
J. Math. Anal. Appl. 450 (2017) 606–630
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

The index of weighted singular integral operators with shifts and 

slowly oscillating data

Alexei Yu. Karlovich a,∗, Yuri I. Karlovich b, Amarino B. Lebre c

a Centro de Matemática e Aplicações, Departamento de Matemática, Faculdade de Ciências e Tecnologia, 
Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
b Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, 
Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 
Cuernavaca, Morelos, México
c Centro de Análise Funcional, Estruturas Lineares e Aplicações, Departamento de Matemática, Instituto 
Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 November 2016
Available online 24 January 2017
Submitted by J.A. Ball

Keywords:
Orientation-preserving shift
Weighted Cauchy singular integral 
operator
Slowly oscillating function
Semi-almost periodic function
Fredholmness
Index

Let α and β be orientation-preserving diffeomorphism (shifts) of R+ = (0, ∞) onto 
itself with the only fixed points 0 and ∞. We establish a Fredholm criterion and 
calculate the index of the weighted singular integral operator with shifts

(aI − bUα)P+
γ + (cI − dUβ)P−

γ ,

acting on the space Lp(R+), where P±
γ = (I ± Sγ)/2 are the operators associated 

to the weighted Cauchy singular integral operator Sγ given by

(Sγf)(t) =
1
πi

∫
R+

(
t

τ

)γ f(τ)
τ − t

dτ

with γ ∈ C satisfying 0 < 1/p +�γ < 1, and Uα, Uβ are the isometric shift operators 
given by

Uαf = (α′)1/p(f ◦ α), Uβf = (β′)1/p(f ◦ β),

under the assumptions that the coefficients a, b, c, d and the derivatives α′, β′ of 
the shifts are bounded and continuous on R+ and admit discontinuities of slowly 
oscillating type at 0 and ∞.

© 2017 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: oyk@fct.unl.pt (A.Yu. Karlovich), karlovich@uaem.mx (Yu.I. Karlovich), alebre@math.tecnico.ulisboa.pt

(A.B. Lebre).
http://dx.doi.org/10.1016/j.jmaa.2017.01.052
0022-247X/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2017.01.052
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:oyk@fct.unl.pt
mailto:karlovich@uaem.mx
mailto:alebre@math.tecnico.ulisboa.pt
http://dx.doi.org/10.1016/j.jmaa.2017.01.052
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2017.01.052&domain=pdf


A.Yu. Karlovich et al. / J. Math. Anal. Appl. 450 (2017) 606–630 607
1. Introduction

Let B(X) be the Banach algebra of all bounded linear operators acting on a Banach space X and let 
K(X) be the ideal of all compact operators in B(X). An operator A ∈ B(X) is called Fredholm if its image 
is closed and the spaces kerA and kerA∗ are finite-dimensional. In that case the number

IndA := dim kerA− dim kerA∗

is referred to as the index of A (see, e.g., [5, Chap. 4]). For A, B ∈ B(X), we will write A � B if A −B ∈ K(X).
Following Sarason [26, p. 820], a bounded continuous function f on R+ = (0, ∞) is called slowly oscillating 

(at 0 and ∞) if

lim
r→s

sup
t,τ∈[r,2r]

|f(t) − f(τ)| = 0 for s ∈ {0,∞}.

The set SO(R+) of all slowly oscillating functions forms a C∗-algebra. This algebra properly contains C(R+), 
the C∗-algebra of all continuous functions on R+ := [0, +∞].

Suppose α is an orientation-preserving diffeomorphism of R+ onto itself, which has only two fixed points 0
and ∞. We say that α is a slowly oscillating shift if logα′ is bounded and α′ ∈ SO(R+). The set of all slowly 
oscillating shifts is denoted by SOS(R+). By [7, Lemma 2.2], an orientation-preserving diffeomorphism 
α : R+ → R+ belongs to SOS(R+) if and only if α(t) = teω(t), t ∈ R+, for some real-valued function 
ω ∈ SO(R+) ∩ C1(R+) such that ψ(t) := tω′(t) also belongs to SO(R+) and inft∈R+

(
1 + tω′(t)

)
> 0. The 

real-valued slowly oscillating function

ω(t) := log[α(t)/t], t ∈ R+,

is called the exponent function of α ∈ SOS(R+).
Through the paper, we will suppose that 1 < p < ∞. It is easily seen that if α ∈ SOS(R+), then the 

weighted shift operator defined by

Uαf := (α′)1/p(f ◦ α)

is an isometric isomorphism of the Lebesgue space Lp(R+) onto itself. It is clear that U−1
α = Uα−1 . Let 

a, b ∈ SO(R+). We say that a dominates b and write a � b if

inf
t∈R+

|a(t)| > 0, lim inf
t→0

(|a(t)| − |b(t)|) > 0, lim inf
t→∞

(|a(t)| − |b(t)|) > 0.

Theorem 1.1 ([13, Theorem 1.1]). Suppose a, b ∈ SO(R+) and α ∈ SOS(R+). The binomial functional 
operator aI − bUα is invertible on the Lebesgue space Lp(R+) if and only if either a � b or b � a.

(a) If a � b, then (aI − bUα)−1 =
∞∑

n=0
(a−1bUα)na−1I.

(b) If b � a, then (aI − bUα)−1 = −U−1
α

∞∑
n=0

(b−1aU−1
α )nb−1I.

Let 	γ and 
γ denote the real and imaginary part of γ ∈ C, respectively. As usual, γ = 	γ−i
γ denotes 
the complex conjugate of γ. If γ ∈ C satisfies

0 < 1/p + 	γ < 1, (1.1)
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then the operators

(Sγf)(t) := 1
πi

∫
R+

(
t

τ

)γ
f(τ)
τ − t

dτ, (Rγf)(t) := 1
πi

∫
R+

(
t

τ

)γ
f(τ)
τ + t

dτ,

where the integrals are understood in the principal value sense, are bounded on the Lebesgue space Lp(R+)
(see, e.g., [3] or [25, Propositions 4.2.11 and 4.2.15]). Put

P±
γ := (I ± Sγ)/2.

This paper is a continuation of our works [6,11,14] (see also [7–9]), where we studied Fredholm properties 
of the weighted singular integral operator with two slowly oscillating shifts of the form

N := (aI − bUα)P+
γ + (cI − dUβ)P−

γ , (1.2)

where a, b, c, d ∈ SO(R+), α, β ∈ SOS(R+), and γ ∈ C satisfies (1.1). In two particular cases it is known 
that this operator is Fredholm and its index is available. More precisely, if a, c = 0 and b, d = −1, then by 
[6, Theorem 1.1], the operator N is Fredholm and its index is equal to zero provided that |
γ| is sufficiently 
small (for γ = 0 this result was obtained in [9]). Further, if a = c = 1, 1 � b, 1 � d, and γ = γ∗ with

γ∗ := 1/2 − 1/p, (1.3)

then N is again a Fredholm operator of index zero in view of [11, Theorem 1.1]. For general coefficients 
a, b, c, d ∈ SO(R+), Fredholm criteria for the operator N were obtained only under the assumption α = β

and only in the non-weighted case γ = 0 (see [7,8]). However, the index of N even in this less general case 
was not available. We should also note that the proof of the necessity portion of that result [7] contains a 
gap, which was filled in recently (see [14]). In the latter paper, necessary conditions for the Fredholmness 
were proved for the operator N with two possibly different shifts α, β and for all parameters γ satisfying 
(1.1).

The first aim of the present paper is to prove that the above mentioned necessary conditions for Fred-
holmness for the operator N are also sufficient, and the second (main) aim of this work is to provide a 
formula for the index of N in case of its Fredholmness. To formulate our first main result, we need a little 
bit more notation. By M(A) we denote the maximal ideal space of a unital commutative Banach alge-
bra A. Identifying the points t ∈ R+ with the evaluation functionals t(f) = f(t) for f ∈ C(R+), we get 
M(C(R+)) = R+. Consider the fibers

Ms(SO(R+)) :=
{
ξ ∈ M(SO(R+)) : ξ|C(R+) = s

}
of the maximal ideal space M(SO(R+)) over the points s ∈ {0, ∞}. By [17, Proposition 2.1], the set

Δ := M0(SO(R+)) ∪M∞(SO(R+))

coincides with closSO∗ R+\R+, where closSO∗ R+ is the weak-star closure of R+ in the dual space of SO(R+). 
Then M(SO(R+)) = Δ ∪R+. In what follows we write a(ξ) := ξ(a) for every a ∈ SO(R+) and every ξ ∈ Δ.

With the operator N we associate the function

n(t, x) = (a(t) − b(t)eiω(t)x)p+
γ (x) + (c(t) − d(t)eiη(t)x)p−γ (x), (t, x) ∈ R+ × R,

where ω, η ∈ SO(R+) are the exponent functions of α, β, respectively, and
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p±γ (x) := (1 ± sγ(x))/2, sγ(x) := coth[π(x + i/p + iγ)], x ∈ R. (1.4)

Since n(·, x) ∈ SO(R+) for every x ∈ R, taking the Gelfand transform of n(·, x), we obtain

n(ξ, x) := (a(ξ) − b(ξ)eiω(ξ)x)p+
γ (x) + (c(ξ) − d(ξ)eiη(ξ)x)p−γ (x), (ξ, x) ∈ (Δ ∪ R+) × R, (1.5)

which gives extensions of the functions n(·, x) to M(SO(R+)).

Theorem 1.2 ([14, Theorem 1.2]). Let 1 < p < ∞ and γ ∈ C satisfy (1.1). Suppose a, b, c, d belong to 
SO(R+) and α, β belong to SOS(R+). If the operator N given by (1.2) is Fredholm on the space Lp(R+), 
then the following two conditions are fulfilled:

(i) the binomial functional operators A+ := aI − bUα and A− := cI − dUβ are invertible on the space 
Lp(R+);

(ii) for every ξ ∈ Δ, the function n given by (1.5) satisfies infx∈R |n(ξ, x)| > 0.

Now our first main result reads as follows.

Theorem 1.3 (Main result 1). Let 1 < p < ∞ and γ ∈ C satisfy (1.1). Suppose a, b, c, d belong to SO(R+)
and α, β belong to SOS(R+). If conditions (i)–(ii) of Theorem 1.2 are fulfilled, then the operator N given 
by (1.2) is Fredholm on the space Lp(R+).

Note that Theorem 1.3 can be proved by the methods of our previous work [7]. However, those methods 
do not allow us to prove an index formula for the operator N . In this paper we present another proof of 
Theorem 1.3. This proof relies on the reduction of the Fredholm study of the operator N to the study of a 
Mellin pseudodifferential operator Op(h), for which a Fredholm criterion and an index formula are available. 
Hence this new approach shed light on the problem of calculation of the index.

Further we obtain an index formula for the operator N given by (1.2) in the case of its Fredholmness. In a 
sense this formula is a combination of the index formula for Mellin pseudodifferential operators with slowly 
oscillating symbols (see, e.g., [19, Theorem 4.3]) and the index formula for singular integral operators with 
shifts and piecewise continuous data (see [20,21] and also [22, Chap. 4, Section 2.4]). We also mention [18, 
Section 6], where the index of the operator T = WαP

+
0 + GP−

0 related to the Haseman boundary problem 
with slowly oscillating data was calculated.

By C(R) we denote the C∗-algebra of all functions continuous on the two-point compactification R =
[−∞, +∞] of the real line. Let AP denote the C∗-algebra of almost periodic functions generated in L∞(R)
by all exponents eλ(x) := eiλx, where λ, x ∈ R. Let SAP stand for the C∗-algebra of all semi-almost periodic 
functions generated in L∞(R) by {AP, C(R)} (see, e.g., [2, Section 1.5]). By GSAP we denote the set of all 
functions f ∈ SAP , which are invertible in L∞(R), that is, such that infx∈R |f(x)| > 0. Then we use the 
following definition of their index introduced by V.G. Kravchenko and the second author in [20,21] (see also 
[22, pp. 194–195]). Given a function f ∈ GSAP , its generalized Cauchy index indR f is defined by

indR f := 1
2π [M+(ϕ+) −M−(ϕ−)] (1.6)

where

M±(ϕ) := lim
x→±∞

1
x

x∫
0

ϕ(y) dy, ϕ±(x) := arg f(x) − x lim
y→±∞

arg f(y)
y

. (1.7)

The generalized Cauchy index exists and is finite for every function f ∈ GSAP .
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By GSO(R+) we denote the set of all functions f ∈ SO(R+), which are invertible in L∞(R+), that is, 
such that inft∈R+ |f(t)| > 0. For a function f ∈ GSO(R+), let 

{
arg f(t)

}
t∈[τ−1,τ ] denote the increment of 

any continuous branch of the argument of f when the point t traces the segment [τ−1, τ ] for τ > 1.

Theorem 1.4 (Main result 2). Let 1 < p < ∞ and γ ∈ C satisfy (1.1). Suppose a, b, c, d belong to SO(R+), 
α, β belong to SOS(R+), and ω, η ∈ SO(R+) are the exponent functions of α, β, respectively. Let the operator 
N and the function n be given by (1.2) and (1.5), respectively. If the operator N is Fredholm on the space 
Lp(R+), then

(a) n(τ, ·) ∈ GSAP for all τ ∈ R+ sufficiently close to 0 and ∞;
(b) the functions

νa,b :=
{

a, if a � b,

b, if b � a,
νc,d :=

{
c, if c � d,

d, if d � c,
(1.8)

are well defined and belong to GSO(R+);
(c) the index of the operator N is calculated by the formula

IndN = lim
τ→+∞

(
1
2π

({
arg νc,d(t)

}
t∈[τ−1,τ ] −

{
arg νa,b(t)

}
t∈[τ−1,τ ]

)
+ indR n(τ, ·) − indR n(τ−1, ·)

)
.

The paper is organized as follows. Section 2 deals with Mellin pseudodifferential operators Op(a). Here 
we recall properties of the algebra Ẽ(R+, V (R)) of slowly oscillating functions of limited smoothness on R+
with values in the algebra V (R) of absolutely continuous functions of finite total variation (see, e.g., [9,10,
15,19]). Further we explain how a function a ∈ Ẽ(R+, V (R)) can be extended from R+×R to its “boundary” 
(R+ × {±∞}) ∪ (Δ × R) and recall that a Mellin pseudodifferential operator Op(a) with a ∈ Ẽ(R+, V (R))
is Fredholm if and only if its symbol a does not vanish on this “boundary”. Moreover, an index formula 
for a Fredholm Mellin pseudodifferential operator Op(a) is stated. The latter results were obtained by the 
second author in [15,19]. They extend previous results by V. Rabinovich [23] (see also [24, Sections 4.5–4.6]
and [10]) obtained for Mellin pseudodifferential operators with infinitely smooth slowly oscillating symbols 
in C∞(R+ × R). Finally, we observe that if α ∈ SOS(R+), then the operators U±1

α Rγ are similar (up 
to a compact operator) to Mellin pseudodifferential operators Op(c±) with c± ∈ Ẽ(R+, V (R)) given by 
c±(t, x) = e±iω(t)x/ sinh[π(x + i/p + iγ)]. This observation, made in [9] for γ = 0 and then extended in [6]
for arbitrary γ ∈ C satisfying (1.1), is crucial for our analysis.

Assuming that the operators A+ = aI − bUα and A− = cI − dUβ are invertible, in Section 3 we prove 
with the aid of results of Section 2 and [6, Theorem 1.1], [11, Theorem 7.1] that NF � HV , where F is a 
Fredholm operator of zero index of the form

F := Uε1
α P+

γ + Uε2
β P−

γ , ε1, ε2 ∈ {−1, 0, 1}, (1.9)

V is a Fredholm operator of zero index of the form

V := (I − fUε1
α )P+

γ∗ + (I − gUε2
β )P−

γ∗ , ε1, ε2 ∈ {−1, 1}, (1.10)

and H is an operator similar to a Mellin pseudodifferential operator Op(h) with h ∈ Ẽ(R+, V (R)). Hence 
the operators N and Op(h) are Fredholm only simultaneously and IndN = IndOp(h). The operators F and 
V are of the form of the operator N , whence we can associate with them by (1.5) the functions f and v, 
respectively. Further, we prove in Section 3 that n(ξ, x)f(ξ, x) = h(ξ, x)v(ξ, x) for all (ξ, x) ∈ Δ × R. From 
this identity and Theorem 1.2 applied to the Fredholm operators F and V it follows that h does not vanish 
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for (ξ, x) ∈ Δ ×R. Finally, we show that the invertibility of the operators A± implies that h does not vanish 
for (ξ, x) ∈ (Δ ∪ R) × {±∞}. Hence the operator Op(h) is Fredholm. Thus, the operator N is Fredholm, 
too. This completes the proof of Theorem 1.3.

Section 4 is devoted to the proof of Theorem 1.4. In Subsection 4.1 we collect properties of the index 
of semi-almost periodic functions, known from [21, Section 2.1] and [22, pp. 194–195], and recall that the 
indices of two important semi-almost periodic functions are equal to zero [12]. In Subsection 4.2 we show 
that n(t, x)f(t, x) = h̃(t, x)v(t, x) for all sufficiently large t and all x ∈ R with a function h̃ such that 
h̃(ξ, x) = h(ξ, x) for all (ξ, x) on the “boundary” part Δ × R. From the former equality it follows that 
indR n(t, ·) coincides with the Cauchy index of the function h̃ ∈ Ẽ(R+, V (R)). These facts are the main 
ingredients in the proof of the index formula. Subsection 4.3 contains the proof of Theorem 1.4 by using 
the index formula from [19, Theorem 4.3] for the Fredholm Mellin pseudodifferential operator Op(h) and 
the indices of suitable semi-almost periodic functions.

2. Mellin pseudodifferential operators and their symbols

2.1. Boundedness of Mellin PDO’s

The second author [15] (see also [16]) developed a Fredholm theory of Fourier pseudodifferential operators 
with slowly oscillating symbols of limited smoothness in the spirit of Sarason’s definition [26, p. 820] of slow 
oscillation adopted in the present paper (much less restrictive than that in [23] and in the works mentioned 
in [24]). Results of [15,16] were translated to the Mellin pseudodifferential operators setting in [16,17,19]
and [9] with the aid of the transformation defined by A �→ E−1AE, where E is the isometric isomorphism

E : Lp(R+, dμ) → Lp(R), (Ef)(x) := f(ex), x ∈ R,

and dμ(t) = dt/t is the normalized invariant measure on R+. For the convenience of readers, we here 
reproduce necessary results for Mellin pseudodifferential operators exactly in the same form as they were 
stated in [9], where more details on their proofs can be found.

Let V (R) be the Banach algebra of all absolutely continuous functions of finite total variation a : R → C

equipped with the norm

‖a‖V := ‖a‖L∞(R) +
∫
R

|a′(x)| dx.

Let Cb(R+, V (R)) denote the Banach algebra of all bounded continuous V (R)-valued functions on R+ with 
the norm

‖a(·, ·)‖Cb(R+,V (R)) := sup
t∈R+

‖a(t, ·)‖V .

Let a ∈ Cb(R+, V (R)). For every t ∈ R+, the function a(t, ·) belongs to V (R) and, therefore, has finite 
limits at ±∞, which will be denoted by a(t, ±∞). Let C∞

0 (R+) denote the set of all infinitely differentiable 
functions of compact support on R+.

Theorem 2.1 ([17, Theorem 3.1]). If a ∈ Cb(R+, V (R)), then the Mellin pseudodifferential operator Op(a), 
defined for functions f ∈ C∞

0 (R+) by the iterated integral

(Op(a)f)(t) = 1
2π

∫
dx

∫
a(t, x)

(
t

τ

)ix

f(τ)dτ
τ

for t ∈ R+,
R R+
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extends to a bounded linear operator on the space Lp(R+, dμ) and there exists a constant Cp ∈ (0, ∞)
depending only on p such that

‖Op(a)‖B(Lp(R+,dμ)) ≤ Cp‖a‖Cb(R+,V (R)).

2.2. Algebra E(R+, V (R)) and products of Mellin PDO’s

Consider the Banach subalgebra SO(R+, V (R)) of the algebra Cb(R+, V (R)) consisting of all V (R)-valued 
functions a on R+ that slowly oscillate at 0 and ∞, that is,

lim
r→s

max
t,τ∈[r,2r]

‖a(t, ·) − a(τ, ·)‖L∞(R) = 0, s ∈ {0,∞}.

Since V (R) ⊂ C(R), the latter equality implies that for every a ∈ SO(R+, V (R)) and every x ∈ R the 
function a(·, x) belongs to the C∗-algebra SO(R+), which allows us to define the values a(ξ, x) for all 
(ξ, x) ∈ (Δ ∪ R+) × R by applying the Gelfand transform of SO(R+) to a(·, x).

Let E(R+, V (R)) be the Banach algebra of all V (R)-valued functions a in the algebra SO(R+, V (R)) such 
that

lim
|h|→0

sup
t∈R+

∥∥a(t, ·) − ah(t, ·)
∥∥
V

= 0

where ah(t, x) := a(t, x + h) for all (t, x) ∈ R+ × R.
Let a ∈ E(R+, V (R)). Since E(R+, V (R)) ⊂ SO(R+, V (R)), we conclude that for every x ∈ R the function 

a(·, x) belongs to the C∗-algebra SO(R+), and therefore the function a can be extended to Δ ×R by applying 
the Gelfand transform of SO(R+) to a(·, x).

Similarly to [1, Proposition 4.2, Corollary 4.3] we have the following.

Lemma 2.2 ([17, Proposition 2.2]). Suppose {ak}k∈N is a countable subset of the space SO(R+) and s ∈
{0, ∞}. For each ξ ∈ Ms(SO(R+)) there exists a sequence {tn}n∈N ⊂ R+ such that tn → s as n → ∞ and

ξ(ak) = ak(ξ) = lim
n→∞

ak(tn) for all k ∈ N. (2.1)

Conversely, if {tn}n∈N ⊂ R+ is a sequence such that tn → s as n → ∞ and the limits limn→∞ ak(tn) exist 
for all k ∈ N, then there exists a functional ξ ∈ Ms(SO(R+)) such that (2.1) holds.

By analogy with [15, Lemma 2.7] with the aid of Lemma 2.2 one can prove the following assertion.

Lemma 2.3. Let s ∈ {0, ∞} and {ak}k∈N be a countable subset of the algebra E(R+, V (R)). For each ξ ∈
Ms(SO(R+)) there is a sequence {tj}j∈N ⊂ R+ and functions ak(ξ, ·) ∈ V (R) such that tj → s as j → ∞
and

ak(ξ, x) = lim
j→∞

ak(tj , x)

for every x ∈ R and every k ∈ N.

This lemma gives another possibility to define the values a(ξ, x) of a ∈ E(R+, V (R)) for all (ξ, x) ∈ Δ ×R. 
Note that the latter approach was used in our works [6,9–11]. From the proof of [15, Lemma 2.7] one can 
see that a(ξ, x) defined as the Gelfand transform of a(·, x) ∈ SO(R+) coincides with a(ξ, x) calculated by 
Lemma 2.3, that is, both these definitions of a(ξ, x) for (ξ, x) ∈ Δ × R are equivalent.
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Theorem 2.4 ([9, Theorem 3.3]). If a, b ∈ E(R+, V (R)), then Op(a) Op(b) � Op(ab).

Lemma 2.5 ([9, Lemma 3.4]). If a, b, c ∈ E(R+, V (R)) are such that a depends only on the first variable and 
c depends only on the second variable, then

Op(a) Op(b) Op(c) = Op(abc).

2.3. Algebra Ẽ(R+, V (R)) and the Fredholmness of Mellin PDO’s

Consider the Banach algebra Ẽ(R+, V (R)) consisting of all functions a belonging to E(R+, V (R)) and 
such that

lim
m→∞

sup
t∈R+

∫
R\[−m,m]

|∂xa(t, x)| dx = 0.

Now we state two results on the inversion of functions in the algebra Ẽ(R+, V (R)).

Lemma 2.6 ([10, Lemma 4.2]). If a ∈ Ẽ(R+, V (R)) is such that

inf
(t,x)∈R+×R

|a(t, x)| > 0,

then 1/a ∈ Ẽ(R+, V (R)).

For � > 1, put T� := (0, �−1] ∪ [�, ∞).

Lemma 2.7 ([10, Lemma 5.4]). If a ∈ Ẽ(R+, V (R)) is such that

a(t,±∞) �= 0 for all t ∈ R+, a(ξ, x) �= 0 for all (ξ, x) ∈ Δ × R, (2.2)

then there exists an � > 1 such that

inf
(t,x)∈T�×R

|a(t, x)| > 0.

By analogy with [10, Lemma 5.4] one can also prove the following.

Lemma 2.8. If a ∈ Ẽ(R+, V (R)) is such that a(ξ, x) = 0 for all (ξ, x) ∈ Δ × R, then for every δ > 0 there 
exists an �(δ) > 1 such that

sup
(t,x)∈T�(δ)×R

|a(t, x)| < δ.

The following theorem is the key ingredient in our analysis.

Theorem 2.9 ([9, Theorem 3.6]). If a ∈ Ẽ(R+, V (R)), then the operator Op(a) is Fredholm on the space 
Lp(R+, dμ) if and only if (2.2) is fulfilled. In the case of Fredholmness, a(t, x) �= 0 whenever (t, x) ∈ ∂Πτ

for all sufficiently large τ , and

IndOp(a) = lim 1 {
arg a(t, x)

}
(t,x)∈∂Π ,
τ→+∞ 2π τ
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where Πτ = [τ−1, τ ] ×R and {arg a(t, x)}(t,x)∈∂Πτ
denotes the increment of the function arg a(t, x) when the 

point (t, x) traces the boundary ∂Πτ of Πτ counter-clockwise.

This result follows from [19, Theorem 4.3]. Note that for infinitely differentiable slowly oscillating symbols 
such result was obtained earlier in [23, Theorem 2.6].

2.4. Singular integral operators as Mellin pseudodifferential operators

Along with functions sγ and p±γ given by (1.4), consider the function rγ defined by

rγ(x) := 1/ sinh[π(x + i/p + iγ)], x ∈ R. (2.3)

Lemma 2.10 ([6, Lemma 4.1]). Suppose f ∈ SO(R+) and γ ∈ C satisfies (1.1). Then the functions

f(t, x) := f(t), sγ(t, x) := sγ(x), rγ(t, x) := rγ(x), (t, x) ∈ R+ × R,

belong to the Banach algebra Ẽ(R+, V (R)).

Consider the isometric isomorphism

Φ : Lp(R+) → Lp(R+, dμ), (Φf)(t) := t1/pf(t), t ∈ R+.

From [25, Propositions 4.2.11 and 4.2.15] (see also [3,4,23,27]) we can get the following important and well 
known fact.

Theorem 2.11. Let 1 < p < ∞ and γ ∈ C be such that 0 < 1/p + 	γ < 1. Then

Sγ = Φ−1 Op(sγ)Φ, Rγ = Φ−1 Op(rγ)Φ.

This result together with Lemmas 2.5 and 2.10 implies, in particular, that the operators P±
γ , P±

δ , Rγ , 
and Rδ are pairwise commuting whenever γ, δ ∈ C satisfy 0 < 1/p + 	γ, 1/p + 	δ < 1. The next lemma 
provides more relations for these operators.

Lemma 2.12 ([6, Lemma 2.4]). Let 1 < p < ∞ and γ, δ ∈ C be such that 0 < 1/p + 	γ < 1 and 0 <
1/p + 	δ < 1. Then for every x ∈ R,

p±γ (x)p±δ (x) = 1
2p

±
γ (x) + 1

2p
±
δ (x) + cos[π(γ − δ)]

4 rγ(x)rδ(x), p−γ (x)p+
δ (x) = −eiπ(δ−γ)

4 rγ(x)rδ(x) (2.4)

and

P±
γ P±

δ = 1
2P

±
γ + 1

2P
±
δ + cos[π(γ − δ)]

4 RγRδ, P−
γ P+

δ = −eiπ(δ−γ)

4 RγRδ. (2.5)

2.5. Some important functions in the algebra Ẽ(R+, V (R))

By analogy with [9, Lemma 4.3], one can prove the following.

Lemma 2.13. Let γ ∈ C satisfy (1.1) and ω ∈ SO(R+) be a real-valued function. Then the function

b(t, x) := eiω(t)xrγ(x), (t, x) ∈ R+ × R,
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belongs to the Banach algebra Ẽ(R+, V (R)) and there is a constant C(p, γ) ∈ (0, ∞) depending only on p
and γ such that

‖b‖Cb(R+,V (R)) ≤ C(p, γ)
(

1 + sup
t∈R+

|ω(t)|
)
.

Recall that Cb(R+) denotes the space of all bounded continuous functions on R+ with the supremum 
norm.

Lemma 2.14. Let γ ∈ C satisfy (1.1) and f, ω ∈ SO(R+). If ‖f‖Cb(R+) < 1 and ω is a real-valued function, 
then the functions

a(t, x) := (1 − f(t)eiω(t)x)rγ(x), c(t, x) := (1 − f(t)eiω(t)x)−1rγ(x), (t, x) ∈ R+ × R,

belong to the algebra Ẽ(R+, V (R)).

Proof. From Lemmas 2.10 and 2.13 we immediately get a ∈ Ẽ(R+, V (R)). Since ‖f‖Cb(R) < 1, we have

c(t, x) =
∞∑

n=0
(f(t))neinω(t)xrγ(x) =

∞∑
n=0

cn(t, x), (t, x) ∈ R+ × R,

where cn(t, x) := (f(t))neinω(t)xrγ(x). From Lemmas 2.10 and 2.13 it follows that cn ∈ Ẽ(R+, V (R)) for all 
n, and

‖cn‖Cb(R+,V (R)) ≤ C(p, γ)‖f‖nCb(R+)

(
1 + n sup

t∈R+

|ω(t)|
)
.

Taking into account the fact that ‖f‖Cb(R+) < 1, we have

lim sup
n→∞

‖cn‖1/n
Cb(R+,V (R)) ≤ ‖f‖Cb(R+) lim sup

n→∞
C(p, γ)1/n lim sup

n→∞

(
1 + n sup

t∈R+

|ω(t)|
)1/n

= ‖f‖Cb(R+) < 1.

Thus the series 
∑∞

n=0 cn is absolutely convergent in the norm of Cb(R+, V (R)), whence the function c =∑∞
n=0 cn belongs to the Banach subalgebra Ẽ(R+, V (R)) of Cb(R+, V (R)) along with each function cn. �

2.6. Operators UαRγ and UαUβRγ as Mellin pseudodifferential operators

It was observed in [9] that the product of Uα and R0 can be realized as a Mellin pseudodifferential 
operator with symbol in the algebra Ẽ(R+, V (R)). In this subsection we formulate a slight generalization of 
that result and some of its consequences.

Lemma 2.15 ([6, Lemma 4.4]). Let γ ∈ C satisfy (1.1). Suppose α ∈ SOS(R+), ω is its exponent function, 
and Uα is the associated isometric shift operator on Lp(R+). Then the operator UαRγ can be realized as the 
Mellin pseudodifferential operator:

UαRγ = Φ−1 Op(cω,γ)Φ,
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where the function cω,γ, given by

cω,γ(t, x) := (1 + tω′(t))1/peiω(t)xrγ(x), (t, x) ∈ R+ × R,

belongs to the algebra Ẽ(R+, V (R)).

From the above lemma, making minor modifications in the proof of [9, Lemma 4.5], we can get the 
following two lemmas.

Lemma 2.16. Let γ ∈ C satisfy (1.1). Suppose α ∈ SOS(R+), ω is its exponent function, and Uα is the 
associated isometric shift operator on Lp(R+). Then the operators UαRγ and U−1

α Rγ can be realized as the 
Mellin pseudodifferential operators up to compact operators:

U±1
α Rγ � Φ−1 Op(c±)Φ,

where the functions c±, given by

c±(t, x) := e±iω(t)xrγ(x), (t, x) ∈ R+ × R,

belong to the Banach algebra Ẽ(R+, V (R)).

Lemma 2.17. Let γ ∈ C satisfy (1.1). Suppose α, β ∈ SOS(R+), ω, η are their exponent functions, respec-
tively, and Uα, Uβ are the associated isometric shift operators on Lp(R+). Then the operators UαU

±1
β Rγ

and U−1
α U±1

β Rγ can be realized as the Mellin pseudodifferential operators up to compact operators:

UαUβRγ � Φ−1 Op(c++)Φ, UαU
−1
β Rγ � Φ−1 Op(c+−)Φ,

U−1
α UβRγ � Φ−1 Op(c−+)Φ, U−1

α U−1
β Rγ � Φ−1 Op(c−−)Φ,

where the functions c++, c+−, c−+, c−−, given for (t, x) ∈ R+ × R by

c++(t, x) := eiω(t)xeiη(t)xrγ(x), c+−(t, x) := eiω(t)xe−iη(t)xrγ(x),

c−+(t, x) := e−iω(t)xeiη(t)xrγ(x), c−−(t, x) := e−iω(t)xe−iη(t)xrγ(x),

belong to the Banach algebra Ẽ(R+, V (R)).

3. Sufficient conditions for the Fredholmness of the operator N

3.1. Notation

We suppose that γ ∈ C satisfies (1.1), γ∗ is defined by (1.3), a, b, c, d belong to SO(R+), α, β belong 
to SOS(R+), and ω, η are the exponent functions of α, β, respectively. Suppose the functional operators 
A+ = aI − bUα and A− = cI − dUβ are invertible on the space Lp(R+). Then, according to Theorem 1.1, 
we have four mutually exclusive possibilities:

(A) a � b and c � d; (B) b � a and c � d; (C) a � b and d � c; (D) b � a and d � c.

In this case we put
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ν+
a,b :=

{
a, if a � b,

b, if b � a,
ν−a,b :=

{
b, if a � b,

a, if b � a,
εa,b :=

{
1, if a � b,

−1, if b � a,
θa,b :=

{
0, if a � b,

−1, if b � a.
(3.1)

The functions ν±c,d and the numbers εc,d, θc,d are defined analogously. Note that ν+
a,b, ν

+
c,d coincide, respec-

tively, with νa,b, νc,d given by (1.8). Further, we set

θ1 := θa,b, θ2 := θc,d, ε1 := εa,b, ε2 := εc,d, ν±1 := ν±a,b, ν±2 := ν±c,d. (3.2)

3.2. First operator relation

Recall that multiplication operators and shift operators commute with singular integral operators up to 
compact operators. More precisely, from [11, Lemmas 2.8 and 3.1] we immediately obtain the following.

Lemma 3.1. Let γ ∈ C satisfy (1.1). If a ∈ SO(R+) and α ∈ SOS(R+), then

aP±
γ � P±

γ aI, UαP
±
γ � P±

γ Uα, U−1
α P±

γ � P±
γ U−1

α .

Now we establish a relation between the operator N given by (1.2), an operator F of the form (1.9), a 
weighted singular integral operator without shifts B, an operator V of the form (1.10), some operator M , 
and the operator Rγ∗ .

Lemma 3.2. If the functional operators A+ = aI − bUα and A− = cI − dUβ are invertible on the space 
Lp(R+), then

NF � BV + MRγ∗ , (3.3)

where

F := Uθ1
α P+

γ∗ + Uθ2
β P−

γ∗ , (3.4)

B := ε1ν
+
1 P+

γ + ε2ν
+
2 P−

γ , (3.5)

V :=
(
I − ν−1

ν+
1
Uε1
α

)
P+
γ∗ +

(
I − ν−2

ν+
2
Uε2
β

)
P−
γ∗ , (3.6)

and

M := eiπ(γ−γ∗)

4

[
ε1ν

+
1

(
I − ν−2

ν+
2
Uε2
β

)
− (aI − bUα)Uθ2

β

]
Rγ

+ eiπ(γ∗−γ)

4

[
ε2ν

+
2

(
I − ν−1

ν+
1
Uε1
α

)
− (cI − dUβ)Uθ1

α

]
Rγ . (3.7)

Proof. From Lemma 3.1 it follows that

NF � (aI − bUα)Uθ1
α P+

γ P+
γ∗ + (cI − dUβ)Uθ2

β P−
γ P−

γ∗

+ (aI − bUα)Uθ2
β P+

γ P−
γ∗ + (cI − dUβ)Uθ1

α P−
γ P+

γ∗ (3.8)

and

BV � ε1(ν+
1 − ν−1 Uε1

α )P+
γ P+

γ∗ + ε2(ν+
2 − ν−2 Uε2

β )P−
γ P−

γ∗

+ ε1ν
+
1

(
I − ν−2

ν+
2
Uε2
β

)
P+
γ P−

γ∗ + ε2ν
+
2

(
I − ν−1

ν+
1
Uε1
α

)
P−
γ P+

γ∗ . (3.9)
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Taking into account (3.1)–(3.2), it is easy to see that

(aI − bUα)Uθ1
α = ε1(ν+

1 − ν−1 Uε1
α ), (cI − dUβ)Uθ2

β = ε2(ν+
2 − ν−2 Uε2

β ). (3.10)

Combining (3.8)–(3.10) with the second identity in (2.5), we obtain

NF −BV �
[
(aI − bUα)Uθ2

β − ε1ν
+
1

(
I − ν−2

ν+
2
Uε2
β

)]
P+
γ P−

γ∗

+
[
(cI − dUβ)Uθ1

α − ε2ν
+
2

(
I − ν−1

ν+
1
Uε1
α

)]
P−
γ P+

γ∗

= eiπ(γ−γ∗)

4

[
ε1ν

+
1

(
I − ν−2

ν+
2
Uε2
β

)
− (aI − bUα)Uθ2

β

]
RγRγ∗

+ eiπ(γ∗−γ)

4

[
ε2ν

+
2

(
I − ν−1

ν+
1
Uε1
α

)
− (cI − dUβ)Uθ1

α

]
RγRγ∗ .

From the above relation and (3.7) we immediately get (3.3). �
3.3. Main operator relation

The following theorem is the heart of the proof of Theorem 1.3 and the index formula in Theorem 1.4.

Theorem 3.3. Let γ ∈ C satisfy (1.1) and γ∗ be given by (1.3). Suppose a, b, c, d belong to SO(R+), α, β
belong to SOS(R+), and ω, η ∈ SO(R+) are the exponent functions of α, β, respectively. If the functional 
operators A+ = aI − bUα and A− = cI − dUβ are invertible on the space Lp(R+), then

NF � HV, (3.11)

where

(a) for i = 1, 2, the functions νi and the constants εi, θi are defined by (3.1)–(3.2);
(b) the operator F defined by (3.4) is Fredholm on the space Lp(R+) and its index is equal to zero;
(c) the operator V defined by (3.6) is Fredholm on the space Lp(R+) and its index is equal to zero;
(d) the operator H is of the form

H = Φ−1 Op(h)Φ,

where h ∈ Ẽ(R+, V (R)) is given by

h(t, x) := b(t, x) + m(t, x)g(t, x), (t, x) ∈ R+ × R, (3.12)

with the functions b, m ∈ Ẽ(R+, V (R)) given by

b(t, x) := ε1ν
+
1 (t)p+

γ (x) + ε2ν
+
2 (t)p−γ (x) (3.13)

and

m(t, x) := eiπ(γ−γ∗)

4

[
ε1ν

+
1 (t)

(
1 − ν−2 (t)

ν+
2 (t)

eiε2η(t)x
)
− (a(t) − b(t)eiω(t)x)eiθ2η(t)x

]
rγ(x)

+ eiπ(γ∗−γ)

4

[
ε2ν

+
2 (t)

(
1 − ν−1 (t)

ν+
1 (t)

eiε1ω(t)x
)
− (c(t) − d(t)eiη(t)x)eiθ1ω(t)x

]
rγ(x), (3.14)
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and some function g ∈ Ẽ(R+, V (R)) satisfying

g(ξ, x) =

⎧⎪⎨⎪⎩
rγ∗(x)
v(ξ, x) , if (ξ, x) ∈ Δ × R,

0, if (ξ, x) ∈ (Δ ∪ R+) × {±∞},
(3.15)

where

v(ξ, x) :=
(

1 − ν−1 (ξ)
ν+
1 (ξ)

eiε1ω(ξ)x
)
p+
γ∗(x) +

(
1 − ν−2 (ξ)

ν+
2 (ξ)

eiε2η(ξ)x
)
p−γ∗(x) �= 0 (3.16)

for (ξ, x) ∈ Δ × R.

Proof. Part (a) is trivial. Parts (b) and (c) follow from [6, Theorem 1.1] and [11, Theorem 7.1], respectively. 
Let us establish relation (3.11) and part (d). From Theorem 2.11 and Lemmas 2.5, 2.10 we immediately get 
the following description of the operator B given by (3.5) via a Mellin pseudodifferential operator:

B = Φ−1 Op(b)Φ, (3.17)

where the function b given by (3.13) belongs to the Banach algebra Ẽ(R+, V (R)). From [11, Theorem 7.2]
it follows that there is a function g ∈ Ẽ(R+, V (R)) such that

(Φ−1 Op(g)Φ)V � Rγ∗ (3.18)

and (3.15)–(3.16) are fulfilled.
From Lemmas 2.5, 2.10, and 2.16 we obtain

ε1ν
+
1

(
I − ν−2

ν+
2
Uε2
β

)
Rγ � Φ−1 Op(m1)Φ, ε2ν

+
2

(
I − ν−1

ν+
1
Uε1
α

)
Rγ � Φ−1 Op(m2)Φ, (3.19)

where the functions m1, m2, given for (t, x) ∈ R+ × R by

m1(t, x) := ε1ν
+
1 (t)

(
1 − ν−2 (t)

ν+
2 (t)

eiε2η(t)x
)
rγ(x), (3.20)

m2(t, x) := ε2ν
+
2 (t)

(
1 − ν−1 (t)

ν+
1 (t)

eiε1ω(t)x
)
rγ(x), (3.21)

belong to the algebra Ẽ(R+, V (R)). Analogously, applying the above mentioned lemmas and Lemma 2.17, 
we get

(aI − bUα)Uθ2
β Rγ � Φ−1 Op(m3)Φ, (cI − dUβ)Uθ1

α Rγ � Φ−1 Op(m4)Φ, (3.22)

where the functions m3, m4, given for (t, x) ∈ R+ × R by

m3(t, x) := (a(t) − b(t)eiω(t)x)eiθ2η(t)xrγ(x), (3.23)

m4(t, x) := (c(t) − d(t)eiη(t)x)eiθ1ω(t)xrγ(x), (3.24)

belong to the algebra Ẽ(R+, V (R)). Combining (3.7) and (3.14) with (3.19)–(3.24), we arrive at

M � Φ−1 Op(m)Φ. (3.25)
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From Lemma 3.2, relations (3.17)–(3.18) and (3.25) we get

NF � BV + MRγ∗ � BV + M(Φ−1 Op(g)Φ)V

� [Φ−1 Op(b)Φ + (Φ−1 Op(m)Φ)(Φ−1 Op(g)Φ)]V. (3.26)

By Theorem 2.4,

Op(m) Op(g) � Op(mg). (3.27)

From (3.26) and (3.27) we obtain

NF � (Φ−1 Op(b + mg)Φ)V = (Φ−1 Op(h)Φ)V,

where h ∈ Ẽ(R+, V (R)) is given by (3.12), which completes the proof of (3.11) and part (d). �
Let X be a Banach space. Recall that an operator Br ∈ B(X) (resp. Bl ∈ B(X)) is said to be a right 

(resp. left) regularizer for A if

ABr � I (resp. BlA � I).

It is well known that an operator A is Fredholm on X if and only if it admits simultaneously a right and 
a left regularizers. Moreover, each right regularizer differs from each left regularizer by a compact operator 
(see, e.g., [5, Chap. 4, Section 7]). Therefore, we may speak of a regularizer B = Br = Bl of a Fredholm 
operator A.

Corollary 3.4. Suppose a, b, c, d belong to SO(R+), α, β belong to SOS(R+), and the functional operators 
A+ = aI − bUα and A− = cI − dUβ are invertible on the space Lp(R+). Then the operator N is Fredholm 
on the space Lp(R+) if and only if the operator Op(h) is Fredholm on the space Lp(R+, dμ), where h ∈
Ẽ(R+, V (R)) is defined in Theorem 3.3(d). In the case of Fredholmness,

IndN = Ind Op(h).

Proof. By Theorem 3.3, the operators F and V are Fredholm and have zero indices. If the operator N is 
Fredholm, then the operator NF is Fredholm. Hence there exist operators R1 and R2 such that

R1(NF ) � (NF )R1 � I, R2V � V R2 � I.

From these relations and (3.11) it follows that

(V R1)H � (V R1)(NF )R2 � V R2 � I, H(V R1) � (NF )R2(V R1) � (NF )R1 � I,

that is, the operator V R1 is a regularizer of H. Therefore, the operator H = Φ−1 Op(h)Φ is Fredholm, whence 
the operator Op(h) is Fredholm. Analogously it can be shown, that if the operator Op(h) is Fredholm, then 
the operator N is Fredholm. From the relations NF � HV and IndF = IndV = 0 we deduce that

IndN = IndN + IndF = Ind(NF ) = Ind(HV ) = IndH + IndV = IndH.

It remains to observe that IndH = IndOp(h). �
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3.4. Functional identities

With the operators F and V defined by (3.4) and (3.6), respectively, we associate the functions

f(ξ, x) := eiθ1ω(ξ)xp+
γ∗(x) + eiθ2η(ξ)xp−γ∗(x), (3.28)

v(ξ, x) :=
(

1 − ν−1 (ξ)
ν+
1 (ξ)

eiε1ω(ξ)x
)
p+
γ∗(x) +

(
1 − ν−2 (ξ)

ν+
2 (ξ)

eiε2η(ξ)x
)
p−γ∗(x), (3.29)

defined for all (ξ, x) ∈ (Δ ∪R+) ×R. Notice that both F and V are particular cases of the operator N given 
by (1.2) and the functions f and v are particular cases of the function n defined by (1.5).

Lemma 3.5. Suppose a, b, c, d belong to SO(R+), α, β belong to SOS(R+), and the functional operators 
A+ = aI− bUα and A− = cI −dUβ are invertible on the space Lp(R+). For every (t, x) ∈ R+ ×R, we have

n(t, x)f(t, x) = b(t, x)v(t, x) + m(t, x)rγ∗(x), (3.30)

where the functions n, f, b, v, m, and rγ∗ are defined by (1.5), (3.28), (3.13), (3.29), (3.14), and (2.3), re-
spectively.

Proof. This proof resembles the proof of Lemma 3.2. We suppose that (t, x) ∈ R+ × R. Obviously,

n(t, x)f(t, x) = (a(t) − b(t)eiω(t)x)eiθ1ω(t)xp+
γ (x)p+

γ∗(x) + (c(t) − d(t)eiη(t)x)eiθ2η(t)xp−γ (x)p−γ∗(x)

+ (a(t) − b(t)eiω(t)x)eiθ2η(t)xp+
γ (x)p−γ∗(x) + (c(t) − d(t)eiη(t)x)eiθ1ω(t)xp−γ (x)p+

γ∗(x) (3.31)

and

b(t, x)v(t, x) = ε1(ν+
1 (t) − ν−1 (t)eiε1ω(t)x)p+

γ (x)p+
γ∗(x) + ε2(ν+

2 (t) − ν−2 (t)eiη(t)x)p−γ (x)p−γ∗(x)

+ ε1ν
+
1 (t)

(
1 − ν−2 (t)

ν+
2 (t)

eiε2η(t)x
)
p+
γ (x)p−γ∗(x)

+ ε2ν
+
2 (t)

(
1 − ν−1 (t)

ν+
1 (t)

eiε1ω(t)x
)
p−γ (x)p+

γ∗(x). (3.32)

Taking into account (3.1)–(3.2), it is easy to see that

(a(t) − b(t)eiω(t)x)eiθ1ω(t)x = ε1(ν+
1 (t) − ν−1 (t)eiε1ω(t)x), (3.33)

(c(t) − d(t)eiη(t)x)eiθ2η(t)x = ε2(ν+
2 (t) − ν−2 (t)eiε2η(t)x). (3.34)

From (3.31)–(3.34), (2.4), and (3.14) we obtain

n(t, x)f(t, x) − b(t, x)v(t, x) =
[
(a(t) − b(t)eiω(t)x)eiθ2η(t)x − ε1ν

+
1 (t)

(
1 − ν−2 (t)

ν+
2 (t)

eiε2η(t)x
)]

p+
γ (x)p−γ∗(x)

+
[
(c(t) − d(t)eiη(t)x)eiθ1ω(t)x − ε2ν

+
2 (t)

(
1 − ν−1 (t)

ν+
1 (t)

eiε1ω(t)x
)]

p−γ (x)p+
γ∗(x)

= m(t, x)rγ∗(x),

which completes the proof. �
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Lemma 3.6. Suppose a, b, c, d belong to SO(R+), α, β belong to SOS(R+), and the functional operators 
A+ = aI − bUα and A− = cI − dUβ are invertible on the space Lp(R+). For every (ξ, x) ∈ Δ × R, we have

n(ξ, x)f(ξ, x) = h(ξ, x)v(ξ, x),

where the functions n, f, h, and v are defined by (1.5), (3.28), (3.12), and (3.29), respectively.

Proof. For each fixed x ∈ R, the functions n(·, x), f(·, x), b(·, x), v(·, x) and m(·, x) belong to SO(R+). 
Then, for every x ∈ R and every functional ξ ∈ Δ, we immediately infer from (3.30) that

n(ξ, x)f(ξ, x) = b(ξ, x)v(ξ, x) + m(ξ, x)rγ∗(x). (3.35)

Analogously, from (3.12) we obtain

h(ξ, x) = b(ξ, x) + m(ξ, x)g(ξ, x), (ξ, x) ∈ Δ × R, (3.36)

where g ∈ Ẽ(R+, V (R)) satisfies

g(ξ, x)v(ξ, x) = rγ∗(x), (ξ, x) ∈ Δ × R, (3.37)

in view of (3.15). Combining (3.35)–(3.37), we obtain

n(ξ, x)f(ξ, x) = b(ξ, x)v(ξ, x) + m(ξ, x)g(ξ, x)v(ξ, x) = h(ξ, x)v(ξ, x),

which completes the proof. �
Lemma 3.7. Suppose a, b, c, d belong to SO(R+), α, β belong to SOS(R+), and the functional operators 
A+ = aI − bUα and A− = cI − dUβ are invertible on the space Lp(R+). For every ξ ∈ R+ ∪ Δ, we have

h(ξ,−∞) = εc,dνc,d(ξ), h(ξ,+∞) = εa,bνa,b(ξ), (3.38)

where the function h is defined by (3.12), the functions νa,b, νc,d ∈ SO(R+) are defined by (1.8), and the 
numbers εa,b, εc,d are given by (3.1).

Proof. Since rγ(±∞) = 0 and the functions in the brackets in (3.14) are bounded, we have m(t, ±∞) = 0
for every t ∈ R+. From this observation and (3.12) we obtain

h(t,±∞) = b(t,±∞), t ∈ R+. (3.39)

On the other hand, p±γ (∓∞) = 0 and p±γ (±∞) = 1. Then from (3.13), (3.1)–(3.2) and (1.8) it follows that 
for t ∈ R+,

b(t,−∞) = ε2ν
+
2 (t) = εc,dν

+
c,d(t) = εc,dνc,d(t), (3.40)

b(t,+∞) = ε1ν
+
1 (t) = εa,bν

+
a,b(t) = εa,bνa,b(t). (3.41)

Combining (3.39)–(3.41), we arrive at

h(t,−∞) = εc,dνc,d(t), h(t,+∞) = εa,bνa,b(t), t ∈ R+.

Since the functions h(·, ±∞), νa,b, νc,d belong to SO(R+), we immediately conclude from the above equalities 
that (3.38) holds for all ξ ∈ R+ ∪ Δ, which completes the proof. �
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3.5. Proof of Theorem 1.3

If the functional operator A+ = aI − bUα (resp. A− = cI − dUβ) is invertible, then, by Theorem 1.1, 
either a � b or b � a (resp. either c � d or d � b). Hence the function νa,b (resp. νc,d) is well defined by 
(1.8). Moreover, νa,b, νc,d ∈ GSO(R+). Then from Lemma 3.7 it follows that

h(ξ,±∞) �= 0 for all ξ ∈ R+ ∪ Δ. (3.42)

From Theorem 3.3(b)–(c) we know that the operators F and V given by (3.4) and (3.6), respectively, are 
Fredholm. Then from Theorem 1.2 we conclude that

inf
x∈R

|f(ξ, x)| > 0, inf
x∈R

|v(ξ, x)| > 0 for all ξ ∈ Δ, (3.43)

where the functions f and v are given for (ξ, x) ∈ Δ ×R by (3.28) and (3.29), respectively. By the hypothesis,

inf
x∈R

|n(ξ, x)| > 0 for all ξ ∈ Δ. (3.44)

From (3.43)–(3.44) and Lemma 3.6 it follows that

h(ξ, x) �= 0 for all (ξ, x) ∈ Δ × R. (3.45)

Combining conditions (3.42) and (3.45) with Theorem 2.9, we deduce that the pseudodifferential operator 
Op(h) is Fredholm on the space Lp(R+, dμ). Hence, in view of Corollary 3.4, the operator N is Fredholm 
on the space Lp(R+). The proof of Theorem 1.3 is completed. �
4. Index of the operator N

4.1. On indices of semi-almost periodic functions

First we collect basic properties of the index of semi-almost periodic functions.

Lemma 4.1 ([21, Section 2.1], [22, pp. 194–195]).

(a) If g ∈ C(R) and infx∈R |g(x)| > 0, then

indR g = 1
2π {arg g(x)}x∈R

.

(b) If g ∈ AP and infx∈R |g(x)| > 0, then indR g = 0.
(c) If f, g ∈ GSAP , then fg ∈ GSAP and

indR(fg) = indR f + indR g.

(d) If f ∈ GSAP , then for every ε > 0 there exists a δ > 0 such that for all functions g ∈ SAP such that 
supx∈R |f(x) − g(x)| < δ one has g ∈ GSAP and | indR f − indR g| < ε.

From [12, Theorems 1.1–1.2] we immediately get the following results.

Lemma 4.2. Let γ∗ be defined by (1.3). If ω, η ∈ R, then the semi-almost periodic function
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h(x) := eiωxp+
γ∗(x) + eiηxp−γ∗(x), x ∈ R,

belongs to GSAP and indR h = 0.

Lemma 4.3. Let γ∗ be defined by (1.3). If ω, η ∈ R \ {0} and z1, z2 ∈ C with |z1| < 1, |z2| < 1, then the 
semi-almost periodic function

w(x) := (1 − z1e
iωx)p+

γ∗(x) + (1 − z2e
iηx)p−γ∗(x), x ∈ R,

belongs to GSAP and indR w = 0.

4.2. Indices of the functions n(t, ·) for sufficiently small and sufficiently large t ∈ R+

Given a ∈ C and r > 0, let D(a, r) := {z ∈ C : |z − a| ≤ r}.

Lemma 4.4 ([11, Lemmas 2.9–2.10]). Let γ∗ be defined by (1.3), ω, η ∈ R, and z1, z2 ∈ C be such that 
|z1| < 1, |z2| < 1. If the semi-almost periodic functions w and u are given by

w(x) := (1 − z1e
iωx)p+

γ∗(x) + (1 − z2e
iηx)p−γ∗(x),

u(x) := (1 − z1e
iωx)−1p+

γ∗(x) + (1 − z2e
iηx)−1p−γ∗(x)

for x ∈ R, then w(R) ⊂ D(1, r) and u(R) ⊂ D((1 − r2)−1, (1 − r2)−1r), where r = max(|z1|, |z2|).

Now we prove two auxiliary results.

Lemma 4.5. Suppose γ∗ is defined by (1.3) and c, d, ω, η ∈ SO(R+). If ‖c‖Cb(R+) < 1, ‖d‖Cb(R+) < 1 and 
ω, η are real-valued functions, then the functions

w(t, x) := (1 − c(t)eiω(t)x)p+
γ∗(x) + (1 − d(t)eiη(t)x)p−γ∗(x),

u(t, x) := (1 − c(t)eiω(t)x)−1p+
γ∗(x) + (1 − d(t)eiη(t)x)−1p−γ∗(x),

defined for (t, x) ∈ R+ × R, satisfy

inf
(t,x)∈R+×R

|w(t, x)| > 0, inf
(t,x)∈R+×R

|u(t, x)| > 0, (4.1)

and the function

w(t, x) := rγ∗(x)
w(t, x) , (t, x) ∈ R+ × R, (4.2)

belongs to the algebra Ẽ(R+, V (R)).

Proof. From Lemma 4.4 we immediately get

w(R+ × R) ⊂ D(1, r), u(R+ × R) ⊂ D((1 − r2)−1, (1 − r2)−1r)

with r = max(‖c‖Cb(R+), ‖d‖Cb(R+)) < 1, whence (4.1) holds. By Lemma 2.14, the functions
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a+(t, x) := (1 − c(t)eiω(t)x)rγ∗(x), c+(t, x) := (1 − c(t)eiω(t)x)−1rγ∗(x),

a−(t, x) := (1 − d(t)eiη(t)x)rγ∗(x), c−(t, x) := (1 − d(t)eiη(t)x)−1rγ∗(x),

defined for (t, x) ∈ R+ × R, belong to the algebra Ẽ(R+, V (R)). Taking into account identities (2.4), we 
easily get for (t, x) ∈ R+ × R,

w(t, x)u(t, x) = (p+
γ∗(x))2 + (1 − c(t)eiω(t)x)(1 − d(t)eiη(t)x)−1p+

γ∗(x)p−γ∗(x)

+ (p−γ∗(x))2 + (1 − c(t)eiω(t)x)−1(1 − d(t)eiη(t)x)p+
γ∗(x)p−γ∗(x)

= p+
γ∗(x) + 1

4(rγ∗(x))2 − 1
4(1 − c(t)eiω(t)x)(1 − d(t)eiη(t)x)−1(rγ∗(x))2

+ p−γ∗(x) + 1
4(rγ∗(x))2 − (1 − c(t)eiω(t)x)−1(1 − d(t)eiη(t)x)(rγ∗(x))2

= 1 + 1
4[2(rγ∗(x))2 − a+(t, x)c−(t, x) − c+(t, x)a−(t, x)].

From Lemmas 2.10 and 2.14 it follows that wu, urγ∗ ∈ Ẽ(R+, V (R)). From Lemma 2.6 and (4.1) we deduce 
that 1/(wu) ∈ Ẽ(R+, V (R)). Hence w = rγ∗/w = (urγ∗)/(wu) ∈ Ẽ(R+, V (R)). �

For � > 1, put T� := (0, �−1] ∪ [�, ∞) and

L±(t) := ln �± ln t

2 ln �
, t ∈ [�−1, �].

Lemma 4.6. If f ∈ SO(R+) is such that 1 � f , then there exists an � > 1 such that the function

f�(t) :=
{

f(t), t ∈ T�,

f(�−1)L−(t) + f(�)L+(t), t ∈ [�−1, �],
(4.3)

belongs to SO(R+) and ‖f�‖Cb(R+) < 1.

Proof. It is clear that f� ∈ SO(R+) for every � > 1. Since 1 � f , we have

lim sup
t→s

|f(t)| < 1 for s ∈ {0,∞}.

Hence there exists an � > 1 such that supt∈T�
|f(t)| < 1. Then we have supt∈T�

|f�(t)| < 1. If t ∈ [�−1, �], 
then

|f�(t)| ≤ |f(�−1)|L−(t) + |f(�)|L+(t) ≤ sup
t∈T�

|f�(t)|(L−(t) + L+(t)) = sup
t∈T�

|f�(t)| < 1.

Thus ‖f�‖Cb(R+) < 1. �
Taking into account Theorem 1.1, from Lemmas 4.5 and 4.6 we immediately get the following.

Lemma 4.7. Let γ∗ be given by (1.3). Suppose a, b, c, d belong to SO(R+), α, β belong to SOS(R+), and 
ω, η ∈ SO(R+) are the exponent functions of α, β, respectively. If the functional operators A+ = aI − bUα

and A− = cI − dUβ are invertible on the space Lp(R+), then there exists an � > 1 such that the function 
v�, defined for (t, x) ∈ R+ × R by
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v�(t, x) :=
(

1 −
(
ν−1
ν+
1

)
�

(t)eiε1ω(t)x
)
p+
γ∗(x) +

(
1 −

(
ν−2
ν+
2

)
�

(t)eiε2η(t)x
)
p−γ∗(x), (4.4)

where εi, νi are defined by (3.1)–(3.2) and (ν−i /ν+
i )� are defined according to (4.3) for i = 1, 2, satisfies

inf
(t,x)∈R+×R

|v�(t, x)| > 0, (4.5)

and the function

g̃(t, x) := rγ∗(x)
v�(t, x) , (t, x) ∈ R+ × R, (4.6)

belongs to the algebra Ẽ(R+, V (R)).

Now we are in a position to construct a required substitute for the function h given by (3.12).

Lemma 4.8. Let γ satisfy (1.1) and γ∗ be given by (1.3). Suppose a, b, c, d belong to SO(R+), α, β belong to 
SOS(R+), and ω, η ∈ SO(R+) are the exponent functions of α, β, respectively. If the operator N given by 
(1.2) is Fredholm on the space Lp(R+), then there exist numbers �1 ≥ � > 1 such that the function v� given 
by (4.4) satisfies (4.5); the function

h̃(t, x) := b(t, x) + m(t, x)g̃(t, x), (t, x) ∈ R+ × R, (4.7)

where b, m, and g̃ are given by (3.13), (3.14) and (4.6), respectively, belongs to the algebra Ẽ(R+, V (R)) and 
satisfies

h(ξ, x) = h̃(ξ, x) for all (ξ, x) ∈ Δ × R, (4.8)

where h is given by (3.12), and

inf
(t,x)∈T�1×R

|h̃(t, x)| > 0. (4.9)

Proof. From Theorem 1.2 it follows that Theorem 3.3 and Lemma 4.7 are applicable. Hence we have 
b, m, ̃g ∈ Ẽ(R+, V (R)). Thus the function h̃ given by (4.7) belongs to the algebra Ẽ(R+, V (R)). Since 
rγ∗(±∞) = 0, from (3.15)–(3.16) and (4.6) we obtain

g(t,±∞) = g̃(t,±∞) for all t ∈ R+, g(ξ, x) = g̃(ξ, x) for all (ξ, x) ∈ Δ × R.

From these equalities and (3.12), (4.7) we get (4.8) and

h(t,±∞) = h̃(t,±∞) for all t ∈ R+. (4.10)

Since the operator N is Fredholm, from Corollary 3.4 we deduce that the pseudodifferential operator Op(h)
is also Fredholm. Then from (4.8), (4.10) and Theorem 2.9 it follows that

h̃(t,±∞) �= 0 for all t ∈ R+, h̃(ξ, x) �= 0 for all (ξ, x) ∈ Δ × R. (4.11)

From (4.11) and Lemma 2.7 we deduce that there exists an �1 > 1 such that (4.9) is fulfilled. Obviously, �1
can be chosen so that �1 ≥ �. �
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The following lemma is the main result of this subsection.

Lemma 4.9. If the operator N is Fredholm on the space Lp(R+), then

(a) there exist an � > 1 such that

n(t, x)f(t, x) = h̃(t, x)v(t, x) for all (t, x) ∈ T� × R, (4.12)

where the functions n, f , h̃ and v are defined by (1.5), (3.28), (4.7) and (3.29), respectively;
(b) there exists an �1 ≥ � such that n(t, ·) ∈ GSAP and

indR n(t, ·) = 1
2π {arg h̃(t, x)}x∈R

for all t ∈ T�1 . (4.13)

Proof. (a) From Theorem 1.2 we deduce that Lemmas 3.5 and 4.7–4.8 are applicable. From Lemma 4.7, the 
construction in Lemma 4.6, and (4.6)–(4.7) we deduce that there exists an � > 1 such that

sup
t∈T�

max
(∣∣∣∣ν−1 (t)

ν+
1 (t)

∣∣∣∣ , ∣∣∣∣ν−2 (t)
ν+
2 (t)

∣∣∣∣) < 1, (4.14)

inf
(t,x)∈T�×R

|v(t, x)| > 0, (4.15)

and

h̃(t, x) = b(t, x) + m(t, x)rγ∗(x)
v(t, x) for all (t, x) ∈ T� × R.

Combining this equality with (3.30), we arrive at (4.12). Part (a) is proved.
(b) Taking into account that h̃ ∈ Ẽ(R+, V (R)), we deduce that h̃(t, ·) ∈ V (R) ⊂ C(R) ⊂ SAP for all 

t ∈ R+. By Lemma 4.8, there exists an �1 ≥ � such that (4.9) holds, whence the functions h̃(t, ·) belong to 
GSAP for all t ∈ T�1 . By Lemma 4.1(a),

indR h̃(t, ·) = 1
2π {arg h̃(t, x)}x∈R

, t ∈ T�1 . (4.16)

By Lemma 4.2, f(t, ·) ∈ GSAP for all t ∈ R+ and

indR f(t, ·) = 0, t ∈ R+. (4.17)

Since the slowly oscillating shifts α, β : R+ → R+ have only two fixed points at zero and infinity, we see 
that

ω(t) = log[α(t)/t] �= 0, η(t) = log[β(t)/t] �= 0 for all t ∈ R+.

Then from (4.14)–(4.15) and Lemma 4.3 it follows that v(t, ·) ∈ GSAP for every t ∈ T�1 and

indR v(t, ·) = 0, t ∈ T�1 . (4.18)

Since h̃(t, ·), f(t, ·), v(t, ·) ∈ GSAP for all t ∈ T�1 , from (4.12) we deduce that n(t, ·) ∈ GSAP for t ∈ T�1 . 
Moreover, from (4.12), (4.16)–(4.18) and Lemma 4.1(c) we obtain (4.13). �
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4.3. Proof of Theorem 1.4

Part (a) of Theorem 1.4 follows from Lemma 4.9(b).
(b) We note that if the operator N is Fredholm, then the operators A+ = aI − bUα and A− = cI − dUβ

are invertible in view of Theorem 1.2. In turn, the invertibility of A+ (resp. A−) implies by Theorem 1.1
that either a � b, or b � a (resp., either c � d, or d � c). Hence the functions νa,b and νc,d are well defined 
by (1.8). It is obvious that νa,b, νc,d ∈ GSO(R+). The proof of part (b) of Theorem 1.4 is completed.

(c) If the operator N is Fredholm, then from Corollary 3.4, Theorem 2.9 and Lemma 2.7 it follows that 
there exists an � > 1 such that

inf
(t,x)∈T�×R

|h(t, x)| > 0 (4.19)

and

IndN = lim
τ→+∞

1
2π {arg h(t, x)}(t,x)∈∂Πτ

, (4.20)

where Πτ = [τ−1, τ ] × R and the function h ∈ Ẽ(R+, V (R)) is defined by (3.12). Let τ ∈ (�, ∞). Then, 
obviously,

{arg h(t, x)}(t,x)∈∂Πτ
= {arg h(τ, x)}x∈R

− {arg h(τ−1, x)}x∈R

+ {arg h(t,−∞)}t∈[τ−1,τ ] − {arg h(t,+∞)}t∈[τ−1,τ ]. (4.21)

From Lemma 3.7 we obtain

{arg h(t,−∞)}t∈[τ−1,τ ] = {arg(εc,dνc,d(t))}t∈[τ−1,τ ] = {arg νc,d(t)}t∈[τ−1,τ ], (4.22)

{arg h(t,+∞)}t∈[τ−1,τ ] = {arg(εa,bνa,b(t))}t∈[τ−1,τ ] = {arg νa,b(t)}t∈[τ−1,τ ]. (4.23)

On the other hand, by Lemmas 4.8 and 4.9(b), there exists an �1 ≥ � > 1 such that for all t ∈ T�1 we have

inf
(t,x)∈T�1×R

|h̃(t, x)| > 0 (4.24)

and

indR n(t, ·) = 1
2π {arg h̃(t, x)}x∈R

for all t ∈ T�1 , (4.25)

where n(t, ·) ∈ GSAP for all t ∈ T�1 and the function h̃ ∈ Ẽ(R+, V (R)) is defined by (4.7). Moreover,

h(ξ, x) = h̃(ξ, x), (ξ, x) ∈ Δ × R. (4.26)

From (4.19) and (4.24) we conclude that h(t, ·), ̃h(t, ·) ∈ C(R) ∩ GSAP for t ∈ T�1 . Fix ε > 0. Then in view 
of Lemma 4.1(d), (a) one can choose a δ = δ(ε) > 0 such that for all t ∈ T�1 the inequality

‖h(t, ·) − h̃(t, ·)‖L∞(R) < δ (4.27)

implies that

| indR h(t, ·) − indR h̃(t, ·)| = 1 ∣∣∣{arg h(t, ·)}x∈R
− {arg h̃(t, ·)}x∈R

∣∣∣ < ε. (4.28)
2π
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Since h − h̃ ∈ Ẽ(R+, V (R)), from (4.26) and Lemma 2.8 we deduce that for the chosen δ > 0 there exists 
an �2 = �2(δ) > �1 > 1 such that (4.27) holds for all t ∈ T�2 . Hence, for every ε > 0 there is an �2 > 1 such 
that if t ∈ T�2 , then (4.28) holds. Thus

lim
t→s

1
2π

(
{arg h(t, x)}x∈R

− {arg h̃(t, x)}x∈R

)
= 0, s ∈ {0,∞}.

From these equalities and (4.25) it follows that

lim
τ→+∞

(
1
2π {arg h(τ±1, x)}x∈R

− indR n(τ±1, ·)
)

= 0. (4.29)

Finally, applying (4.20)–(4.23) and then (4.29), we get

IndN =

= lim
τ→+∞

1
2π

(
{arg h(τ, x)}x∈R

− {arg h(τ−1, x)}x∈R
+ {arg h(t,−∞)}t∈[τ−1,τ ] − {arg h(t,+∞)}t∈[τ−1,τ ]

)
= lim

τ→+∞
1
2π

(
{arg h(τ, x)}x∈R

− {arg h(τ−1, x)}x∈R
+ {arg νc,d(t)}t∈[τ−1,τ ] − {arg νa,b(t)}t∈[τ−1,τ ]

)
− lim

τ→+∞

(
1
2π {arg h(τ, x)}x∈R

− indR n(τ, ·)
)

+ lim
τ→+∞

(
1
2π {arg h(τ−1, x)}x∈R

− indR n(τ−1, ·)
)

= lim
τ→+∞

(
1
2π

({
arg νc,d(t)

}
t∈[τ−1,τ ] −

{
arg νa,b(t)

}
t∈[τ−1,τ ]

)
+ indR n(τ, ·) − indR n(τ−1, ·)

)
,

which completes the proof of Theorem 1.4. �
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