposition 8 (see also Remark 3).
2. By Proposition 11, H∼ is an A-module. In particular, H∼ is a vector subspace of B (H,A). Consider 

a ‖ ‖H∼ Cauchy sequence {fn}n∈N
⊆ H∼ ⊆ B (H,A). By [4, Theorem 6.6], we have that there exists 

f ∈ B (H,A) such that fn
‖ ‖H∼→ f . We are left to show that f is A-linear. First, observe that f : H → A is 

such that

f (x) = lim
n

fn (x) ∀x ∈ H

where the limit is in ‖ ‖A norm. We can conclude that for each a, b ∈ A and x, y ∈ H

fn (x)
‖ ‖A→ f (x) , fn (y)

‖ ‖A→ f (y) =⇒ afn (x)
‖ ‖A→ af (x) , bfn (y)

‖ ‖A→ bf (y)

=⇒ afn (x) + bfn (y)
‖ ‖A→ af (x) + bf (y) .

At the same time, afn (x) + bfn (y) = fn (a · x + b · y) ‖ ‖A→ f (a · x + b · y) for all a, b ∈ A and x, y ∈ H. 
By the uniqueness of the limit, we can conclude that f (a · x + b · y) = af (x) + bf (y) for all a, b ∈ A and 
x, y ∈ H, proving the statement.
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3. Define S∼ : H → H∼ by

S∼ (y) (x) = 〈x, y〉H ∀x ∈ H.

By Corollary 3, it follows that S∼ is well defined and such that ‖S∼ (y)‖H∼ = ‖y‖H for all y ∈ H. Note 
also that for each a, b ∈ A and for each y, z ∈ H

S∼ (a · y + b · z) (x) = 〈x, a · y + b · z〉H = a 〈x, y〉H + b 〈x, z〉H
= aS∼ (y) (x) + bS∼ (z) (x)

= (a · S∼ (y)) (x) + (b · S∼ (z)) (x) ∀x ∈ H,

in other words, we have that S∼ (a · y + b · z) = a ·S∼ (y)+b ·S∼ (z), that is, S∼ is a module homomorphism. 
We can also conclude that

‖S∼ (y) − S∼ (z)‖H∼ = ‖S∼ (y − z)‖H∼ = ‖y − z‖H ,

that is, S∼ is an isometry.
4. If H is self-dual, it is immediate to see that S∼ is onto. Consider a ‖ ‖H Cauchy sequence {xn}n∈N

⊆ H. 
Since S∼ is an isometry, it follows that {S∼ (xn)}n∈N

is a ‖ ‖H∼ Cauchy sequence in H∼. Since H∼ is ‖ ‖H∼

complete and S∼ is onto, it follows that there exists f ∈ H∼ such that S∼ (xn)
‖ ‖H∼→ f = S∼ (x) for some 

x ∈ H∼. Since S∼ is an isometry, we have that xn
‖ ‖H→ x, proving that H is ‖ ‖H complete. �

4.2. Dual module: f -algebras of L0 type

In order to discuss the continuity properties of the map S∼ we need to endow H∼ with a topology. We 
saw that if A is an Arens algebra, then the choice of topology for H∼ is rather natural: the one induced by 
the standard operator norm ‖ ‖H∼ . The same choice cannot be made when A is an f -algebra of L0 type. 
Thus, first we define the operator vector-valued norm N∗ : H∼ → A+ by

N∗ (f) = sup
x∈H

(
sup
n∈N

|f (x)|
N (x) + 1

ne

)
∀f ∈ H∼.

Then, we define the metric dH∼ : H∼ ×H∼ → [0,∞)

dH∼ (f, g) = d (0, N∗ (f − g)) ∀f, g ∈ H∼.

Lemma 3. If A is an f -algebra of L0 type and H a pre-Hilbert A-module, then dH∼ is an invariant metric.

Proposition 13. Let A be an f -algebra of L0 type and H a pre-Hilbert A-module. The following statements 
are true:

1. H∼ =
{
f ∈ AH : f is A-linear and dH − d continuous

}
.

2. S∼ is a well defined module homomorphism and dH∼ (S∼ (x) , S∼ (y)) = dH (x, y) for all x, y ∈ H.
3. If H is self-dual, then S∼ is onto and H is dH complete.

Proof. 1. We first show that

H∼ ⊆
{
f ∈ AH : f is A-linear and dH − d continuous

}
.
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Consider f ∈ H∼. We only need to show that f is dH − d continuous. Since f is bounded, there exists 
c ∈ A+ such that

|f (x)| ≤ cN (x) ∀x ∈ H. (11)

By [41, Theorem 1.32] and since f is A-linear, f is linear and we only need to show continuity at 0. Consider 
{xn}n∈N

⊆ H such that xn
dH→ 0. By definition of dH , it follows that N (xn) d→ 0, thus cN (xn) d→ 0. By (11)

and definition of d, it follows that d (0, f (xn)) = ϕ̄ (|f (xn)| ∧ e) ≤ ϕ̄ ((cN (xn)) ∧ e) = d (0, cN (xn)) → 0, 
proving continuity at 0.

As for the opposite inclusion, we consider an A-linear and dH − d continuous function f and show it is 
bounded. First, define BHe

= {x ∈ H : N (x) ≤ e}. Consider a sequence {xn}n∈N
⊆ BHe

and {αn}n∈N
⊆ R

such that αn → 0. It follows that there exists n̄ ∈ N such that |αn| < 1 for all n ≥ n̄. This implies that for 
n ≥ n̄

dH (0, αnxn) = ϕ̄ (N (αnxn) ∧ e) = ϕ̄ ((|αn|N (xn)) ∧ e)

≤ ϕ̄ (|αn| e ∧ e) = |αn| ϕ̄ (e) → 0,

proving that αnxn
dH→ 0. By [41, Theorem 1.30] and [41, Theorem 1.32], we have that BHe

is topologically 
bounded and so are f (BHe

) and {|f (x)|}x∈BHe
. Consider the following binary relation on BHe

:

x � y ⇐⇒ |f (x)| ≥ |f (y)| .

It is immediate to see that � is reflexive and transitive. Next, consider x, y ∈ BHe
. Since A is an f -algebra 

of L0 type, it follows that there exists c1, c2 ∈ A+ such that c1 ∧ c2 = 0, c1, c2 ≤ e, and

c1 |f (x)| + c2 |f (y)| = |f (x)| ∨ |f (y)| .12

Define z = c1·x +c2·y. Note that N (c1 · x + c2 · y) ≤ c1N (x)+c2N (y) ≤ c1e +c2e ≤ e, proving that z ∈ BHe
. 

At the same time, since c1 ∧ c2 = 0, it follows that c1c2 = 0. This implies that (c1 |f (x)|) (c2 |f (y)|) = 0, 
yielding that (c1 |f (x)|) ∧ (c2 |f (y)|) = 0. By [4, Theorem 8.12] and since f is A-linear, we can conclude 
that

|f (z)| = |f (c1 · x + c2 · y)| = |c1f (x) + c2f (y)| = c1 |f (x)| + c2 |f (y)| = |f (x)| ∨ |f (y)| .

Thus, for each x, y ∈ BHe
there exists z ∈ BHe

such that z � x and z � y. It follows that (BHe
,�) is 

a directed set and {|f (x)|}x∈BHe
is an increasing net. By [5, Theorem 7.14 and Theorem 7.50], we can 

conclude that {|f (x)|}x∈BHe
is order bounded. Therefore, there exists c ∈ A+ such that |f (x)| ≤ c for all 

x ∈ BHe
. Next, consider x ∈ H. Define an =

(
N (x) + 1

ne
)−1 and xn = an · x for all n ∈ N. It is immediate 

to see that xn ∈ BHe
. By the previous part of the proof, this implies that |f (an · x)| ≤ c for all n ∈ N. Since 

f is A-linear, we can conclude that

|f (x)| ≤ c

(
N (x) + 1

n
e

)
∀n ∈ N.

12 Consider b1, b2 ∈ A+. By [11, Lemma 3], there exists c1 ∈ A such that 0 ≤ c1 ≤ e, c1 ∧ (e − c1) = 0, and c1 (b1 − b2) =
(b1 − b2)+. Define c2 = e − c1. It follows that

c1b1 + c2b2 = b2 + c1 (b1 − b2) = b2 + (b1 − b2)+ = b2 + (b1 − b2) ∨ 0 = b1 ∨ b2.

It is enough to set b1 = |f (x)| and b2 = |f (y)|.



990 S. Cerreia-Vioglio et al. / J. Math. Anal. Appl. 446 (2017) 970–1017
By taking the limit and since the topology induced by d is solid and x was arbitrarily chosen, it follows 
that

|f (x)| ≤ cN (x) ∀x ∈ H, (12)

proving the statement.
2. For each a, b ∈ A and for each y, z ∈ H

S∼ (a · y + b · z) (x) = 〈x, a · y + b · z〉H = a 〈x, y〉H + b 〈x, z〉H
= aS∼ (y) (x) + bS∼ (z) (x)

= (a · S∼ (y)) (x) + (b · S∼ (z)) (x) ∀x ∈ H,

in other words, we have that S∼ (a · y + b · z) = a ·S∼ (y)+b ·S∼ (z), that is, S∼ is a module homomorphism. 
We next show that S∼ is an isometry. Consider z ∈ H. By Proposition 4 (see also Remark 2), we have that 
for each x ∈ H and for each n ∈ N

|S∼ (z) (x)| = |〈x, z〉H | ≤ 〈x, x〉
1
2
H 〈z, z〉

1
2
H = N (x)N (z) ≤

(
N (x) + 1

n
e

)
N (z) .

This implies that

|S∼ (z) (x)|
N (x) + 1

ne
≤ N (z) ∀x ∈ H,∀n ∈ N,

which yields that

N∗ (S∼ (z)) = sup
x∈H

(
sup
n∈N

|S∼ (z) (x)|
N (x) + 1

ne

)
≤ N (z) .

Consider now x = z. It follows that

sup
n∈N

|S∼ (z) (z)|
N (z) + 1

ne
= sup

n∈N

N2 (z)
N (z) + 1

ne
= N (z) , 13

yielding that

13 Consider a ∈ A+. Define an = a + 1
n e for all n ∈ N. It follows that 

{
a−1
n

}
n∈N

is a well defined and increasing sequence, and so 
is 
{
a−1
n a2}

n∈N
. Note that a ≤ an, thus aa−1

n ≤ e for all n ∈ N. Note also that

a
2 +

1
n
a = a

(
a +

1
n
e

)
= aan ∀n ∈ N,

that is,

a − a
−1
n a

2 =
1
n
aa

−1
n ≤

1
n
e ∀n ∈ N.

It follows that

d
(
a
−1
n a

2
, a
)

= ϕ̄
(∣∣∣a − a

−1
n a

2
∣∣∣ ∧ e

)
≤ ϕ̄

( 1
n
e

)
→ 0.

By [4, Theorem 8.43] and since the topology generated by d is locally solid and Hausdorff, we can conclude that supn

(
a−1
n a2) = a. 

It is enough to set a = N (z).
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N∗ (S∼ (z)) = sup
x∈H

(
sup
n∈N

|S∼ (z) (x)|
N (x) + 1

ne

)
≥ sup

n∈N

|S∼ (z) (z)|
N (z) + 1

ne
= N (z)

and proving that N∗ (S∼ (z)) = N (z). Since z was arbitrarily chosen, we have that for each x, y ∈ H

dH∼ (S∼ (x) , S∼ (y)) = d (0, N∗ (S∼ (x) − S∼ (y))) = d (0, N∗ (S∼ (x− y)))

= d (0, N (x− y)) = dH (x, y) ,

proving the statement.
3. If H is self-dual, it is immediate to see that S∼ is onto. As for dH completeness of H, we postpone 

the proof. It will be the implication “(ii) implies (i)” in Theorem 5. �
Point 1. of the previous proposition can be also found in [25, Proposition 5.6] and [22, Theorem 21]. Our 

proof is based on the same idea of [22, Theorem 21]. On this matter there is a small caveat: both works 
define continuity when H is endowed with the (ε, λ)-topology. One can verify that, in our setting when 
A = L0 (G) over a probability space, this topology and the one induced by dH coincide.

4.3. Dual module as a congruent space

In this subsection, we consider an Arens algebra of L∞ type. We show that the dual module unit ball, 
BH∼ , is compact with respect to a weak topology, thus providing a sort of Banach–Alaoglu theorem for the 
dual module. As a corollary, we obtain that H∼ can be seen as the norm dual of a specific Banach space.

Fix x ∈ H. Define 
x : H∼ → R by


x (f) = ϕ̄ (f (x)) ∀f ∈ H∼. (13)

Note that for each f, g ∈ H∼ and α, β ∈ R


x (αf + βg) = ϕ̄ ((αf + βg) (x)) = ϕ̄ (αf (x) + βg (x))

= αϕ̄ (f (x)) + βϕ̄ (g (x)) = α
x (f) + β
x (g) ,

that is, 
x is linear. Similarly, we have that

|
x (f)| = |ϕ̄ (f (x))| ≤ ‖ϕ̄‖A∗ ‖f (x)‖A ≤ ‖ϕ̄‖A∗ ‖x‖H ‖f‖H∼ ∀f ∈ H∼,

that is, 
x ∈ (H∼)∗ where (H∼)∗ is the ‖ ‖H∼ norm dual of H∼. From now on, we will suppress the subscript 
x whenever it is clear from the context. Define

V =
{

 ∈ (H∼)∗ : 
 is defined as in (13)

}
and V̄ as the ‖ ‖(H∼)∗ norm closure of V in (H∼)∗.

Theorem 1. If A is an Arens algebra of L∞ type and H a pre-Hilbert A-module, then BH∼ is σ (H∼, V )
compact.

Proof. By definition of V , note that we need to show that for each net {fi}i∈I ⊆ BH∼ there exists f ∈ BH∼

and a subnet 
{
fij
}
j∈J

⊆ BH∼ such that 
 
(
fij
)
→ 
 (f) for all 
 ∈ V . This is equivalent to show that

ϕ̄
(
fij (x)

)
→ ϕ̄ (f (x)) ∀x ∈ H.
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Before starting, recall that ‖ ‖1 : A → [0,∞) is defined by ‖a‖1 = ϕ̄ (|a|) for all a ∈ A. Recall also that A′

denotes the ‖ ‖1 dual of A. It follows that 〈A,A′〉 is a Riesz dual system. Since ϕ̄ is order continuous, it is 
immediate to verify that ‖ ‖1 is indeed a well defined order continuous norm. This implies that σ (A,A′)
is order continuous. Moreover, by [6, Theorem 3.57] and since A is Dedekind complete, we have that order 
intervals are σ (A,A′) compact. We conclude the first part of the proof by fixing b ∈ A and proving that 
the map L : A → A, defined by L (a) = ba for all a ∈ A, is σ (A,A′)− σ (A,A′) continuous. It is immediate 
to check that L is linear. Next, we show that L is norm bounded. In fact, ‖L (a)‖1 = ϕ̄ (|ba|) = ϕ̄ (|b| |a|) ≤
ϕ̄ (‖b‖A e |a|) ≤ ‖b‖A ϕ̄ (|a|) ≤ ‖b‖A ‖a‖1 for all a ∈ A. By [4, Theorem 6.17], we can conclude that L is 
σ (A,A′) − σ (A,A′) continuous.

In this proof, we consider A endowed with the σ (A,A′) topology and AH with the product topology.
Consider a net {fi}i∈I ⊆ BH∼ . It follows that {fi}i∈I ⊆ AH . For each x ∈ H define

Ax = {a ∈ A : ∃i ∈ I s.t. fi (x) = a} .

Note that ‖fi (x)‖A ≤ ‖fi‖H∼ ‖x‖H for all i ∈ I and for all x ∈ H. Since {fi}i∈I ⊆ BH∼ , we can conclude 
that

Ax ⊆ [−‖x‖H e, ‖x‖H e] ∀x ∈ H.

Thus, we have that

{fi}i∈I ⊆ Πx∈HAx ⊆ Πx∈H [−‖x‖H e, ‖x‖H e] ⊆ AH

where the last by one set is compact by Tychonoff’s theorem. We can thus extract a subnet 
{
fij
}
j∈J

⊆
{fi}i∈I such that fij (x)

σ
(
A,A′)
→ ax ∈ [−‖x‖H e, ‖x‖H e] for all x ∈ H. Define f : H → A by f (x) = ax for 

all x ∈ H. Note that f is well defined and A-linear. For, consider a, b ∈ A and y, z ∈ H

fij (y)
σ
(
A,A′)
→ f (y) , fij (z)

σ
(
A,A′)
→ f (z) =⇒ afij (y)

σ
(
A,A′)
→ af (y) , bfij (z)

σ
(
A,A′)
→ bf (z)

=⇒ afij (y) + bfij (z)
σ
(
A,A′)
→ af (y) + bf (z) .

At the same time, afij (y) + bfij (z) = fij (a · y + b · z) σ
(
A,A′)
→ f (a · y + b · z). By the uniqueness of the 

limit, we can conclude that f (a · y + b · z) = af (y) + bf (z). Since a, b ∈ A and y, z ∈ H were arbitrarily 
chosen, it follows that f is A-linear. In particular, we have that f is linear. We next show that f is norm 
bounded. In fact, recall that f (x) ∈ [−‖x‖H e, ‖x‖H e] for all x ∈ H. This implies that

‖f (x)‖A ≤ ‖x‖H ∀x ∈ H, (14)

that is, f is ‖ ‖H−‖ ‖A continuous and ‖f‖H∼ ≤ 1. Thus, f belongs to BH∼ . Since ϕ̄ ∈ A′, we can conclude 
that 

{
fij
}
j∈J

⊆ {fi}i∈I

ϕ̄
(
fij (x)

)
→ ϕ̄ (f (x)) ∀x ∈ H

and f ∈ BH∼ . �
Next, we show that the norm dual of 

(
V, ‖ ‖(H∼)∗

)
, V ∗, is congruent to H∼. Define J : H∼ → V ∗ by 

f 
→ J (f) where

J (f) (
) = 
 (f) ∀f ∈ H∼, ∀
 ∈ V.
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Lemma 4. If A is an Arens algebra of L∞ type and H a pre-Hilbert A-module, then J is a well defined onto 
linear isometry. Moreover, J is σ (H∼, V ) − σ (V ∗, V ) continuous.

Proof. The statement follows by replicating the arguments contained in [38] (see also [29] or [26, p. 211]). �
5. Self-duality

5.1. Arens algebras of L∞ type

Using the results derived in Section 4, we start by observing that a necessary condition for self-duality 
is the compactness of BH in the σ (H,S (H)) topology. In what follows, we provide the results that will 
be instrumental in showing that such a condition is also sufficient. We then move to state our first result 
on self-duality (Theorem 3). We conclude by giving a sufficient condition and a different necessary one for 
self-duality (Propositions 16 and 17).

Proposition 14. Let A be an Arens algebra of L∞ type and H a pre-Hilbert A-module. If H is self-dual, then 
BH is σ (H,S (H)) compact.

Proof. Since S∼ is an isometry and H is self-dual, it follows that S∼ (BH) = BH∼ . Consider a net {yi}i∈I ⊆
BH and define {fi}i∈I ⊆ BH∼ to be such that fi = S∼ (yi) for all i ∈ I. By Theorem 1, we have that BH∼

is σ (H∼, V ) compact. This implies that there exists a subnet 
{
fij
}
j∈J

⊆ {fi}i∈I and f ∈ BH∼ such that 

 
(
fij
)
→ 
 (f) for all 
 ∈ V , that is, ϕ̄

(
fij (x)

)
→ ϕ̄ (f (x)) for all x ∈ H. Since S∼ (BH) = BH∼ , there 

exists y ∈ BH such that f = S∼ (y). We can conclude that ϕ̄
(〈
yij , x

〉
H

)
= ϕ̄

(〈
x, yij

〉
H

)
= ϕ̄

(
fij (x)

)
→

ϕ̄ (f (x)) = ϕ̄ (〈x, y〉H) = ϕ̄ (〈y, x〉H) for all x ∈ H, that is, yij
σ(H,S(H))→ y ∈ BH . �

Corollary 4. Let A be an Arens algebra of L∞ type and H a pre-Hilbert A-module. If H is self-dual, then 
BH is σ

(
H, cl‖ ‖H∗ (S (H))

)
compact. In particular, BH is σ (H,H ′) compact.

Proof. Consider {yi}i∈I ⊆ BH . By Proposition 14, there exists 
{
yij
}
j∈J

⊆ {yi}i∈I and y ∈ BH such that 

yij
σ(H,S(H))→ y. Since BH is ‖ ‖H bounded, this implies that l

(
yij
)
→ l (y) for all l ∈ cl‖ ‖H∗ (S (H)). 

By Lemma 1 and since H is a pre-Hilbert space, cl‖ ‖H′ (S (H)) = H ′. By (10), we can conclude that 
H ′ ⊆ cl‖ ‖H∗ (S (H)), proving σ (H,H ′) compactness. �
Proposition 15. Let A be an Arens algebra of L∞ type and H a pre-Hilbert A-module. If BH is σ (H,S (H))
compact, then S∼ (H) ∩BH∼ is σ (H∼, V ) and σ

(
H∼, V̄

)
compact.

Proof. Consider a net {fi}i∈I ⊆ S∼ (H)∩BH∼ . By assumption and since S∼ is an isometry, it follows that 
there exists {yi}i∈I ⊆ BH such that S∼ (yi) = fi for all i ∈ I. Since BH is σ (H,S (H)) compact, we have 
that there exists a subnet 

{
yij
}
j∈J

and y ∈ BH such that

ϕ̄
(〈
yij , z

〉
H

)
→ ϕ̄ (〈y, z〉H) ∀z ∈ H.

Define f = 〈 , y〉H ∈ S∼ (H) ∩ BH∼ . We can conclude that 
{
fij
}
j∈J

⊆ {fi}i∈I ⊆ S∼ (H) ∩ BH∼ and 
f ∈ S∼ (H) ∩BH∼ are such that

ϕ̄
(
fij (z)

)
→ ϕ̄ (f (z)) ∀z ∈ H,

proving that S∼ (H) ∩ BH∼ is σ (H∼, V ) compact. Next, consider 
 ∈ V̄ . It follows that there exists 

{
n} ⊆ V such that 
n
‖ ‖(H∼)∗→ 
. Note that
n∈N
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∣∣
 (f) − 

(
fij
)∣∣ ≤ |
 (f) − 
n (f)| +

∣∣
n (f) − 
n
(
fij
)∣∣+ ∣∣
n (fij)− 


(
fij
)∣∣

≤ ‖
− 
n‖(H∼)∗ ‖f‖H∼ +
∣∣
n (f) − 
n

(
fij
)∣∣+ ‖
− 
n‖(H∼)∗

∥∥fij∥∥H∼

≤ 2 ‖
− 
n‖(H∼)∗ +
∣∣
n (f) − 
n

(
fij
)∣∣ .

By taking the limit in j, we have that

0 ≤ lim sup
j

∣∣
 (f) − 

(
fij
)∣∣ ≤ 2 ‖
− 
n‖(H∼)∗ ∀n ∈ N.

By taking the limit in n, we can conclude that

0 ≤ lim inf
j

∣∣
 (f) − 

(
fij
)∣∣ ≤ lim sup

j

∣∣
 (f) − 

(
fij
)∣∣ ≤ 0,

proving that 
 
(
fij
)
→ 
 (f). It follows that S∼ (H) ∩BH∼ is σ

(
H∼, V̄

)
compact. �

Corollary 5. Let A be an Arens algebra of L∞ type and H a pre-Hilbert A-module. If BH is σ (H,S (H))
compact, then S∼ (H) is σ

(
H∼, V̄

)
closed.

Proof. By Lemma 4, (H∼, ‖ ‖H∼) can be identified with the dual of 
(
V, ‖ ‖(H∼)∗

)
. It is then immediate to 

see that (H∼, ‖ ‖H∼) can be identified with the dual of 
(
V̄ , ‖ ‖(H∼)∗

)
. By Proposition 15, S∼ (H)∩BH∼ is 

σ
(
H∼, V̄

)
closed. By the Krein–Smulian Theorem (see [35, Corollary 2.7.12]) and since S∼ (H) is a vector 

subspace of H∼, it follows that S∼ (H) is σ
(
H∼, V̄

)
closed. �

Theorem 2. If A is an Arens algebra of L∞ type and H a pre-Hilbert A-module, then S∼ (H) separates the 
points of V̄ .

Proof. We proceed by steps. Before starting, we denote by Hp the norm completion of H with respect to 
‖ ‖p and A1 the norm completion of A with respect to ‖ ‖1 (see also Remark 4). We still denote by ϕ̄ the 
extension of ϕ̄ from A to A1.

Step 1. If f is an A-linear and ‖ ‖H − ‖ ‖A continuous operator, then f admits a unique ‖ ‖p − ‖ ‖1
continuous linear extension f̄ : Hp → A1.

Proof of the Step. By Proposition 8 and since f is linear, the statement trivially follows. �
Step 2. Let {
n}n∈N

⊆ V and {xn}n∈N
⊆ H such that 
n (f) = ϕ̄ (f (xn)) for all f ∈ H∼. If 
n

‖ ‖(H∼)∗→ 
 ∈

(H∼)∗, then xn

‖ ‖p→ x ∈ Hp. Moreover, we have that


 (f) = ϕ̄
(
f̄ (x)

)
∀f ∈ H∼.

Proof of the Step. Consider x ∈ H. Define 
x : H∼ → R by 
x (f) = ϕ̄ (f (x)) for all f ∈ H∼. By definition 
of ‖ ‖(H∼)∗ and the proof of Proposition 10, it follows that

‖
x‖(H∼)∗ = sup
f∈BH∼

|ϕ̄ (f (x))| ≥ sup
f∈BH∼∩S∼(H)

|ϕ̄ (f (x))| = sup
y∈BH

|ϕ̄ (〈x, y〉H)| = ‖x‖p .

Since 
n
‖ ‖(H∼)∗→ 
, then {xn}n∈N

⊆ H is a ‖ ‖p Cauchy sequence which thus converges to an element in the 

completion. Finally, fix f ∈ H∼. Since 
n
‖ ‖(H∼)∗→ 
, it follows that
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ϕ̄ (f (xn)) = 
n (f) → 
 (f) .

At the same time, by Step 1 and since xn

‖ ‖p→ x ∈ Hp, we have that f (xn) = f̄ (xn)
‖ ‖1→ f̄ (x). This implies 

that


n (f) = ϕ̄ (f (xn)) → ϕ̄
(
f̄ (x)

)
.

Since f was arbitrarily chosen, we can conclude that 
 (f) = ϕ̄
(
f̄ (x)

)
for all f ∈ H∼. �

Step 3. For each y ∈ H and x ∈ Hp

ϕ̄
(
S∼ (y) (x)

)
= 〈y, x〉−m .

Proof of the Step. Consider y ∈ H and x ∈ Hp. There exists {xn}n∈N
⊆ H such that xn

‖ ‖p→ x. It follows 
that

S∼ (y) (xn) = S∼ (y) (xn)
‖ ‖1→ S∼ (y) (x) .

This implies that

〈y, xn〉m = 〈xn, y〉m = ϕ̄ (〈xn, y〉H) = ϕ̄ (S∼ (y) (xn)) → ϕ̄
(
S∼ (y) (x)

)
.

At the same time, by Lemma 2, 〈y, xn〉m = 〈y, xn〉−m → 〈y, x〉−m, proving the statement. �
We are ready to prove the main statement. Consider 
, 
′ ∈ V̄ . By Step 2, it follows that there exists 

x, x′ ∈ Hp such that


 (f) = ϕ̄
(
f̄ (x)

)
and 
′ (f) = ϕ̄

(
f̄ (x′)

)
∀f ∈ H∼. (15)

Assume that


 (f) = 
′ (f) ∀f ∈ S∼ (H) .

It follows that

ϕ̄
(
S∼ (y) (x)

)
= ϕ̄

(
S∼ (y) (x′)

)
∀y ∈ H.

By Step 3, this implies that

〈y, x〉−m = 〈y, x′〉−m ∀y ∈ H.

By Lemma 2, x = x′. By (15), this proves that 
 = 
′. �
We are now ready to state our first result on self-dual modules.

Theorem 3. Let A be an Arens algebra of L∞ type and H a pre-Hilbert A-module. The following statements 
are equivalent:

(i) H is self-dual;
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(ii) BH is σ (H,S (H)) compact;
(iii) BH is σ

(
H, cl‖ ‖H∗ (S (H))

)
compact;

(iv) H is σ
(
H, cl‖ ‖H∗ (S (H))

)
sequentially complete;

(v) BH is ‖ ‖m complete.

Proof. Before starting recall that H ′ (resp., H∗) denotes the norm dual of H when H is endowed with the 
norm ‖ ‖m (resp., ‖ ‖H). We denote by H ′′ the second dual of H (that is, the norm dual of H ′ when H ′ is 
endowed with the norm ‖ ‖H′). Given Corollary 2, it is well known that H ′ is an Hilbert space (see [9] or 
[10, Exercise pp. 149–150]). By Lemma 1, we have that S : H → H ′ is a ‖ ‖m − ‖ ‖H′ linear isometry.

(i) implies (ii). It is Proposition 14. (ii) implies (iii). It follows from the same arguments proving Corol-
lary 4.

(iii) implies (i). Since S (H) ⊆ cl‖ ‖H∗ (S (H)), BH is σ (H,S (H)) compact. Recall that (H∼, ‖ ‖H∼) can 

be identified with the norm dual of 
(
V̄ , ‖ ‖(H∼)∗

)
and S∼ (H) is a vector subspace of H∼. By Theorem 2, 

S∼ (H) separates the points of V̄ . By [4, Corollary 5.108], it follows that S∼ (H) is σ
(
H∼, V̄

)
dense in H∼. 

By Corollary 5, S∼ (H) is σ
(
H∼, V̄

)
closed, proving S∼ (H) = H∼.

Thus, we have showed that (i), (ii), and (iii) are equivalent.
(iii) implies (iv). By point 4. of Proposition 12 and since H is self-dual, (H, ‖ ‖H) is a Banach space. 

By [29], we have that the Banach space 
(
cl‖ ‖H∗ (S (H)) , ‖ ‖H∗

)
has a dual that can be identified with 

(H, ‖ ‖H). If we consider a σ
(
H, cl‖ ‖H∗ (S (H))

)
Cauchy sequence in H, then it is a weakly* Cauchy 

sequence. By [35, Corollary 2.6.21], we can conclude that H is σ
(
H, cl‖ ‖H∗ (S (H))

)
sequentially complete.

(iv) implies (v). Consider a ‖ ‖m Cauchy sequence {xn}n∈N
⊆ BH . It follows that

|l (xn) − l (xk)| ≤ ‖l‖H′ ‖xn − xk‖m ∀n, k ∈ N,∀l ∈ H ′. (16)

Since S (H) ⊆ H ′, this implies that {l (xn)}n∈N
⊆ R is a Cauchy sequence for each l ∈ S (H). Next, consider 

l̄ ∈ cl‖ ‖H∗ (S (H)). Consider ε > 0. It follows that there exists l ∈ S (H) such that 
∥∥l̄ − l

∥∥
H∗ < ε/4. Since 

{xn}n∈N
⊆ BH , this implies that for each n, k ∈ N

∣∣l̄ (xn − xk) − l (xn − xk)
∣∣ ≤ ∥∥l̄ − l

∥∥
H∗ ‖xn − xk‖H ≤ 2

∥∥l̄ − l
∥∥
H∗ ≤ ε

2 . (17)

At the same time, since {l (xn)}n∈N
⊆ R is a Cauchy sequence, there exists nε,l ∈ N such that

|l (xn) − l (xk)| <
ε

4 ∀n, k ≥ nε,l. (18)

By (17) and (18), we can conclude that
∣∣l̄ (xn − xk)

∣∣ ≤ ∣∣l̄ (xn − xk) − l (xn − xk)
∣∣+ |l (xn) − l (xk)| ≤

ε

2 + ε

4 < ε ∀n, k ≥ nε,l.

Since ε was arbitrarily chosen, it follows that 
{
l̄ (xn)

}
n∈N

⊆ R is a Cauchy sequence. Since l̄ was arbi-
trarily chosen, it follows that {l (xn)}n∈N

⊆ R is a Cauchy sequence for all l ∈ cl‖ ‖H∗ (S (H)). Since H is 
σ
(
H, cl‖ ‖H∗ (S (H))

)
sequentially complete, we have that there exists x ∈ H such that l (xn) → l (x) for 

all l ∈ cl‖ ‖H∗ (S (H)). By (16) and since {xn}n∈N
is a ‖ ‖m Cauchy sequence, we also have that for each 

ε > 0 and for each l ∈ BH′ there exists nε ∈ N such that

|l (xn) − l (xk)| <
ε

2 ∀n, k ≥ nε.

By taking the limit in k and since H ′ ⊆ cl‖ ‖H∗ (S (H)), this implies that |l (xn − x)| = |l (xn) − l (x)| ≤ ε/2
for all l ∈ BH′ and for all n ≥ nε. We thus have that ‖x− xn‖m = supl∈BH′ |l (xn − x)| < ε for all n ≥ nε. 

It follows that xn
‖ ‖m→ x. We are left to show that x ∈ BH . Note that
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ϕ̄ (|N (x) −N (xn)|) ≤ ϕ̄ (|N (x− xn)|) = ‖x− xn‖p ≤ ‖x− xn‖m → 0,

proving that N (xn)
‖ ‖1→ N (x). Since N (xn) ≤ e for all n ∈ N and the topology induced by ‖ ‖1 is locally 

solid and Hausdorff, it follows that N (x) ≤ e, proving that x ∈ BH .
(v) implies (ii). Since S is a linear isometry, if BH is ‖ ‖m complete, then S (BH) is convex and ‖ ‖H′

closed. It follows that S (BH) is σ (H ′, H ′′) closed. Moreover, since BH ⊆ Bm, S (BH) turns out to be 
contained in the unit ball induced by ‖ ‖H′ . Since H ′ is an Hilbert space (thus, reflexive), this latter set 
is σ (H ′, H ′′) compact. We can conclude that S (BH) is σ (H ′, H ′′) compact. By definition of S, it is then 
immediate to see that this yields the desired compactness of BH in the σ (H,S (H)) topology. �

We conclude by providing a sufficient condition for the self-duality of H (Proposition 16) and a necessary 
one (Proposition 17).14

Proposition 16. Let A be an Arens algebra of L∞ type and H a pre-Hilbert A-module. If BH is dH complete, 
then H is self-dual.

Proof. By Theorem 3, it is sufficient to show that BH is ‖ ‖m complete. Consider a ‖ ‖m Cauchy sequence 
{xn}n∈N

⊆ BH . By (8) and (9), it follows that {xn}n∈N
is a dH Cauchy sequence. Since BH is dH complete, 

it follows that there exists x ∈ BH such that xn
dH→ x. Define {yn}n∈N

by yn = 1
2xn for all n ∈ N and 

y = 1
2x. Since {xn}n∈N

⊆ BH and x ∈ BH , it follows that 0 ≤ N (yn − y) ≤ e for all n ∈ N. Moreover, 
yn

dH→ y. Next, note that

0 ≤ ‖yn − y‖2
m = ϕ̄

(
N (yn − y)2

)
= ϕ̄ (N (yn − y)N (yn − y)) ≤ ϕ̄ (N (yn − y))

= ϕ̄ (N (yn − y) ∧ e) = dH (yn, y) → 0.

By (5), this implies that 0 = limn 2 ‖yn − y‖m = limn ‖xn − x‖m, proving that xn
‖ ‖m→ x and that BH is 

‖ ‖m complete. �
As mentioned in the introduction, Kaplansky [30] first studied self-duality for pre-Hilbert A-modules H

where A was a commutative AW ∗-algebra.15 In such a context, he proved that self-duality is equivalent 
to H satisfying certain algebraic properties which we summarize in the next definition (see also [17]). 
Proposition 17 shows that these algebraic conditions are necessary for self-duality also in the real case. It 
has eluded us whether they are also sufficient.

Definition 9. Let A be an Arens algebra of L∞ type and H a pre-Hilbert A-module. We say that

1. {ei}i∈I is an orthogonal partition of the unit e if and only if e = supi∈I ei and ei ∧ ej = 0 for all i �= j.
2. H is an Hilbert–Kaplansky module if and only if for each orthogonal partition of the unit {ei}i∈I ⊆ A

(a) for each x ∈ H, ei · x = 0 for all i ∈ I implies x = 0;
(b) for each ‖ ‖H bounded collection {xi}i∈I ⊆ H there exists x ∈ H such that ei · xi = ei · x.

Proposition 17. Let A be an Arens algebra of L∞ type and H a pre-Hilbert A-module. If H is self-dual, then 
H is an Hilbert–Kaplansky module.

14 Proposition 16 is in line with the intuition provided by Frank [16, Remark 3.9] for the complex case.
15 Recall that the main distinction with the current work is the focus on complex algebras A.
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Proof. Consider {ei}i∈I ⊆ A+ such that ‖ei‖A ≤ 1 for all i ∈ I and such that supi∈I ei = e and ei∧ei′ = 0 for 
all i �= i′. Note that eiei′ = 0 for all i �= i′. Moreover, we can also conclude that tB =

∑
i∈B ei = ∨i∈Bei ↑ e

where B is a finite subset of I and this finite subsets are directed by using the inclusion relation. This 
latter observation yields that eiei = ei for all i ∈ I.16 Finally, since ϕ̄ is order continuous, observe that 
0 ≤ ϕ̄ (e− tB) ↓ 0.

We start by providing a construction which will be instrumental in proving the statement. Assume that 
{xi}i∈I ⊆ H is ‖ ‖H bounded. Call 2I0 the collection of all finite subsets of I. Direct 2I0 with the inclusion 
relation. Define {sB}B∈2I

0
⊆ H by

sB =
∑
i∈B

ei · xi ∀B ∈ 2I0.

Note that 〈sB , sB〉H =
∑

i∈B ei 〈xi, xi〉H for all B.17 Since {xi}i∈I ⊆ H is ‖ ‖H bounded, we have that 
there exists M > 0 such that ‖xi‖H ≤ M for all i ∈ I. By Proposition 5 and since each ϕ in K is an algebra 
homomorphism, it follows that for each ϕ ∈ K

0 ≤ ϕ (〈sB , sB〉H) = ϕ

(∑
i∈B

ei 〈xi, xi〉H

)
=
∑
i∈B

ϕ (ei 〈xi, xi〉H)

16 Note that for each i ∈ I and B

|ei − eitB| = |eie − eitB| = |ei| |e − tB| = ei (e − tB) ≤ (e − tB) .

By passing to the order limit, we have that eitB ↑ ei for all i ∈ I. Since eitB = eiei for all B such that {i} ⊆ B, the statement 
follows.
17 First, consider B and i′ /∈ B. Observe that

ei′ 〈sB, xi′ 〉H = ei′

〈∑
i∈B

ei · xi, xi′

〉
H

= ei′
∑
i∈B

〈ei · xi, xi′ 〉H

= ei′
∑
i∈B

ei 〈xi, xi′ 〉H =
∑
i∈B

(ei′ei) 〈xi, xi′ 〉H = 0.

Thus, we have that:

– if |B| = 1, then

〈sB, sB〉H = 〈ei · xi, ei · xi〉H = e
2
i 〈xi, xi〉H = ei 〈xi, xi〉H ;

– if the statement is true for 
∣∣B′∣∣ = m, then consider B such that |B| = m + 1. It follows that

B = B
′ ∪
{
i
′}

.

We thus have that

〈sB, sB〉H = 〈sB′ + ei′ · xi′ , sB′ + ei′ · xi′ 〉H

= 〈sB′ , sB′ + ei′ · xi′ 〉H + 〈ei′ · xi′ , sB′ + ei′ · xi′ 〉H

= 〈sB′ , sB′ 〉H + 2ei′ 〈sB′ , xi′ 〉H + 〈ei′ · xi′ , ei′ · xi′ 〉H

= 〈sB′ , sB′ 〉H + ei′ 〈xi′ , xi′ 〉H

=
∑
i∈B′

ei 〈xi, xi〉H + ei′ 〈xi′ , xi′ 〉H =
∑
i∈B

ei 〈xi, xi〉H ,

proving that the statement is true for m + 1. The whole statement follows by induction.
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=
∑
i∈B

ϕ (ei)ϕ (〈xi, xi〉H) ≤
∑
i∈B

ϕ (ei) ‖xi‖2
H ≤

∑
i∈B

ϕ (ei)M2

= M2ϕ

(∑
i∈B

ei

)
≤ M2ϕ (e) = M2 ∀B ∈ 2I0.

By Proposition 5, this implies that

‖sB‖H =
√

max
ϕ∈K

ϕ (〈sB , sB〉H) ≤ M ∀B ∈ 2I0.

Since BH is σ (H,S (H)) compact, it follows that there exist a subnet 
{
sBj

}
j∈J

and x̄ ∈ H such that 

sBj

σ(H,S(H))→ x̄ ∈ H, that is,

ϕ̄
(〈
sBj

, y
〉
H

)
→ ϕ̄ (〈x̄, y〉H) ∀y ∈ H.

1. Consider xi = x for all i ∈ I. It is immediate to see that {xi}i∈I is ‖ ‖H bounded. Next, we show that 
x = x̄. Note that for each j ∈ J and for each y ∈ H

∣∣ϕ̄ (〈x, y〉H) − ϕ̄
(〈
sBj

, y
〉
H

)∣∣ = ∣∣ϕ̄ (〈e · x− sBj
, y
〉
H

)∣∣
=

∣∣∣∣∣∣ϕ̄
⎛
⎝〈
⎛
⎝e−

∑
i∈Bj

ei

⎞
⎠ · x, y

〉
H

⎞
⎠
∣∣∣∣∣∣

=
∣∣ϕ̄ ((e− tBj

)
〈x, y〉H

)∣∣ ≤ ϕ̄
(∣∣〈x, y〉H (e− tBj

)∣∣)
= ϕ̄

(
|〈x, y〉H |

∣∣e− tBj

∣∣) ≤ ϕ̄
(
‖〈x, y〉H‖A e

(
e− tBj

))
= ‖〈x, y〉H‖A ϕ̄

(
e− tBj

)
.

By passing to the limit with respect to j, we obtain that ϕ̄
(〈
sBj

, y
〉
H

)
→ ϕ̄ (〈x, y〉H) for all y ∈ H. By the 

uniqueness of the limit, we obtain that x = x̄. Thus, if ei · x = 0 for all i ∈ I, then sBj
= 0 for all j ∈ J , 

implying that x = x̄ = 0.
2. Assume that {xi}i∈I ⊆ H is ‖ ‖H bounded. Consider ı̄ ∈ I. Consider j ∈ J such that Bj ⊇ {ı̄}. It 

follows that

eı̄ · sBj
= eı̄ ·

⎛
⎝∑

i∈Bj

ei · xi

⎞
⎠ =

⎛
⎝∑

i∈Bj

(eı̄ei) · xi

⎞
⎠ = eı̄ · xı̄.

We can conclude that, for each y ∈ H, eventually

ϕ̄
(〈
eı̄ · sBj

, y
〉
H

)
= ϕ̄ (〈eı̄ · xı̄, y〉H)

thus, proving that

eı̄ · sBj

σ(H,S(H))→ eı̄ · xı̄.

At the same time, since ϕ̄
(〈
sBj

, y
〉
H

)
→ ϕ̄ (〈x̄, y〉H) for all y ∈ H, we have that for each y ∈ H

lim ϕ̄
(〈
eı̄ · sBj

, y
〉
H

)
= lim ϕ̄

(〈
sBj

, eı̄ · y
〉
H

)
= ϕ̄ (〈x̄, eı̄ · y〉H) = ϕ̄ (〈eı̄ · x̄, y〉H) ,
j j
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that is, eı̄ · sBj

σ(H,S(H))→ eı̄ · x̄. By the uniqueness of the limit, we can conclude that eı̄ · xı̄ = eı̄ · x̄. Since ı̄
was arbitrarily chosen, the statement follows. �
5.2. Finite dimensional case

In this subsection, we discuss separately the case in which A is a finite dimensional Arens algebra, that 
is, A is isomorphic to some Rn. It is immediate to see that if A is finite dimensional, then it is of L∞

type. At the same time, the finite dimensional case merits to be discussed separately. First, the result of 
self-duality can be obtained via more direct methods. Second, it is the only case in which we can show that 
Hilbert A-modules are indeed self-dual. In other words, we can show that ‖ ‖H completeness is necessary 
and sufficient for self-duality.

Theorem 4. Let A be a finite dimensional Arens algebra and H a pre-Hilbert A-module. The following 
statements are equivalent:

(i) H is ‖ ‖H complete, that is, H is an Hilbert A-module;
(ii) H is ‖ ‖m complete;
(iii) H is self-dual.

Proof. Before starting, observe that, since A is finite dimensional, it is Dedekind complete and admits a 
strictly positive functional ϕ̄ (see Proposition 9).

(i) implies (ii). By Proposition 9 and since A is finite dimensional, ‖ ‖m and ‖ ‖H are equivalent. It 
follows that H is ‖ ‖m complete.

(ii) implies (iii). By Corollary 2 and since H is ‖ ‖m complete, it follows that H is an Hilbert space with 
inner product 〈 , 〉m. Consider f : H → A which is A-linear and bounded. By Proposition 8, it follows that 
f : H → A is A-linear and ‖ ‖m − ‖ ‖1 continuous. Consider the linear functional l = ϕ̄ ◦ f . Since ϕ̄ is 
‖ ‖1 continuous and f is ‖ ‖m − ‖ ‖1 continuous, we have that l is ‖ ‖m continuous. By the standard Riesz 
representation theorem, there exists (a unique) y ∈ H such that l (x) = 〈x, y〉m for all x ∈ H. It follows 
that

ϕ̄ (f (x) − 〈x, y〉H) = ϕ̄ (f (x)) − ϕ̄ (〈x, y〉H) = l (x) − 〈x, y〉m = 0 ∀x ∈ H. (19)

Fix x̄ ∈ H. Define a = f (x̄) − 〈x̄, y〉H ∈ A. By (19), we have that

0 = ϕ̄ (f (a · x̄) − 〈a · x̄, y〉H) = ϕ̄ (af (x̄) − a 〈x̄, y〉H)

= ϕ̄ (a (f (x̄) − 〈x̄, y〉H)) = ϕ̄ (aa) = ϕ̄
(
a2) .

Since ϕ̄ is strictly positive, this implies that a2 = 0. Since A is an Arens algebra, we can conclude that 
f (x̄)−〈x̄, y〉H = a = 0. Since x̄ was arbitrarily chosen, it follows that f (x) = 〈x, y〉H for all x ∈ H, proving 
that H is self-dual.

(iii) implies (i). By point 4. of Proposition 12, it follows that H is ‖ ‖H complete. �
5.3. f -algebras of L0 type

If A is an f -algebra of L0 type and H is a pre-Hilbert A-module, then the inner product 〈 , 〉H still 
satisfies the Cauchy–Schwarz inequality as in points 1. and 2. of Proposition 4 (see also Remark 2). By 
Proposition 7, we can endow H with the invariant metric dH . We define

He =
{
x ∈ H : 〈x, x〉

1
2
H ∈ Ae

}
.
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Finally, we define

H∼
e =

{
f ∈ AHe

e : f is Ae-linear and bounded
}
.

By f ∈ H∼
e being bounded, we mean that there exists 0 ≤ c ∈ Ae such that f2 (x) ≤ c 〈x, x〉H for all x ∈ He.

Proposition 18. Let A be an f -algebra of L0 type and H a pre-Hilbert A-module. The following statements 
are true:

1. Ae is an Arens algebra of L∞ type;
2. He is a pre-Hilbert Ae-module;
3. He is dH dense in H;
4. H∼

e is the dual module of He.

Proof. 1. and 2. By definition, Ae is an Arens algebra of L∞ type. Next, we show that He is closed under +. 
Consider x, y ∈ He. By the Cauchy–Schwarz inequality, we have that

〈x + y, x + y〉H = 〈x, x〉H + 2 〈x, y〉H + 〈y, y〉H

≤ 〈x, x〉H + 2 〈x, x〉
1
2
H 〈y, y〉

1
2
H + 〈y, y〉H ∈ Ae.

Next, we show that if a ∈ Ae and x ∈ He, then a ·x ∈ He. Since a, 〈x, x〉
1
2
H ∈ Ae and Ae is an Arens algebra, it 

follows that 〈a · x, a · x〉H = a2 〈x, x〉H ∈ Ae, proving that 〈a · x, a · x〉
1
2
H ∈ Ae. The closure of He with respect 

to + and · yields that (He,+) is an abelian (sub)group and properties (1)–(4) of Definition 1 automatically 

follow. Finally, note that if x, y ∈ He, then 〈x, x〉
1
2
H , 〈y, y〉

1
2
H ∈ Ae and |〈x, y〉H | ≤ 〈x, x〉

1
2
H 〈y, y〉

1
2
H ∈ Ae, 

proving that 〈x, y〉H ∈ Ae. Thus, 〈 , 〉He
is 〈 , 〉H restricted to He × He. Then, properties (5)–(8) of 

Definition 1 automatically follow.
3. Since A is an f -algebra of L0 type, it follows that for each c ∈ A+ there exists {en}n∈N

⊆ Ae such 

that 0 ≤ en ↑ e, e2
n = en, and enc ∈ Ae for all n ∈ N. Consider c = 〈x, x〉

1
2
H = N (x) for some x ∈ H. Define 

xn = en · x for all n ∈ N. It follows that N (xn) = enN (x) ∈ Ae, that is, xn ∈ He. Moreover, note that 
((e− en)N (x)) ∧ e ↓ 0. Since ϕ̄ is order continuous, it follows that

dH (x, xn) = ϕ̄ (N (x− xn) ∧ e) = ϕ̄ (N (e · x− en · x) ∧ e) = ϕ̄ (N ((e− en) · x) ∧ e)

= ϕ̄ (((e− en)N (x)) ∧ e) → 0,

proving that xn
dH→ x. Since x was arbitrarily chosen, it follows that He is dH dense in H.

4. It follows by definition of dual module. �
Our proof of self-duality for a pre-Hilbert A-module H where A is an f -algebra of L0 type hinges on our 

self-duality result for a pre-Hilbert A-module H where A is an algebra of L∞ type. This latter pre-Hilbert 
module will be He and the algebra will be the subalgebra Ae.

Theorem 5. Let A be an f -algebra of L0 type and H a pre-Hilbert A-module. The following statements are 
equivalent:

(i) H is dH complete;
(ii) H is self-dual.
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Proof. (i) implies (ii). By Proposition 18, we have that He is a pre-Hilbert Ae-module and Ae is an Arens 
algebra of L∞ type. We can thus define ‖ ‖He

and BHe
. It follows that x ∈ BHe

if and only if 〈x, x〉H ≤ e. 
We proceed by steps.

Step 1. If f ∈ H∼, then f is dH − d continuous.

Proof of the Step. By point 1. of Proposition 13, the statement follows. �
Step 2. BHe

is dH complete.

Proof of the Step. Consider a dH Cauchy sequence {xn}n∈N
⊆ BHe

. Since H is dH complete, it follows that 
there exists x ∈ H such that xn

dH→ x. We next show that x ∈ BHe
. By one of Birkhoff’s inequalities (see [6, 

Theorem 1.9]) and since 〈xn, xn〉H ≤ e for all n ∈ N, we also have that

|e−N (x) ∨ e| = |N (xn) ∨ e−N (x) ∨ e| ≤ |N (xn) −N (x)| ≤ N (xn − x) ∀n ∈ N.

It follows that

|e−N (x) ∨ e| ∧ e ≤ N (xn − x) ∧ e ∀n ∈ N.

We have that

0 ≤ ϕ̄ (|e−N (x) ∨ e| ∧ e) ≤ ϕ̄ (N (xn − x) ∧ e) = dH (xn, x) → 0.

This implies that

ϕ̄ (|e−N (x) ∨ e| ∧ e) = 0 =⇒ |e−N (x) ∨ e| ∧ e = 0 =⇒ |e−N (x) ∨ e| = 0

=⇒ e = N (x) ∨ e =⇒ N (x) ≤ e,

that is, 〈x, x〉H ≤ e and x ∈ BHe
. �

Step 3. The pre-Hilbert Ae-module He is self-dual, that is, for each f ∈ H∼
e there exists z ∈ He such that

f (x) = 〈x, z〉H for all x ∈ He.

Proof of the Step. By points 1. and 2. of Proposition 18, Step 2, and Proposition 16, the statement fol-
lows. �
Step 4. For each f ∈ H∼ there exists z ∈ H such that f (x) = 〈x, z〉H for all x ∈ He.

Proof of the Step. Consider f ∈ H∼. It follows that there exists c ∈ A+ such that f2 (x) ≤ c 〈x, x〉H for all 
x ∈ H. Since A is an f -algebra of L0 type, it follows that there exists a sequence {en}n∈N

⊆ Ae such that 
0 ≤ en ↑ e, e2

n = en, and enc ∈ Ae for all n ∈ N. Define fn = en · f for all n ∈ N. Note that for each x ∈ H

d (fn (x) , f (x)) = ϕ̄ (|f (x) − fn (x)| ∧ e) = ϕ̄ (((e− en) |f (x)|) ∧ e) → 0. (20)

Fix n ∈ N. By Proposition 11, we have that fn is A-linear. In particular, f2
n (x) ≤ e2

nc 〈x, x〉H = cn 〈x, x〉H
for all x ∈ H where cn = enc ∈ Ae. Thus, fn restricted to He belongs to H∼

e . By Step 3, there exists a 
unique zn ∈ He such that

(en · f) (x) = enf (x) = fn (x) = 〈x, zn〉 ∀x ∈ He.
H
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Note that for each n > k and for each x ∈ He

((fn − fk) (x))2 = (enf (x) − ekf (x))2 = (en − ek)2 f2 (x) ≤ (en − ek)2 c 〈x, x〉H .

It follows that

〈x, zn − zk〉H ≤ |(fn − fk) (x)| ≤ (en − ek) c
1
2 〈x, x〉

1
2
H ∀x ∈ He. (21)

Since A is an f -algebra of L0 type, we have that

Ae � sup
x∈BHe

〈x, zn − zk〉H ≤ (en − ek) c
1
2 .

By the claim contained in the proof of Proposition 10, there exists a sequence {xl}l∈N
⊆ BHe

such that 

〈xl, zn − zk〉H ↑ and 〈xl, zn − zk〉H
‖ ‖Ae→ 〈zn − zk, zn − zk〉

1
2
H . It follows that

〈xl, zn − zk〉H ∧ e
‖ ‖Ae→ 〈zn − zk, zn − zk〉

1
2
H ∧ e.

By [6, Theorem 1.8] and (21), we have that

〈xl, zn − zk〉H ∧ e ≤ sup
x∈BHe

(〈x, zn − zk〉H ∧ e) =
(

sup
x∈BHe

〈x, zn − zk〉H

)
∧ e

≤ (en − ek) c
1
2 ∧ e ∀l ∈ N.

We can conclude that

dH (zn, zk) = ϕ̄
(
〈zn − zk, zn − zk〉

1
2
H ∧ e

)
= lim

l
ϕ̄ (〈xl, zn − zk〉H ∧ e)

≤ ϕ̄
(
(en − ek) c

1
2 ∧ e

)
= d
(
ekc

1
2 , enc

1
2

)
.

It follows that {zn}n∈N
is a dH Cauchy sequence. Since H is dH complete, it follows that there exists z ∈ H

such that zn
dH→ z. At the same time, for each x ∈ BHe

we have that

d (〈x, zn〉H , 〈x, z〉H) = ϕ̄ (|〈x, z〉H − 〈x, zn〉H | ∧ e) = ϕ̄ (|〈x, z − zn〉H | ∧ e)

≤ ϕ̄
((

〈x, x〉
1
2
H 〈z − zn, z − zn〉

1
2
H

)
∧ e
)
≤ ϕ̄

(
〈z − zn, z − zn〉

1
2
H ∧ e

)
= dH (z, zn) → 0.

It follows that f (x) = 〈x, z〉H for all x ∈ BHe
. This implies that f (x) = 〈x, z〉H for all x ∈ He. �

By Step 4, if f ∈ H∼, then there exists z ∈ H such that f (x) = 〈x, z〉H for all x ∈ He. By Proposition 18, 
He is dH dense in H. By Step 1, f is dH − d continuous. This implies that f (x) = 〈x, z〉H for all x ∈ H, 
proving that H is self-dual.

(ii) implies (i). Consider a dH Cauchy sequence {yn}n∈N
. Define {fn}n∈N

as fn = S∼ (yn) for all n ∈ N.

Step 1. There exists f : He → A such that fn (x) d→ f (x) for all x ∈ He.

Proof of the Step. By Proposition 4, we have that

|fn (x) − fm (x)| ≤ N (x)N (yn − ym) ∀n,m ∈ N,∀x ∈ H. (22)
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Fix x ∈ BHe
. We can conclude that

|fn (x) − fm (x)| ∧ e ≤ (N (x)N (yn − ym)) ∧ e ≤ N (yn − ym) ∧ e,

yielding that

d (fn (x) , fm (x)) = ϕ̄ (|fn (x) − fm (x)| ∧ e)

≤ ϕ̄ (N (yn − ym) ∧ e) = dH (yn, ym) ∀n,m ∈ N.

We thus have that {fn (x)}n∈N
⊆ A is a d Cauchy sequence. Since A is complete, this yields that fn (x) d→ ax. 

Next, note that if x ∈ He\BHe
, then x̄ = x

‖x‖He

∈ BHe
. We have that fn (x̄) d→ ax̄. Thus, we can conclude 

that there exists ax ∈ A such that

fn (x) = ‖x‖He
fn (x̄) d→ ‖x‖He

ax̄ = ax.

By the uniqueness of the limit and since x was arbitrarily chosen, we can define a map f : He → A such 
that f (x) = ax for all x ∈ He. �
Step 2. The map f is such that

f (a · x + b · y) = af (x) + bf (y) ∀a, b ∈ Ae, ∀x, y ∈ He.

Proof of the Step. Consider a, b ∈ Ae and x, y ∈ He. We have that a · x + b · y ∈ He. By Step 1 and since 
each fn is A-linear, this implies that

afn (x) + bfn (y) = fn (a · x + b · y) d→ f (a · x + b · y) .

At the same time, since fn (x) d→ f (x) and fn (y) d→ f (y), we have that

afn (x) + bfn (y) d→ af (x) + bf (y) .

By the uniqueness of the limit, we can conclude that f (a · x + b · y) = af (x) + bf (y), proving the state-
ment. �
Step 3. There exists c ∈ A+ such that

|f (x)| ≤ cN (x) ∀x ∈ He. (23)

In particular, f is uniformly continuous on He.

Proof of the Step. Since N is a vector-valued norm, we have that

|N (yn) −N (ym)| ≤ N (yn − ym) ∀n,m ∈ N.

It follows that {N (yn)}n∈N
⊆ A+ is a d Cauchy sequence. Since A is d complete, it follows that there exists 

c ∈ A+ such that N (yn) d→ c. By Proposition 4, we also have that

|fn (x)| ≤ N (yn)N (x) ∀x ∈ He, ∀n ∈ N.
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By passing to the limit and since the topology induced by d is linear and locally solid, we can conclude that

|f (x)| ≤ cN (x) ∀x ∈ He, (24)

proving the statement. Finally, by [4, Lemma 5.17], it is enough to show continuity at 0. Consider xn
dH→ 0. 

It follows that N (xn) d→ 0. This implies that cN (xn) d→ 0. By (24), we have that

d (0, f (xn)) = ϕ̄ (|f (xn)| ∧ e) ≤ ϕ̄ ((cN (xn)) ∧ e) = d (0, cN (xn)) → 0,

proving continuity at 0. �
Step 4. f admits a unique extension to H which is A-linear and bounded. In particular, there exists y ∈ H

such that f = S∼ (y).

Proof of the Step. Since f is uniformly continuous and He is dH dense in H, it is well known that f admits 
a unique uniform continuous extension to H. For the moment, we denote such extension by f̄. Then, we 
will simply denote it f . Since f was additive, it is a routine argument to show that so is f̄ . Next, consider 
a ∈ Ae and x ∈ H. There exists a sequence {xn}n∈N

⊆ He such that xn
dH→ x. It follows that a · xn

dH→ a · x. 
Since f̄ is a continuous extension of f and by Step 2, we can conclude that

af (xn) = f (a · xn) = f̄ (a · xn) d→ f̄ (a · x) .

At the same time, we have that f (xn) = f̄ (xn) d→ f̄ (x), thus, af (xn) = af̄ (xn) d→ af̄ (x). By the 
uniqueness of the limit, we can conclude that f̄ (a · x) = af̄ (x). Next, consider a ∈ A and x ∈ H. There 

exists {an}n∈N
⊆ Ae such that an

d→ a. We have that an · x 
dH→ a · x. Since f̄ is continuous, we can conclude 

that

anf̄ (x) = f̄ (an · x) d→ f̄ (a · x) .

At the same time, we have that anf̄ (x) d→ af̄ (x). By the uniqueness of the limit, we can conclude that 
f̄ (a · x) = af̄ (x), proving A-linearity. Finally, consider x ∈ H. There exists a sequence {xn}n∈N

⊆ He such 

that xn
dH→ x. In particular, N (xn) d→ N (x). By (23) and since f̄ is a uniform continuous extension of f

and the topology induced by d is locally solid, we have that

∣∣f̄ (x)
∣∣ d←−

∣∣f̄ (xn)
∣∣ = |f (xn)| ≤ cN (xn) d→ cN (x) .

The last part of the statement follows since H is self-dual. �
Step 5. fn

dH∼→ f .

Proof of the Step. By (22), we have that

|fn (x) − fm (x)|
N (x) + 1

ke
≤ N (yn − ym) ∀k,m, n ∈ N,∀x ∈ H.

This yields that

d

(
0, |fn (x) − fm (x)|

1

)
≤ dH (yn, ym) ∀k,m, n ∈ N,∀x ∈ H.
N (x) + ke
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Consider ε > 0. Since {yn}n∈N
is a dH Cauchy sequence, there exists nε ∈ N such that

d

(
0, |fn (x) − fm (x)|

N (x) + 1
ke

)
≤ ε ∀k ∈ N,∀m,n ≥ nε, ∀x ∈ H.

By taking the limit in n, we have that

d

(
0, |f (x) − fm (x)|

N (x) + 1
ke

)
≤ ε ∀k ∈ N,∀m ≥ nε, ∀x ∈ H.

Next, consider the sequence 
{

|f(x)−fm(x)|
N(x)+ 1

k e
∧ e
}
k∈N

. This sequence is bounded by e and increasing. Thus, 
|f(x)−fm(x)|
N(x)+ 1

k e
∧ e ↑ supk∈N

(
|f(x)−fm(x)|
N(x)+ 1

k e
∧ e
)

= supk∈N

(
|f(x)−fm(x)|
N(x)+ 1

k e

)
∧ e. Since ϕ̄ is order continuous, we can 

conclude that

d

(
0, sup

k∈N

(
|f (x) − fm (x)|
N (x) + 1

ke

))
= ϕ̄

(
sup
k∈N

(
|f (x) − fm (x)|
N (x) + 1

ke

)
∧ e

)

= ϕ̄

(
sup
k∈N

(
|f (x) − fm (x)|
N (x) + 1

ke
∧ e

))

= sup
k∈N

ϕ̄

(
|f (x) − fm (x)|
N (x) + 1

ke
∧ e

)
≤ ε ∀m ≥ nε, ∀x ∈ H.

By the proof of point 2 of Proposition 13, we also have that

N∗ (f − fm) = N∗ (S∼ (y) − S∼ (ym)) = N∗ (S∼ (y − ym)) = sup
k∈N

|〈y − ym, y − ym〉H |
N (y − ym) + 1

ke
.

We can conclude that

dH∼ (f, fm) = d (0, N∗ (f − fm))

= d

(
0, sup

k∈N

(
|f (y − ym) − fm (y − ym)|

N (y − ym) + 1
ke

))
≤ ε ∀m ≥ nε,

proving the statement. �
By point 2 of Proposition 13 and Steps 4 and 5, we have that

dH (y, yn) = dH∼ (f, fn) → 0,

proving completeness of H. �
6. Examples

Consider a nonempty set Ω, a σ-algebra of subsets of Ω denoted by F , a sub-σ-algebra G ⊆ F , and a 
probability measure P : F → [0, 1]. Two F-measurable random variables are defined to be equivalent if and 
only if they coincide almost surely. Define:
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1. A = L0 (G), that is, A is the space (of equivalence classes) of real valued and G-measurable functions;18
2. b ≥ a if and only if b (ω) ≥ a (ω) almost surely;
3. e = 1Ω, that is, e is the function that takes constant value 1;
4. It follows that Ae = L∞ (G), that is, Ae is the space of all essentially bounded and G-measurable 

functions;
5. ϕ̄ : L∞ (G) → R as

ϕ̄ (a) =
∫

adP ∀a ∈ L∞ (G) ;

6. d : L0 (G) × L0 (G) → R as

d (a, b) = ϕ̄ (|b− a| ∧ e) =
∫

(|b− a| ∧ e) dP ∀a, b ∈ L0 (G) .

Note that the topology induced by d is the one of convergence in probability P .

It is immediate to verify that L∞ (G) is an Arens algebra of L∞ type and A = L0 (G) is an f -algebra of 
L0 type.

6.1. The module L2,0 (Ω,G,F , P )

We denote by L0 (F) = L0 (Ω,F , P ) the space of real valued and F-measurable functions. We call x, y, 
and z the elements of L0 (F). Given an F-measurable function x : Ω → R such that x ≥ 0, we denote by 
E (x||G) its conditional expected value with respect to P given G (see Loeve [32, Section 27]). Denote by

H = L2,0 (Ω,G,F , P ) =
{
x ∈ L0 (F) : E

(
x2||G

)
∈ L0 (G)

}
=
{
x ∈ L0 (F) :

√
E (x2||G) ∈ L0 (G)

}
.

We endow H with two operations:

1. + : H ×H → H which is the usual pointwise sum operation;
2. · : A ×H → H such that a · x = ax where ax is the usual pointwise product.

The space L2,0 (Ω,G,F , P ) was introduced by Hansen and Richard [24]. Finally, we also define an inner 
product, namely, 〈 , 〉H : H ×H → L0 (G) by

〈x, y〉H = E (xy||G) ∀x, y ∈ H.

Hansen and Richard [24, p. 592] show that 〈 , 〉H is well defined. They also prove the next result.

Proposition 19. (H,+, ·, 〈 , 〉H) is a pre-Hilbert L0 (G)-module.

Note that dH : H ×H → R

dH (x, y) =
∫ (√

E

(
(x− y)2 ||G

)
∧ e

)
dP ∀x, y ∈ H.

18 As usual, we view the equivalence classes as functions. This convention will apply throughout the rest of the paper.
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Theorem 6. H is self-dual.

This result is essentially due to Hansen and Richard [24, Theorem 2.1] and it plays a fundamental role 
in asset pricing. More precisely, they prove that if f : H → A is A-linear and dH − d continuous at 0, 
then there exists y ∈ H such that f (x) = 〈x, y〉H for all x ∈ H.19 Since any A-linear and bounded map 
f : H → A is dH − d continuous at 0, Theorem 6 follows. The original proof of [24] is based on a projection 
theorem for L2,0 (Ω,G,F , P ), while ours relies on a direct self-duality result. In this perspective, note that 
Theorem 6 is also an immediate consequence of [22, Theorem 48].

Proof. By Theorem 5, it is enough to check that H is dH complete. This follows from [24, Theorem A.1]. �
6.2. The module L2,∞ (Ω,G,F , P )

We denote by L2 (F) = L2 (Ω,F , P ) the space of F-measurable and square integrable functions. Denote 
by

He = L2,∞ (Ω,G,F , P ) =
{
x ∈ L0 (F) : E

(
x2||G

)
∈ L∞ (G)

}
=
{
x ∈ L2 (F) :

√
E (x2||G) ∈ L∞ (G)

}
⊆ L2 (F) .

Since L2,∞ (Ω,G,F , P ) ⊆ L2,0 (Ω,G,F , P ), we endow He with the two operations + and · of Subsection 6.1. 
We also restrict (x, y) 
→ E (xy||G) to He. By Proposition 18, it follows that L2,∞ (Ω,G,F , P ) is a pre-Hilbert 
L∞ (G)-module.

Note that ‖ ‖He
: He → [0, ∞) is such that

‖x‖He
=
√

‖E (x2||G)‖L∞(G) ∀x ∈ He.

Similarly, we have that

‖x‖m =

√∫
E (x2||G) dP =

√∫
x2dP = ‖x‖L2(F) ∀x ∈ He.

Theorem 7. He is self-dual.

Proof. By Theorem 3, we only need to show that BHe
is ‖ ‖m = ‖ ‖L2(F) complete. To this end, it is 

enough to show that BHe
is ‖ ‖L2(F) closed in L2 (F). Thus, consider {xn}n∈N

⊆ BHe
such that xn

‖ ‖L2(F)→
x ∈ L2 (F). This implies that there exists a subsequence {xnk

}k∈N
such that xnk

a.s→ x. By the conditional 
Fatou’s lemma (see [14, p. 340]), we have that

E
(
x2||G

)
= E

(
lim inf

k
x2
nk
||G
)

≤ lim inf
k

E
(
x2
nk
||G
)
≤ 1 < ∞,

proving that x ∈ BHe
. �

19 Hansen and Richard have an extra assumption (Assumption 2.4) that can be easily dispensed with.
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6.3. The module L2,∞ (Ω,G,F , P ;E)

Consider an infinite dimensional separable Hilbert space E (for example, l2 (N)).20 Define 〈 , 〉E to be 
the inner product of E. Let us denote by d and d′ generic elements of E. Since E is separable, it admits a 
countable orthonormal basis: {dn}n∈N

. Given a function, x : Ω → E we say that x is weakly measurable if 
and only if the real valued function

ω 
→ 〈x (ω) , d〉E

is F-measurable for all d ∈ E. By [7, Theorems 34.2 and 34.4], if x, y : Ω → E are weakly measurable, then

ω 
→ 〈x (ω) , y (ω)〉E =
∞∑

n=1
〈x (ω) , dn〉E 〈y (ω) , dn〉E

is real valued and F-measurable. In particular, by Perseval’s identity,

ω 
→ 〈x (ω) , x (ω)〉E =
∞∑

n=1
|〈x (ω) , dn〉E |

2 ∀ω ∈ Ω

is real valued and F-measurable. Given this observation, we denote by L2
E (F) = L2 (Ω,F , P ;E) the space

L2
E (F) =

{
x ∈ EΩ : x is weakly measurable and

∫
〈x, x〉E dP < ∞

}
.

As before we identify the elements of L2
E (F) whenever they coincide almost surely. At the same time, as 

usual, we view the equivalence classes as functions. Thus, x ∈ L2
E (F) if and only if x is weakly measurable 

and ω 
→ 〈x (ω) , x (ω)〉
1
2
E belongs to L2 (F). Consider x, y ∈ L2

E (F), we showed that ω 
→ 〈x (ω) , y (ω)〉E is 
F-measurable, we next show it is also integrable. Since E is an Hilbert space, observe that

|〈x (ω) , y (ω)〉E | ≤ 〈x (ω) , x (ω)〉
1
2
E 〈y (ω) , y (ω)〉

1
2
E ∀ω ∈ Ω. (25)

Since x, y ∈ L2
E (F), it follows that

∫
|〈x, y〉E | dP ≤

∫
〈x, x〉

1
2
E 〈y, y〉

1
2
E dP ≤

√∫
〈x, x〉E dP

∫
〈y, y〉E dP < ∞. (26)

In this way, for each x, y ∈ L2
E (F), we can define the G-conditional expectation of ω 
→ 〈x (ω) , y (ω)〉E , that 

is, E (〈x, y〉E ||G). We thus define

H = L2,∞ (Ω,G,F , P ;E) =
{
x ∈ L2

E (F) :
√
E (〈x, x〉E ||G) ∈ L∞ (G)

}
.

Define A to be the Arens algebra L∞ (G) = L∞ (Ω,G, P ), we endow H with two operations:

20 A similar analysis can be carried over when E is finite dimensional.
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1. + : H ×H → H which is the usual pointwise sum operation, that is, (x + y) (ω) = x (ω) + y (ω) for all 
ω ∈ Ω.

2. · : A ×H → H such that (a · x) (ω) = a (ω)x (ω) for all ω ∈ Ω.21

Finally, we also define an inner product, namely, 〈 , 〉H : H ×H → L∞ (G) by

〈x, y〉H = E (〈x, y〉E ||G) ∀ (x, y) ∈ H ×H.

Proposition 20. (H,+, ·, 〈 , 〉H) is a pre-Hilbert L∞ (G)-module.

Proof. Consider x, y ∈ H. It is straightforward to verify that x +y is weakly measurable. By (26), it follows 
that x + y ∈ L2

E (F). Similarly, by (25) and the conditional Cauchy–Schwarz inequality, we have that

E (〈x + y, x + y〉E ||G) = E (〈x, x〉E ||G) + 2E (〈x, y〉E ||G) + E (〈y, y〉E ||G)

≤ E (〈x, x〉E ||G) + 2E
(
〈x, x〉

1
2
E 〈y, y〉

1
2
E ||G

)
+ E (〈y, y〉E ||G)

≤ E (〈x, x〉E ||G) + 2
√

E (〈x, x〉E ||G)E (〈y, y〉E ||G) + E (〈y, y〉E ||G) .

This implies that H is closed under +. It is then easy to prove that (H,+) is an abelian group. Similarly, 
if a ∈ A and x ∈ H, then

E (〈a · x, a · x〉E ||G) = E
(
a2 〈x, x〉E ||G

)
= a2

E (〈x, x〉E ||G) ∈ L∞ (G) ,

proving that H is closed under ·. Properties (1)–(4) of Definition 1 are then easily verified. This shows that 
H is an L∞ (G)-module.

Next, by (25) and the conditional Cauchy–Schwarz inequality, we have that 〈 , 〉H is well defined, and:

5. Consider x ∈ H. Since 〈x (ω) , x (ω)〉E ≥ 0 for all ω ∈ Ω, we have that 〈x, x〉H = E (〈x, x〉E ||G) ≥ 0. At 
the same time, we can conclude that

〈x, x〉H = 0 ⇐⇒ E (〈x, x〉E ||G) = 0 ⇐⇒ 〈x, x〉E = 0 ⇐⇒ x = 0.

6. Consider x, y ∈ H. We have that

〈x, y〉H = E (〈x, y〉E ||G) = E (〈y, x〉E ||G) = 〈y, x〉H .

7. Consider x, y, z ∈ H. We have that

〈x + y, z〉H = E (〈x + y, z〉E ||G) = E (〈x, z〉E + 〈y, z〉E ||G)

= E (〈x, z〉E ||G) + E (〈y, z〉E ||G) = 〈x, z〉H + 〈y, z〉H .

8. Consider a ∈ A and x, y ∈ H. We have that

〈a · x, y〉H = E (〈a · x, y〉E ||G) = E (a 〈x, y〉E ||G) = aE (〈x, y〉E ||G) = a 〈x, y〉H .

We can conclude that H is a pre-Hilbert L∞ (G)-module. �
21 Observe that for each ω ∈ Ω, a (ω) ∈ R and x (ω) ∈ E. Thus, a (ω) x (ω) is the scalar product of a (ω) with x (ω).
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Note that for each x ∈ H

‖x‖m =
√
ϕ̄ (〈x, x〉H) =

√∫
E (〈x, x〉E ||G) dP =

√∫
〈x, x〉E dP = ‖x‖L2

E(F) .

Theorem 8. If G is generated by a finite partition where each atom has strict positive probability, then H is 
self-dual.

Proof. Since G is generated by a finite partition, L∞ (G) is finite dimensional. Moreover, we have that 
H = L2

E (F). By Theorem 4, we only need to show that H is ‖ ‖m complete. Since H = L2
E (F) and 

‖ ‖m = ‖ ‖L2
E(F), the statement follows by Neveu [37, p. 104] (see also Diestel and Uhl [13, p. 50]). �

One can show that the above result also holds for a generic sub-σ-algebra G. Nevertheless, the proof of 
this more general result is different. Indeed, on the one hand, the current version only makes use of the 
completeness of L2

E (F) (a well known fact) and the easier self-duality result for finite dimensional algebras 
A (Theorem 4). On the other hand, the proof of the more general result relies on an argument similar to 
that of Theorem 7, paired with the self-duality result obtained in Theorem 3.22

6.3.1. A Finance illustration

Let δ ∈ (0, 1] and define E = {d ∈ R
N :

∞∑
t=1

δtd2
t < ∞}. The space E is an infinite dimensional separable 

Hilbert space where

〈d, d′〉E =
∞∑
t=1

δtdtd
′
t ∀d, d′ ∈ E.

For each t ∈ N, define also πt : E → R such that πt (d) = dt for all d ∈ E.
Consider a filtration space 

(
Ω, {Ft}t∈N

,F , P
)

where F = σ (∪t∈NFt). Let G = F1. Define

H = L2,∞ (Ω, {Ft}t∈N
, P ;E

)
=
{
x ∈ L2,∞ (Ω,G,F , P ;E) : πt ◦ x ∈ L0 (Ft)

}
.

In words, H is the space of processes in L2,∞ (Ω,G,F , P ;E) that are adapted to the filtration. Since H
is a subset of L2,∞ (Ω,G,F , P ;E), we endow H with the same + and · operations of Subsection 6.3. 
Similarly, we consider (x, y) 
→ E (〈x, y〉E ||G) restricted to H. It is standard to show that H is a pre-Hilbert 
L∞ (G)-module. By Theorem 8, it easily follows that if F1 is generated by a finite partition where each atom 
has strict positive probability, then H is self-dual.

Remark 5. In Finance, this module can be used to price infinite streams of payoffs.

6.4. The module M2,∞ (G)

Consider a filtration space 
(
Ω, {Ft}t∈N

,F , P
)

where F = σ (∪t∈NFt). Assume that G is a sub-σ-algebra 
of F . We denote by M2 the space of L2 bounded martingales. Recall that x ∈ M2 (see, e.g., [33, p. 209]) if 
and only if there exists a unique (terminal variable/final value) x∞ ∈ L2 (F) such that

xt = E (x∞||Ft) ∀t ∈ N.

Define A = L∞ (G) and

22 We thank a referee for suggesting this argument.
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H = M2,∞ (G) =
{
x ∈ M2 : E

(
x2
∞||G

)
∈ L∞ (G)

}
.

We endow H with two operations:

1. + : H ×H → H which is the usual pointwise sum operation;
2. · : A ×H → H such that a · x is defined by

(a · x)t = E (ax∞||Ft) ∀t ∈ N. (27)

We also define 〈 , 〉H : H ×H → A as

〈x, y〉H = E (x∞y∞||G) ∀x, y ∈ H.

Proposition 21. (H,+, ·, 〈 , 〉H) is a pre-Hilbert L∞ (G)-module.

Proof. By the conditional Cauchy–Schwarz inequality, it is immediate to see that H is closed under + and 
(H,+) is an abelian group. The outer product · is also well defined. In fact, by [33, p. 209] and (27), a · x is 
an element of M2. At the same time, since the terminal value of a · x is unique, (a · x)∞ = ax∞ ∈ L2 (F)
and E 

(
(a · x)2∞ ||G

)
= E 

(
a2x2

∞||G
)

= a2
E 
(
x2
∞||G

)
∈ L∞ (G). Observe also that:

1. Consider a ∈ A, x, y ∈ H, and a · (x + y). It follows that

(a · (x + y))t = E (a (x + y)∞ ||Ft) = E (a (x∞ + y∞) ||Ft)

= E (ax∞ + ay∞||Ft) = E (ax∞||Ft) + E (ay∞||Ft)

= (a · x)t + (a · y)t ∀t ∈ N,

proving that a · (x + y) = a · x + a · y.
2. Consider a, b ∈ A, x ∈ H, and (a + b) · x. It follows that

((a + b) · x)t = E ((a + b)x∞||Ft) = E (ax∞ + bx∞||Ft)

= E (ax∞||Ft) + E (bx∞||Ft) = (a · x)t + (b · x)t ∀t ∈ N,

proving that (a + b) · x = a · x + b · x.
3. Consider a, b ∈ A, x ∈ H, and a · (b · x). It follows that

(a · (b · x))t = E (a (b · x)∞ ||Ft) = E (a (bx∞) ||Ft)

= E ((ab)x∞||Ft) = ((ab) · x)t ∀t ∈ N,

proving that a · (b · x) = (ab) · x.
4. Consider e ∈ A and x ∈ H. It follows that

(e · x)t = E (ex∞||Ft) = E (x∞||Ft) = xt ∀t ∈ N,

proving that e · x = x.

This shows that H is an L∞ (G)-module. Next, by the conditional Cauchy–Schwarz inequality, we have 
that 〈 , 〉 is well defined, and:
H
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5. Consider x ∈ H. We have that 〈x, x〉H = E 
(
x2
∞||G

)
≥ 0. At the same time, we can conclude that

〈x, x〉H = 0 ⇐⇒ E
(
x2
∞||G

)
= 0 ⇐⇒ x∞ = 0

⇐⇒ xt = E (x∞||Ft) = 0 ∀t ∈ N

⇐⇒ x = 0.

6. Consider x, y ∈ H. We have that

〈x, y〉H = E (x∞y∞||G) = E (y∞x∞||G) = 〈y, x〉H .

7. Consider x, y, z ∈ H. We have that

〈x + y, z〉H = E ((x + y)∞ z∞||G) = E ((x∞ + y∞) z∞||G)

= E (x∞z∞ + y∞z∞||G) = 〈x, z〉H + 〈y, z〉H .

8. Consider a ∈ A and x, y ∈ H. We have that

〈a · x, y〉H = E ((a · x)∞ y∞||G) = E ((ax∞) y∞||G) = E (a (x∞y∞) ||G) = a 〈x, y〉H .

We can conclude that H is a pre-Hilbert L∞ (G)-module. �
Note that ‖ ‖H : H → [0, ∞) is such that

‖x‖H =
√

‖〈x, x〉H‖L∞(G) =
√

‖E (x2
∞||G)‖L∞(G) ∀x ∈ H.

Similarly, we have that

‖x‖m =
√

ϕ̄ (〈x, x〉H) =

√∫
E (x2

∞||G) dP = ‖x∞‖L2(F) ∀x ∈ H.

Theorem 9. H is self-dual.

Proof. By Theorem 3, we only need to show that BH is ‖ ‖m complete. Consider a sequence {xn}n∈N
⊆ BH

which is ‖ ‖m Cauchy. It follows that {(xn)∞}
n∈N

is a ‖ ‖L2(F) Cauchy sequence and

∣∣∣E((xn)2∞ ||G
)∣∣∣ ≤ e = 1Ω ∀n ∈ N. (28)

It follows that there exists an element x∞ ∈ L2 (F) such that (xn)∞
‖ ‖L2(F)→ x∞. This implies that there 

exists also a subsequence {xnk
}k∈N

such that (xnk
)∞

a.s→ x∞. By (28) and the conditional Fatou’s lemma 
(see [14, p. 340]), we have that

E
(
x2
∞||G

)
= E

(
lim inf

k
(xnk

)2∞ ||G
)

≤ lim inf
k

E

(
(xnk

)2∞ ||G
)
≤ 1 < ∞.

If we define x as the element in M2,∞ (G) such that

xt = E (x∞||Ft) ∀t ∈ N,

then xn
‖ ‖m→ x as well as x ∈ BH , proving the statement. �
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Remark 6. An important example of M2,∞ (G) is when G is a stopping time σ-algebra, that is,

G = {E ∈ F : E ∩ {τ = t} ∈ Ft ∀t ∈ N}

where τ : Ω → N is a (finite valued) stopping time. An important bounded A-linear operator is the map 
(see [40, p. 391]) f : H → A such that

f (x) = xτ ∀x ∈ H.

Remark 7. We could have defined M2,∞ (G) dealing with continuous time. In that case, we would have needed 

a filtration space 
(
Ω, {Ft}t∈[0,∞) ,F , P

)
where F = σ

(
∪t∈[0,∞)Ft

)
. With this specification, M2 would have 

been the space of cadlag L2 bounded martingales. Our results would have remained the same.

Appendix

Proof of Proposition 1. (i) implies (ii). Define l = ϕ̄ ◦ T−1 : C (K) → R. Since ϕ̄ and T−1 are both linear 
and continuous, l ∈ C∗ (K). Since ϕ̄ and T−1 are positive and such that ϕ̄ (e) = 1 and T−1 (1K) = e, l is 
positive and such that l (1K) = 1. By [4, Theorem 14.14], this implies that there exists a (unique) regular 
probability measure m on the Borel σ-algebra of K such that

l (g) =
∫
K

g (ϕ) dm (ϕ) ∀g ∈ C (K) .

It follows that

ϕ̄ (a) = l (T (a)) =
∫
K

T (a) (ϕ) dm (ϕ) =
∫
K

〈a, ϕ〉 dm (ϕ) ∀a ∈ A. (29)

By [4, Theorem 12.14] and since m is regular (thus, tight), it follows that suppm exists. By contradiction, 
assume that suppm �= K. Thus, there exists ϕ̂ ∈ K\suppm. By Urysohn’s Lemma (see [4, Theorem 2.46]) 
and since K is compact and Hausdorff, there exists a function 0 ≤ ĝ ∈ C (K) such that ĝ (ϕ̂) = 1 and 
ĝ (ϕ) = 0 for all ϕ ∈ suppm. Since T is a lattice isomorphism, there exists â ∈ A such that T (â) = ĝ > 0. 
It follows that â > 0. Since ϕ̄ is strictly positive, we can conclude that

0 =
∫

suppm

〈â, ϕ〉 dm (ϕ) =
∫
K

〈â, ϕ〉 dm (ϕ) = ϕ̄ (â) > 0,

a contradiction.
(ii) implies (iii). Since it is immediate to see that K separates the points of A, the statement trivially 

follows.
(iii) implies (i). It is immediate to see that (1) defines a functional ϕ̄ : A → R which is linear, positive, 

and ‖ ‖A continuous. Since ϕ̄ is positive and m a probability measure, we have that ‖ϕ̄‖A∗ = ϕ̄ (e) = 1. We 
just need to prove that ϕ̄ is strictly positive. Consider a ∈ A such that a > 0. Since suppm separates the 
points of A, it follows that 〈a, ϕ̂〉 > 0 for some ϕ̂ ∈ suppm ⊆ K. This implies that there exists a nonempty 
open set V of K such that 〈a, ϕ〉 > 0 for all ϕ ∈ V and m (V ) > 0. We can conclude that
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ϕ̄ (a) =
∫
K

〈a, ϕ〉 dm (ϕ) ≥
∫
V

〈a, ϕ〉 dm (ϕ) > 0,

proving the implication. �
Proof of the Claim in Proposition 10. Since for each n ∈ N, 0 ≤ 〈y, y〉

1
2
H ≤ 〈y, y〉

1
2
H + 1

ne = an, it follows that

〈y, y〉H ≤ a2
n ∀n ∈ N.

Since yn = a−1
n · y for all n ∈ N, this implies that 

(
a−1
n

)2 〈y, y〉H ≤ e, that is,

〈yn, yn〉H ≤ e ∀n ∈ N.

Fix n ∈ N. We have that 〈yn, y〉H = a−1
n 〈y, y〉H . First, observe that an ≥ an+1. This implies that a−1

n+1 ≥ a−1
n

and 〈yn, y〉H = a−1
n 〈y, y〉H ↑. Note that

〈y, y〉H ≤ 〈y, y〉H + 1
n
〈y, y〉

1
2
H =

(
〈y, y〉

1
2
H + 1

n
e

)
〈y, y〉

1
2
H = an 〈y, y〉

1
2
H .

It follows that

〈yn, y〉H = a−1
n 〈y, y〉H ≤ 〈y, y〉

1
2
H .

Also note that

〈y, y〉
1
2
H ≤ 〈y, y〉

1
2
H + 1

n
e = an,

which yields

0 ≤ a−1
n 〈y, y〉

1
2
H ≤ e.

Moreover, we can conclude that

0 ≤ 〈y, y〉
1
2
H − a−1

n 〈y, y〉H = a−1
n

(
an 〈y, y〉

1
2
H − 〈y, y〉H

)
≤ 1

n
a−1
n 〈y, y〉

1
2
H .

Since ‖ ‖A is a lattice norm, it follows that

∥∥∥〈y, y〉 1
2
H − 〈yn, y〉H

∥∥∥
A
≤ 1

n

∥∥∥a−1
n 〈y, y〉

1
2
H

∥∥∥
A
≤ 1

n
‖e‖A .

Since n was arbitrarily chosen, the statement follows. �
Proof of Lemma 3. We first show, by steps, that N∗ is a vector-valued norm.

Step 1. N∗ (f) = 0 if and only if f = 0.

Proof of the Step. It is immediate to see that if f = 0, then N∗ (f) = 0. Vice versa, note that if N∗ (f) = 0, 
then
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sup
x∈H

(
sup
n∈N

|f (x)|
N (x) + 1

ne

)
≤ 0 =⇒ sup

n∈N

|f (x)|
N (x) + 1

ne
≤ 0 ∀x ∈ H,

=⇒ |f (x)|
N (x) + 1

ne
≤ 0 ∀n ∈ N,∀x ∈ H,

=⇒ |f (x)| ≤ 0 ∀x ∈ H,

=⇒ f (x) = 0 ∀x ∈ H,

proving that f = 0. �
Step 2. N∗ (a · f) = |a|N∗ (f) for all a ∈ A and for all f ∈ H∼.

Proof of the Step. Consider a ∈ A and f ∈ H∼. It follows that

N∗ (a · f) = sup
x∈H

(
sup
n∈N

|af (x)|
N (x) + 1

ne

)
= sup

x∈H

((
sup
n∈N

|a| |f (x)|
N (x) + 1

ne

))

= sup
x∈H

(
|a|
(

sup
n∈N

|f (x)|
N (x) + 1

ne

))
= |a| sup

x∈H

((
sup
n∈N

|f (x)|
N (x) + 1

ne

))

= |a|N∗ (f) ,

proving the statement.23 �
Step 3. N∗ (f + g) ≤ N∗ (f) + N∗ (g) for all f, g ∈ H∼.

Proof of the Step. Consider f, g ∈ H∼. It follows that

N∗ (f + g) = sup
x∈H

(
sup
n∈N

|(f + g) (x)|
N (x) + 1

ne

)
= sup

x∈H

((
sup
n∈N

|f (x) + g (x)|
N (x) + 1

ne

))

≤ sup
x∈H

((
sup
n∈N

|f (x)| + |g (x)|
N (x) + 1

ne

))

≤ sup
x∈H

((
sup
n∈N

|f (x)|
N (x) + 1

ne

)
+
(

sup
n∈N

|g (x)|
N (x) + 1

ne

))

≤ sup
x∈H

(
sup
n∈N

|f (x)|
N (x) + 1

ne

)
+ sup

x∈H

(
sup
n∈N

|g (x)|
N (x) + 1

ne

)
= N∗ (f) + N∗ (g) ,

proving the statement. �
Steps 1–3 prove that N∗ is a well defined vector-valued norm. Finally, observe that

dH∼ (f, g) = 0 ⇐⇒ d (0, N∗ (f − g)) = 0 ⇐⇒ N∗ (f − g) = 0

⇐⇒ f − g = 0 ⇐⇒ f = g.

It is immediate to see that dH∼ (f, g) = dH∼ (g, f) for all f, g ∈ H∼ as well as dH∼ (f + h, g + h) = dH∼ (f, g)
for all f, g, h ∈ H∼. Finally, by definition of d and [6, Lemma 1.4] and since N∗ (f + g) ≤ N∗ (f) + N∗ (g)
for all f, g ∈ H∼, we can conclude that

23 In Step 2, we implicitly used the fact that if a nonempty subset B of A is bounded from above and c ∈ A+, then sup cB = c supB
(see [11, Footnote 26]).
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dH∼ (f, g) = d (0, N∗ (f − g)) = ϕ̄ (N∗ (f − g) ∧ e) = ϕ̄ (N∗ ((f − h) + (h− g)) ∧ e)

≤ ϕ̄ ((N∗ (f − h) + N∗ (h− g)) ∧ e) ≤ ϕ̄ (N∗ (f − h) ∧ e + N∗ (h− g) ∧ e)

= dH∼ (f, h) + dH∼ (h, g) ∀f, g, h ∈ H∼,

proving the statement. �
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