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Abstract

Quasi-variational inequality problems correspond to variational inequality

problems in which the constraint set depends on the variable. They are

playing nowadays an increasing role in the modelization of real life problem,

in particular, because they provide a perfect framework for the reformulation

of generalized Nash equilibrium problems. Our aim in this work is to estab-

lish the existence of solutions for quasi-variational inequalities defined by a

non monotone map and a constraint map which possibly admits unbounded

values. The key tools are the use of coercivity conditions and Himmelberg

fixed point theorem. Applications to existence of generalized Nash equilib-

rium is also considered.
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1. Introduction

Variational inequality problem was first introduced by Hartman and Stam-

pacchia in 1966. Variational inequality theory acts an important role in

applied mathematics, in particular for the problems of optimal control, opti-

mization theory, equilibrium problems, partial differential equations and its

related fields. Let X be a Banach space and X∗ its topological dual endowed

with weak∗ topology. Given a non-empty subset K of X and a set-valued

map T : K ⇒ X∗, the Stampacchia variational inequality problem S(T,K)

consists in finding a point x ∈ K such that

there exists x∗ ∈ T (x) with 〈x∗, y − x〉 ≥ 0, ∀y ∈ K.

Classical existence results for this problem require a compactness assump-

tion on the set K (see, [14]). Recently, Aussel and Hadjisavvas [7] proved

an existence result for Stampacchia variational inequality problem over un-

bounded set by using the following coercivity condition for the map T :

(C̄) ∃ ρ > 0, ∀ x ∈ K \ B̄(0, ρ), ∃ y ∈ K with ||y|| < ||x||
such that ∀ x∗ ∈ T (x), 〈x∗, x− y〉 ≥ 0.

A quasi-variational inequality corresponds to a variational inequality in

which the constraint set is depending on the variable. More precisely, given

two set-valued maps T : X ⇒ X∗ and K : D ⇒ D (where D is a non-

empty subset of X), a solution of the quasi-variational inequality problem

QVI(T,K) is a point x ∈ D such that

x ∈ K(x) and ∃ x∗ ∈ T (x) with 〈x∗, y − x〉 ≥ 0, ∀ y ∈ K(x).
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It is worth to mention that the quasi-variational inequality problem plays an

important role in the study of quasi-optimization problem and generalized

Nash equilibrium problem (see, e.g., [6, 13]). For some important results on

the existence of solutions for the quasi-variational inequality problem, one

can refer to [6, 18–20].

Again, similarly as for variational inequalities, most of the existence re-

sults for quasi-variational inequalities require some compactness of the set D

and/or of the values of the constraint map K (see, e.g., [6, 20]). But very

few results with possibly unbounded constraint maps have been proved in

the literature and they are stated with a monotonicity assumption on T ; see

[2, 21]. Our aim in this work is to establish such existence result under weak

monotonicity and regularity assumptions on the considered set-valued maps.

The present work can be seen as an extension to quasi-variational inequali-

ties of Bianchi et al. [10] where existence results for variational inequalities

were proved by considering different coercivity conditions. Note that in [9],

we have used similar set of weak monotonicity and regularity assumptions to

prove the existence of the so-called “projected solution” for non-self quasi-

variational inequalities. Nevertheless, both works differ since in [9], the aim

is to face quasi-variational inequalities with non-self but compact-valued con-

straint map while here we focus on quasi-variational inequalities defined by

self constraint map with (possibly) non-compact values.

The paper is organized as follows. After introducing the main concepts

and notations in Section 2, the concept of coercivity condition in the con-

text of quasi-variational inequality is discussed in Subsection 3.1. Then, in

Subsection 3.2, the existence of solutions for pseudomonotone and quasi-
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monotone quasi-variational inequalities with non-compact valued constraint

map is proved under coercivity assumptions in a finite dimensional space.

The case of a product of finite dimension and infinite dimension sets is con-

sidered in Subsection 3.3 for a particular case. Finally, an existence result for

quasiconvex generalized Nash equilibrium problem with unbounded strategy

sets is deduced.

2. Preliminaries

In this section we first recall some definitions and notations which will

be used in the sequel. As it will be observed in Remark 1 (c), one technical

assumption of the main existence results of this work forces them to be

restricted to the finite dimensional setting. Nevertheless, in this section and

subsection 3.1, the main concepts are given in the context of Banach spaces

since actually the forthcoming Proposition 1 and Proposition 2 hold true in

such general spaces.

Let X be a Banach space, X∗ its topological dual and 〈·, ·〉 be the duality
pairing. The topological dual X∗ is endowed with the weak∗ topology. Let

S be a non-empty subset of X. The topological interior, the closure and the

convex hull of S will be denoted by intS, clS and convS, respectively. We

denote the open ball and the closed ball in X with center x and radius ε > 0

by B(x, ε) and B̄(x, ε), respectively. The symbol T : X ⇒ X∗ stands for a

set-valued map T from X to X∗. The domain and the graph of a set-valued

map T will be denoted by domT and GrT , respectively. For any x, y ∈ X,

the notations [x, y] and ]x, y[ will be used for the sets {tx+(1−t)y : t ∈ [0, 1]}
and {tx+ (1− t)y : t ∈]0, 1[}, respectively.
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Let us now recall some classical definitions of generalized monotonicity of

a set-valued map. A set-valued map T : X ⇒ X∗ is called

− monotone on a subset K of X if,

〈y∗ − x∗, y − x〉 ≥ 0, for all x, y ∈ K, x∗ ∈ T (x) and y∗ ∈ T (y),

− pseudomonotone on a subset K of X if, for any x, y ∈ K,

∃ x∗ ∈ T (x) with 〈x∗, y − x〉 ≥ 0 ⇒ 〈y∗, y − x〉 ≥ 0, ∀y∗ ∈ T (y),

− quasimonotone on K if, for any x, y ∈ K,

∃ x∗ ∈ T (x) with 〈x∗, y − x〉 > 0 ⇒ 〈y∗, y − x〉 ≥ 0, ∀y∗ ∈ T (y).

Clearly any monotone map is also pseudomonotone and pseudomono-

tonicity implies quasimonotonicity. Immediate examples of pseudomonotone

maps that are not monotone, respecticvely of quasimonotone maps that are

not pseudomonotone, are the gradient of the differentiable functions x 	→ x3,

respectively the gradient of the function

x 	→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x3 if x < 0

0 if x ∈ [0, 1]

(x− 1)3 otherwise.

More generally the subdifferential of any lower semicontinuous pseudoconvex

(resp. quasiconvex) function is pseudomonotone (respectively quasimono-

tone), thus providing a wide family of such maps. The interested reader can

refer to [4, 16] for definitions and associated results.

The classical definitions of upper semi-continuity, lower semi-continuity

and closeness of a set-valued map can be found in [3].
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Recently, Hadjisavvas [15] introduced the following two refinements of

semicontinuity. A set-valued map T : X ⇒ X∗ is called lower sign-continuous

on a convex set K ⊆ X if for all x, y ∈ K,

∀t ∈]0, 1[, inf
x∗
t∈T (xt)

〈x∗
t , y − x〉 ≥ 0 ⇒ inf

x∗∈T (x)
〈x∗, y − x〉 ≥ 0,

where xt = tx+ (1− t)y. And the map T is called upper sign-continuous on

K if for all x, y ∈ K,

∀t ∈]0, 1[, inf
x∗
t∈T (xt)

〈x∗
t , y − x〉 ≥ 0 ⇒ sup

x∗∈T (x)

〈x∗, y − x〉 ≥ 0.

It is easily follows from the definitions that every lower sign-continuous map is

also upper sign-continuous. It is worth to note that each upper (respectively

lower) semi-continuous map is upper (respectively lower) sign-continuous.

Also, if T is upper (respectively lower) hemicontinuous, then the map T

is upper (respectively lower) sign-continuous on K (see [8]). We say that

the set-valued map T is locally upper sign-continuous [5] at x ∈ X if there

exist a convex neighbourhood Vx of x and an upper sign-continuous submap

Φx : Vx ⇒ X∗ where for each v ∈ Vx, Φx(v) is a non-empty, convex and

w∗-compact set satisfying Φx(v) ⊆ T (v) \ {0}. The concept of locally upper

sign-continuity acts an important role for the study of normal operator of

quasiconvex functions due to the fact that a cone-valued map need not be

upper semi-continuous (see [8]). More information and results on (locally)

upper sign-continuous map can be found in [5].

Finally, the map T is said to be dually lower semi-continuous [5] on a set

K ⊆ X if, for each x ∈ K and for each sequence (yk)k ⊆ K with yk → y,

lim inf
k

sup
y∗k∈T (yk)

〈y∗k, x− yk〉 ≤ 0 ⇒ sup
y∗∈T (y)

〈y∗, x− y〉 ≤ 0.
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Given a set K ⊆ X and a map T : X ⇒ X∗, the notation S∗(T,K) is

used for the set of star solutions, also called “nontrivial solutions”, of the

Stampacchia variational inequality, i.e.,

S∗(T,K) := {x ∈ K : ∃ x∗ ∈ T (x) \ {0} with 〈x∗, y − x〉 ≥ 0, ∀y ∈ K},

while M(T,K) stands for the set of solutions of the Minty variational in-

equality, i.e.,

M(T,K) := {x ∈ K : 〈y∗, y − x〉 ≥ 0, ∀y ∈ K, ∀y∗ ∈ T (y)}.

It is easy to note that the set M(T,K) is closed and convex whenever K is

closed and convex.

Let D be a non-empty subset of X. For two set-valued maps T : X ⇒ X∗

and K : D ⇒ D, we denote by QV I∗(T,K), the set of star solutions of the

Stampacchia quasi-variational inequality, i.e.,

QV I∗(T,K) :=

{
x ∈ K(x) : ∃ x∗ ∈ T (x)\{0} with 〈x∗, y−x〉 ≥ 0, ∀y ∈ K(x)

}
.

3. Main Results

3.1. Coercivity Conditions for Quasi-Variational Inequalities

In [10], Bianchi et al. defined and discussed different coercivity conditions

for pseudomonotone and quasimonotone Stampacchia and Minty variational

inequalities. In this subsection, let us adapt those coercivity conditions to

the context of quasi-variational inequalities.

The main coercivity condition, denoted by (C̄μ) that we will consider is

defined as follows: let D be a non-empty convex subset of a Banach space
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X. Let T : X ⇒ X∗ and K : D ⇒ D be two set-valued maps. For every

μ ∈ D, the coercivity condition (C̄μ) holds at μ if:

(C̄μ) ∃ ρμ > 0, ∀x ∈ K(μ) \ B̄(0, ρμ), ∃ y ∈ K(μ) with ||y|| < ||x||
such that ∀x∗ ∈ T (x), 〈x∗, x− y〉 ≥ 0.

Whenever the constraint map K is constant (that is, K(μ) = D ∀μ), the
coercivity condition (C̄μ) simply coincides with the condition (C̄). Further,

in the case of constant constraint map, it is easy to see that (C̄μ) is equivalent

to the coercivity condition (C ′), considered in [10].

Example 1. In order to show that the coercivity condition (C̄μ) is not too

restrictive, let us consider the quasi-variational inequality defined by D =

(R+)2, K(μ1, μ2) = {(x1, x2) ∈ D : x2 − μ2 ≤ 0} = R
+ × [0, μ2] and the map

T being the Clarke subdifferential of the Liptchitz function f defined on R
2

by

f(x1, x2) =

⎧⎨
⎩

x2
1 + x2

2 if ‖(x1, x2)‖2 ≤ 1

1 otherwise.

One has therefore

T (x1, x2) = ∂Cf(x1, x2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{(2x1, 2x2)} if ‖(x1, x2)‖2 < 1

[0,+∞[ {(x1, x2)} if ‖(x1, x2)‖2 = 1

{(0, 0)} otherwise.

For any μ = (μ1, μ2) ∈ D set ρμ = 1. Then for any x ∈ K(μ) \ B̄((0, 0), 1),

one has 〈x∗, x− y〉 = 0, for any y = αx+ (1− α)x/‖x‖ with α ∈ ]0, 1].

Another important coercivity condition, called (C), has been used and

compared with (C ′) in [10]. In the context of QVI, this condition (C) would
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turn out to express as follows: for every μ ∈ D, the coercivity condition (Cμ)

holds at μ if:

(Cμ) ∃nμ ∈ N, ∀x ∈ K(μ) \Knμ (where Knμ = {z ∈ K(μ) : ||z|| ≤ nμ}),
∃ y ∈ Knμ with such that ∀x∗ ∈ T (x), 〈x∗, x− y〉 ≥ 0.

It is important to note that conditions (C̄μ) and (Cμ) are trivially satisfied for

any μ ∈ D for which K(μ) is bounded. Indeed, in this case one can simply

consider ρμ (or nμ) greater than diam(0, K(μ)) := max{||y|| : y ∈ K(μ)}.
In the case of variational inequalities, the interrelations between (C̄), (C)

and the non-emptiness of the solution set of S(T,K) have been described in

[10, Theorem 3.2]. A partial counterpart for quasi-variational inequalities is

given in the following result.

Proposition 1. Let D be a non-empty convex subset of a Banach space X.

Let T : X ⇒ X∗ and K : D ⇒ D be two set-valued maps. Consider the

following statements:

(i) QV I(T,K) �= ∅;
(ii) there exists μ ∈ D such that the condition (Cμ) holds;

(iii) there exists μ ∈ D such that the condition (C̄μ) holds.

Then, one always has (ii) ⇒ (iii). Moreover, (i) ⇒ (ii) provided the map T

is pseudomonotone on D.

Proof. The implication (ii) ⇒ (iii) clearly comes from the fact that, for any

x ∈ K(μ)\Knμ , [K(μ)∩B(0, nμ)] ⊂ [K(μ)∩B(0, ||x||)]. Let us assume that T

is pseudomonotone. In order to prove (i) ⇒ (ii), let us pick μ ∈ QV I(T,K)
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and choose nμ ∈ N with nμ > ||μ||. By the pseudomonotonicity of T , one has

〈x∗, x − μ〉 ≥ 0, for any x ∈ K(μ) and x∗ ∈ T (x). Therefore the coercivity

condition (Cμ) is satisfied for y = μ. �

As it can be observed from the above proof, the items (ii) and (iii) of

Proposition 1 can actually be specified as follows: for any μ ∈ QV I(T,K),

condition (C̄μ) (respectively, (Cμ)) holds. We should note that, in the above

Proposition 1, the implication (i) ⇒ (ii) or (i) ⇒ (iii) do not hold in general

if the map T is not pseudomonotone. The following example illustrates this

situation.

Example 2. Let us consider the subset D = R × [0,∞[ of R2 and let T :

D ⊆ R
2 ⇒ R

2 be defined by for all (x1, x2) ∈ D,

T (x1, x2) =

⎧⎨
⎩

{(0, 1)} if x2 �= 1

{(t, 1) : t ∈ [0, 1]} if x2 = 1.

and the constraint map K : D ⇒ D by

K(x1, x2) =]−∞, x1]× [0,∞[.

Then T is not pseudomonotone (take x = (0, 0) and y = (−2, 1)) and (0, 0) ∈
QV I(T,K) (which is thus a nonempty set). But the coercivity condition

(C̄μ) (respectively, (Cμ)) does not hold for any μ ∈ D (consider for example

μ = (−2, 0) and for any ρμ > 0, x = (−2ρμ, 0)).

Contrary to [10, Theorem 3.2], the above Proposition 1 does not establish

a full equivalence of the three considered items. Indeed, as it will be seen in

the forthcoming Theorems 1 and 3, the following uniform coercivity condition
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(C̄u) is required to deduce the existence of solutions for quasi-variational

inequalities.

Definition 1. Let D be a non-empty subset of a Banach space X. Let

T : X ⇒ X∗ and K : D ⇒ D be two set-valued maps. Then the quasi-

variational inequality QV I(T,K) is said to satisfy the uniform coercivity

condition (C̄u) if:

(a) the coercivity condition (C̄μ) holds for all μ ∈ D;

(b) there exists ρ > sup{ρμ : μ ∈ D} such that K(μ) ∩ B̄(0, ρ) �= ∅ for all

μ ∈ D.

Simple examples for which the coercivity conditions (Cμ), (C̄μ) or (C̄
u) are

satisfied will be given in the forthcoming Example 3 and Remark 1 b).

3.2. General Existence Results

The following theorem is one of our main results. It establishes the exis-

tence of solution to the quasi-variational inequality problem for non-compact

valued constraint maps.

Theorem 1. Let D a non-empty closed convex subset of Rn. Let T : D ⊆
R

n ⇒ R
n and K : D ⇒ D be two set-valued maps. Then, QVI(T,K) admits

at least one solution if the following properties hold:

(i) T is pseudomonotone and locally upper sign-continuous on D;

(ii) the map K is closed, lower semi-continuous and convex valued map

with intK(μ) �= ∅ for all μ ∈ D;

(iii) the quasi-variational inequality QV I(T,K) satisfies the uniform coer-

civity condition (C̄u).
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In order to prove the above theorem, the following lemma will be used.

Lemma 1. Let D be a non-empty convex subset of Rn. Suppose that K :

D ⇒ D is a lower semi-continuous map with closed convex values. Then,

for any ρ > 0, the map Kρ : D ⇒ D defined by Kρ(μ) = K(μ) ∩ B̄(0, ρ) is

lower semi-continuous provided int(Kρ(μ)) �= ∅ for all μ ∈ D.

Proof. Let μ ∈ D and y ∈ K(μ) ∩ B(0, ρ) be arbitrary. Let (μn)n be an

arbitrary sequence such that μn → μ as n → ∞. As y ∈ K(μ) and K is

lower semi-continuous, there exists a sequence yn ∈ K(μn) such that yn → y.

Thus there exits a sequence (zn)n such that zn ∈ K(μn) ∩ B̄(0, ρ) ∀n ∈ N

and (zn)n converges to y. As y ∈ K(μ) ∩ B(0, ρ) is arbitrary, we have

[K(μ) ∩ B(0, ρ)] ⊆ Liminfμn→μKρ(μn) and thus

cl(K(μ) ∩ B(0, ρ)) ⊆ cl(Liminfμn→μKρ(μn)) = Liminfμn→μKρ(μn). (1)

Now, we claim that

cl(K(μ) ∩ B(0, ρ)) = K(μ) ∩ B̄(0, ρ). (2)

Since [K(μ) ∩ B(0, ρ)] ⊆ K(μ) ∩ B̄(0, ρ) and K(μ) is closed, cl(K(μ) ∩
B(0, ρ)) ⊆ K(μ) ∩ B̄(0, ρ). Let z ∈ K(μ) ∩ B̄(0, ρ). As K(μ) ∩ B̄(0, ρ)

is convex and int(K(μ) ∩ B̄(0, ρ)) �= ∅, there exists a sequence (un)n ⊂
int(K(μ) ∩ B̄(0, ρ)) = int(K(μ)) ∩ B(0, ρ)) converging to z. Thus, it follows

that z ∈ cl(K(μ)∩B(0, ρ)). Therefore our claim (2) is true. By (1) and (2),

we have

Kρ(μ) = K(μ) ∩ B̄(0, ρ) ⊆ Liminfμn→μKρ(μn).

Therefore Kρ is lower semi-continuous at μ. �
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Proof of Theorem 1. Define a map G : D ⇒ D by G(x) := S(T,Kρ(x))

for any x ∈ D where Kρ : D ⇒ D is defined by Kρ(μ) := K(μ) ∩ B̄(0, ρ)

for all μ ∈ D. Let μ ∈ D be arbitrary. As K(μ) ∩ B̄(0, ρ) is non-empty,

we have K(μ) ∩ B(0, ρ) �= ∅. Indeed, let z ∈ K(μ) ∩ B̄(0, ρ) with ||z|| = ρ.

Then, according to (C̄μ) and since ρμ < ρ, there exists z′ ∈ K(μ) such that

||z′|| < ||z||, that is, ||z′|| < ρ.

Let p ∈ K(μ)∩B(0, ρ) be arbitrary. Since K(μ) is convex and intK(μ) �=
∅, there exists a sequence (pn)n∈N with pn ∈ intK(μ) and (pn)n converges to

p. Thus pn ∈ intK(μ) ∩ B(0, ρ) for sufficiently large n and hence intK(μ) ∩
B(0, ρ) �= ∅. Therefore it follows that

int(Kρ(μ)) = int(K(μ) ∩ B̄(0, ρ)) = intK(μ) ∩ B(0, ρ) �= ∅. (3)

Since μ ∈ D is arbitrary in (3) and according to Lemma 1, the map Kρ is

lower semi-continuous. Also, the closedness of Kρ is clear from the closedness

ofK and B̄(0, ρ). Finally, it is easy to see thatKρ is convex valued. Therefore

Kρ is closed, lower semi-continuous and convex valued map with intKρ(μ) �=
∅ for all μ ∈ D. Hence it follows from [5, Proposition 4.2] that the map G is

closed. Now, G(D) is a compact subset of Rn since G(D) ⊆ K(D) ∩ B̄(0, ρ)

and K is closed. Thus, the map G is upper semi-continuous on D.

It follows from [5, Lemma 3.1, (ii)] and the pseudomonotonicity and lo-

cally upper sign-continuity of T that

G(x) = S(T,Kρ(x)) = M(T,Kρ(x)), ∀ x ∈ D. (4)

Since Kρ is compact-valued and combining (4) with [7, Lemma 2.1] and [7,

Proposition 2.1], the map G has non-empty and convex values.
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Hence, G is an upper semi-continuous map with non-empty, convex and

closed values. Also, G(D) is contained in a compact set K(D) ∩ B̄(0, ρ) of

D. According to the fixed point theorem due to Himmelberg [17, Theorem

2], the map G has a fixed point. This means that there exists a point x0 ∈
Kρ(x0) = K(x0) ∩ B̄(0, ρ) such that

∃ x∗
0 ∈ T (x0) with 〈x∗

0, y − x0〉 ≥ 0, ∀ y ∈ K(x0) ∩ B̄(0, ρ). (5)

We now claim that there exists y0 ∈ K(x0) ∩B(0, ρ) such that

∀ x∗ ∈ T (x0), 〈x∗, x0 − y0〉 ≥ 0. (6)

Indeed, if ||x0|| = ρ, then by (C̄x0) and since ρ > ρx0 , (6) comes by considering

x = x0 in (C̄x0). If ||x0|| < ρ, then one can simply take y0 = x0. In both

cases, by combining (6) with (5), one has 〈x∗
0, x0 − y0〉 = 0.

Now, let y be an arbitrary element of K(x0). Then there exists t ∈ (0, 1)

such that (1 − t)y + ty0 ∈ K(x0) ∩ B̄(0, ρ). Therefore, from (5), we have

〈x∗
0, (1− t)y + ty0 − x0〉 ≥ 0 and thus 〈x∗

0, y− x0〉 ≥ 0. The point y being an

arbitrary element of K(x0), x0 is a solution of QV I(T,K). �

Let us now give a simple example of quasi-variational inequality for which

the existence of a solution can be proved using Theorem 1 while the classical

existence theorems fail.

Example 3. Let us consider the subset D = (R+)2 and let T : D ⊆ R
2 ⇒ R

2

be defined by for all (x1, x2) ∈ D,

T (x1, x2) =

⎧⎨
⎩

(1, 1) if x2 �= 1

{(t, t) : t ∈ [1, 2]} if x2 = 1.
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Then, T is upper semi-continuous on D with non-empty, convex and compact

values. Hence T is locally upper sign-continuous on D. Also, it is easy to

check that T is pseudomonotone on D.

Let us define the constraint map K : D ⇒ D as follows:

K(x1, x2) =

⎧⎨
⎩

[0, 1]× [0,∞[ if 0 ≤ x1 < 1,

[0, x]× [0,∞[ if x1 ≥ 1.

One can easily verify that the map K is closed, lower semi-continuous and

convex-valued with intK(μ) �= ∅ for all μ ∈ D. Consider ρμ = 1 for all μ ∈ D.

Then the coercivity condition (C̄μ) holds for all μ ∈ D for the set-valued map

T and the constraint map K. Moreover, for any ρ > sup{ρμ : μ ∈ D} = 1,

K(μ) ∩ B̄(0, ρ) �= ∅ for all μ ∈ D. Thus the uniform coercivity condition

(C̄u) is also satisfied. Hence, according to Theorem 1, the quasi-variational

inequality QV I(T,K) admits at least one solution.

Nevertheless classical existence results (see e.g. [2, 21]) cannot apply for

this very simple example since there are based on a monotonicity assumption

on T and here this map is clearly not monotone on D (consider the ele-

ments (x, x∗) = ((0, 1), (2, 2)) and (y, y∗) = ((1, 1), (1, 1)) of GrT ). Note that

actually x̄ = (0, 0) is a trivial solution of this quasi-variational inequality.

Finally, the existence results proved in [6] (see for example Proposition 3.2

therein) cannot be applied to this example since D is not bounded (and thus

not compact).

Remark 1. a) As a corollary to the above theorem, we can deduce [6, Propo-

sition 3.2] whenever the set D is compact.

b) Let us observe that the classical Kakutani fixed point theorem cannot

be used in the above proof because the set D is not assumed to be bounded.
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c) Due to assumption (ii) and the uniform coercivity condition, Theorem

1 cannot be extended to infinite dimensional setting. Indeed, as observed in

the proof of the theorem, for any μ ∈ D, K(μ) ∩ B̄(0, ρ) is a compact set

with non-empty interior, thus forcing K to be defined on a finite dimensional

space.

d) Let us observe that under the assumptions of Theorem 1, the solution

set QV I(T,K) is closed. Indeed, let {xn} be a sequence in D such that

xn ∈ QV I(T,K) for all n and xn → x as n → ∞. Since D is closed, x ∈ D.

Define the map S : D ⇒ D where for any μ ∈ D, S(μ) = S(T,K(μ)).

According to [5, Proposition 4.2], the map S is closed under the assumptions

of Theorem 1. As xn ∈ S(xn) for all n, we have that x ∈ S(x) or in other

words x ∈ QV I(T,K).

e) Note nevertheless that even under the set of assumptions of Theorem

1 the solution set QV I(T,K) of the quasi-variational inequality may not be

compact. Indeed if one consider the set D of R
2 and the constraint map

K defined in Example 3 and slightly modifies the map T by setting T (x) =

{(0, 1)}, for any x in D, then one can easily verify that the unbounded set

D∗ = [0,+∞[×{0} is included in the solution set QV I(T,K).

In [21], Tian et al. established the following existence result for quasi-

variational inequality on a non-compact set of an infinite dimensional space

(under some coercivity condition) without assuming the non-emptiness of

intK(.). But on the other hand, the map T is assumed to be monotone and

upper hemi-continuous, both being stronger assumptions than those of The-

orem 1. Moreover in their existence result, the values of T are additionally

required to be convex and compact.
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Theorem 2. [21] Let D be a non-empty convex subset of a locally convex

Hausdorff topological vector space E. Let T : D ⇒ E∗ be a monotone and

upper hemi-continuous map with compact convex values and K : D ⇒ D

be a closed lower semi-continuous map with non-empty closed convex values.

Suppose that there exist a non-empty compact convex set Z ⊆ D and a non-

empty subset M ⊆ Z such that

(i) K(M) ⊆ Z and K(x) ∩ Z �= ∅ for all x ∈ Z;

(ii) for each x ∈ Z\M , there exists y ∈ K(x)∩Z with infu∈T (y)〈u, x−y〉 > 0.

Then QVI(T,K) admits at least one solution.

In our next existence result, the pseudomonotonicity assumption made

on map T in Theorem 1 is reduced to an hypothesis of quasimonotonicity

but the semi-continuity of this map is reinforced.

Theorem 3. Let D be a non-empty closed convex subset of R
n. Let T :

D ⊆ R
n ⇒ R

n and K : D ⇒ D be two set-valued maps. Then, QV I∗(T,K)

admits at least a solution if the following properties hold:

(i) T is quasimonotone, locally upper sign-continuous and dually lower

semi-continuous on D;

(ii) the map K is closed, lower semi-continuous and convex valued map

with intK(μ) �= ∅ for all μ ∈ D;

(iii) the quasi-variational inequality QV I(T,K) satisfies the uniform coer-

civity condition (C̄u).

To prove Theorem 3, the following lemma is useful. It is a direct conse-

quence of [7, Lemma 2.1] and [7, Proposition 2.1].
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Lemma 2. Let T : Rn ⇒ R
n be a set-valued map and K be a non-empty

convex and compact subset of Rn. If T is quasimonotone and locally upper

sign-continuous on K with convex values, then S∗(T,K) is non-empty.

Proof of Theorem 3. Define a map G∗ : D ⇒ D by G∗(x) := S∗(T,Kρ(x))

for any x ∈ D where Kρ : D ⇒ D is given by Kρ(μ) := K(μ) ∩ B̄(0, ρ) for

all μ ∈ D. Following the same lines as in the proof of Theorem 1, one can

deduce that Kρ is closed, lower semi-continuous and convex valued map with

intKρ(μ) �= ∅ for all μ ∈ D. Hence, it follows from [5, Proposition 4.3] that

the map G∗ is closed. Thus, the set-valued map G∗ is upper semi-continuous

on D as G∗(D) ⊆ K(D) ∩ B̄(0, ρ) and K is closed.

Let x be an arbitrary element of D. Combining hypothesis i) and the

non-emptiness of the interior of the values of K, it follows from [5, Lemma

3.1 i) and iv)] that

G∗(x) = S∗(T,Kρ(x)) = M(T,Kρ(x)). (7)

Since Kρ(x) is compact, Lemma 2 implies that G∗(x) �= ∅. Moreover, by (7),

we clearly have that G∗ is closed-valued and convex-valued.

Hence G∗ is an upper semi-continuous map with non-empty convex closed

values. Also, G∗(D) is contained in a compact set K(D) ∩ B̄(0, ρ) of D.

According to the fixed point theorem due to Himmelberg [17, Theorem 2],

the map G∗ has a fixed point. This means that there exists a point x0 ∈
Kρ(x0) = K(x0) ∩ B̄(0, ρ) such that

∃ x∗
0 ∈ T (x0) \ {0} with 〈x∗

0, y − x0〉 ≥ 0, ∀ y ∈ K(x0) ∩ B̄(0, ρ).

Similarly to the proof of Theorem 1, it can be proved that 〈x∗
0, y − x0〉 ≥ 0

for all y ∈ K(x0). �
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In the case where D is a compact set, one can recover [6, Proposition 3.3]

from the above theorem.

Remark 2. By the same arguments as in Remark 1 d) but using [5, Proposi-

tion 4.3], one can prove that the solution set QV I∗(T,K) is closed, provided

that the assumptions of Theorem 3 are satisfied.

Moreover the example of Remarks 1 e) also shows that the solution set

QV I∗(T,K) may be non compact since D∗ = [0,+∞[×{0} ⊂ QV I∗(T,K).

3.3. Quasi-variational Inequalities with Product Constraint Maps

Motivated by the approach used in [11, 12] for generalized Nash equi-

librium problems, we now consider a quasi-variational inequality, where the

constraint map K is defined by a product K(x) =
∏N

ν=1 Kν(x), where for

any ν, the component-mapsKν are either single-valued or convex-valued map

with intKν(μ) �= ∅ for all μ ∈ D. As it will be shown in the forthcoming

Section 4, this specific case is particularly adapted to the quasi-variational

inequalities coming from the reformulation of generalized Nash equilibrium

problems. Moreover, it gives an example in which the non-emptiness of the

interior of the values of the constraint map K does hold true.

Let us first define the following concept of semi-continuity. Let X be a

Banach space with topological dual X∗. A set-valued map T : X ⇒ X∗ is

said to be strongly dual lower semi-continuous on a set M ⊆ X if, for each

x, y ∈ M and each sequences (xk)k and (yk)k of M converging to x and y

respectively,

lim inf
k

sup
y∗k∈T (yk)

〈y∗k, xk − yk〉 ≤ 0 ⇒ sup
y∗∈T (y)

〈y∗, x− y〉 ≤ 0. (8)
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It is worth to note that the concept of strongly dual lower semi-continuous

map is slightly different from the concept of dually lower semi-continuity

introduced in Subsection 2. Indeed, the above implication is assumed to

hold for any sequence (xk)k converging to x. Hence, any strongly dual lower

semi-continuous map is dually lower semi-continuous. Moreover, any lower

semi-continuous map is also strongly dual semi-continuous. Indeed, for any

y ∈ T (y) there exists a sequence (y∗k)k converging to y∗ with y∗k ∈ T (yk) for

any k. Thus if the left hand side of (8) holds true then lim infk〈y∗k, xk−yk〉 ≤ 0

and the conclusion follows by the continuity of the scalar product. Note that

a concept similar to strongly dual lower semi-continuity has been already

used in [1, Th. 4.2] to establish the lower semi-continuity of the solution

map of a perturbed Stampacchia variational inequality.

Theorem 4. Let T : Rn ⇒ R
n be a set-valued map and D be a non-empty

closed convex subset of Rn. Suppose that K : D ⇒ D is defined by K(x) :=∏N
ν=1 Kν(x), where Kν : D ⇒ R

nν for ν = 1, . . . , N . Then, QV I∗(T,K)

admits at least a solution if the following properties hold:

(i) T is quasimonotone, locally upper sign-continuous and strongly dual

lower semi-continuous on D;

(ii) for each ν, Kν : D ⇒ R
nν are either single-valued continuous map or

closed lower semi-continuous convex-valued map with intKν(μ) �= ∅ for

all μ ∈ D;

(iii) the quasi-variational inequality QV I(T,K) satisfies the uniform coer-

civity condition (C̄u).

To prove the above theorem, we need the following lemma from [5].
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Lemma 3. [5, Lem. 4.1] Let (Qk)k≥1 be a sequence of convex subsets of Rn

with intQk �= ∅ ∀k. Assume that there exists a convex set Q ⊆ R
n such that

Q ⊆ Liminfk→∞intQk. If intQ �= ∅, then for each y ∈ intQ, there is k0 ∈ N

such that y ∈ intQk for all k ≥ k0.

Proof of Theorem 4. Define a map G∗ : D ⇒ D by G∗(μ) := S∗(T,K(μ) ∩
B̄(0, ρ)) for any μ ∈ D. As in the beginning of the proof of Theorem 3, by

combining hypothesis (i) and the non-emptiness of the values of K, one can

deduce that for any μ ∈ D, G∗(μ) = S∗(T,K(μ) ∩ B̄(0, ρ)) = M(T,K(μ) ∩
B̄(0, ρ)) and thus that the values of G∗ are non-empty, closed and convex.

Let us show now that the map G∗ is closed. So, let {(μn, xn)}n ⊆ GrG

be an arbitrary sequence such that ((μn, xn))n converging to (μ, x). Thus

xn ∈ K(μn) ∩ B̄(0, ρ). Since Kν is closed for each ν = 1, 2, . . . , N , we

have x ∈ K(μ) and hence x ∈ K(μ) ∩ B̄(0, ρ). It remains to show that

〈x∗, y − x〉 ≥ 0 for any y ∈ K(μ) ∩ B̄(0, ρ) and some x∗ ∈ T (x) \ {0}. It will
be done in three steps.

Since K(μ) ∩ B̄(0, ρ) �= ∅, we have from the uniform coercivity condition

that K(μ) ∩ B(0, ρ) �= ∅. Let I1 be the set of those ν for which Kν is

single-valued and I2 = {1, . . . , N} \ I1.
So, as a first step, let us consider an arbitrary element p = (p1, . . . , pN)

of K(μ) ∩ B(0, ρ) such that pν ∈ intKν(μ) for ν ∈ I2. Clearly, pν = xν for

ν ∈ I1. For each ν ∈ I2, since Kν(μn) (for any n) and Kν(μ) are convex

with non-empty interior and the map Kν is lower semi-continuous, it follows

from Lemma 3 that there exists jν ∈ N such that pν ∈ intKν(μn), ∀n ≥ jν .

Let us define a sequence (pn = (p1n, . . . , p
N
n ))n where for each n ∈ N, pνn = xν

n

for ν ∈ I1 and pνn = pν otherwise. Thus pn ∈ K(μn) ∩ B(0, ρ), for any n >
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j = maxν∈I2 jν . Clearly the convergence of (xn)n to x immediately implies

that (pn)n converges to p. Since xn ∈ S∗(T,K(μ) ∩ B̄(0, ρ)) = M(T,K(μ) ∩
B̄(0, ρ)) for all n ∈ N, we have

〈p∗n, pn − xn〉 ≥ 0, ∀p∗n ∈ T (pn) and ∀n ≥ j.

By the strong dual lower semi-continuity of T at p, we have 〈p∗, p−x〉 ≥ 0 for

all p∗ ∈ T (p).

Second, let z = (z1, . . . , zN) be an arbitrary element of K(μ) ∩ B(0, ρ).

Then there exists a sequence (zn = (z1n, . . . , z
N
n ))n in K(μ)∩B(0, ρ) such that

(zn)n converges to z and (zνn)n ⊆ intKν(μ) for each ν ∈ I2. Thus it follows

from the above paragraph that for each n ∈ N,

〈z∗n, zn − x〉 ≥ 0, ∀z∗n ∈ T (zn).

By the dual lower semi-continuity of T at z, we have 〈z∗, z − y〉 ≥ 0 for all

z∗ ∈ T (z).

Finally, let y be an arbitrary element of K(μ) ∩ B̄(0, ρ). Since K(μ) ∩
B(0, ρ) �= ∅ and K(μ) ∩ B(0, ρ) is convex, there exists a sequence (yn =

(y1n, . . . , y
N
n ))n ⊆ K(μ) ∩ B(0, ρ) such that (yn)n converges to y. Hence, it

follows from the above paragraph and continuity arguments that 〈y∗, y−x〉 ≥
0 for all y∗ ∈ T (y). Therefore x ∈ M(T,K(μ) ∩ B̄(0, ρ)) = S∗(T,K(μ) ∩
B̄(0, ρ)), showing that the map G∗ is closed.

Now following the same arguments as in the end of the proof of The-

orem 1, there exist x0 ∈ K(x0) ∩ B̄(0, ρ) and x∗
0 ∈ T (x0) \ {0} such that

〈x∗
0, y − x0〉 ≥ 0, ∀y ∈ K(x0). �
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Let us end this section by observing that, by slightly adapting the above

proof, one can easily extend Theorem 4 to the following infinite dimensional

setting:

Proposition 2. Let I = I1∪ I2 be a finite subset of natural numbers and for

each i ∈ I1, Xi be a Banach space with topological dual X∗
i equipped with the

weak∗ topology. Let T :
∏

i∈I1 Xi ×
∏

j∈I2 R
nj ⇒

∏
i∈I1 X

∗
i × ∏

j∈I2 R
nj be a

set-valued map and D be a non-empty convex subset of
∏

i∈I1 Xi×
∏

j∈I2 R
nj .

Suppose that K : D ⇒ D is defined by K(μ) =
∏

i∈I1 Ki(μ) ×
∏

j∈I2 Kj(μ),

where Ki : D ⇒ Xi for i ∈ I1 and Kj : D ⇒ R
nj for j ∈ I2. Then,

QV I∗(T,K) admits at least a solution if the following conditions hold:

(i) T is quasimonotone, locally upper sign-continuous and strongly dual

lower semi-continuous on D;

(ii) for each i ∈ I1, Ki are closed lower semi-continuous convex-valued map

with intKj(μ) �= ∅ for all μ ∈ D and for each j ∈ I2, Kj are single-

valued continuous map;

(iii) the quasi-variational inequality QV I(T,K) satisfies the uniform coer-

civity condition (C̄u) and the set D ∩ B̄(0, ρ) is compact.

4. Application to GNEP

The Nash equilibrium problems are non-cooperative games in which the

payoff/cost function that any player tends to maximize/minimize depends on

the strategy vector of the concurrent players. The generalized Nash equilib-

rium problems (GNEP) is a Nash equilibrium problem in which the strategy

set of each player is also depending of the strategies of the other players. This
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situation occurs, typically, as soon as the the amount of available exchange

commodies are limited.

To be more precise, suppose that there areN players in the non-cooperative

game, each player ν controlling the strategy variable xν ∈ R
nν . According to

classical notation, x denotes the vector formed by all strategy variables:

x = (x1, . . . , xN) and n = n1 + n2 + · · ·+ nN ,

while x−ν stands for the vector formed by all players’ decision variables except

the ones of player ν. Hence the notation x = (xν , x−ν) is commonly used

in the literature (see, e.g., [14]). On the other hand, for each player ν, the

strategy xν belongs to the set Kν(x
−ν) ⊆ R

nν that depends on the strategy

variables of the other players. For the given strategy vector x−ν , the aim of

the player ν is to choose a strategy xν which solves the following optimization

problem

(Pν) min
xν

θν(x
ν , x−ν), subject to xν ∈ Kν(x

−ν),

where θν : Rn → R is the cost function of the player ν that depends on both

his own strategy xν as well as the strategy vector x−ν of the rival players.

For any given strategy vector x−ν of the rival players, we denote the solution

set of the problem (Pν) by Solν(x
−ν). The Generalized Nash equilibrium

problem (GNEP) consists in finding a vector x̄ such that x̄ν ∈ Solν(x̄
−ν), for

any ν. Then such a vector x̄ is called a Generalized Nash equilibrium of the

GNEP. The Generalized Nash equilibrium problem reduces to the classical

Nash equilibrium problem if for each ν = 1, . . . , N , Kν(x
−ν) = Cν for some

Cν ⊆ R
nν , that is, the sets Kν(x

−ν) do not depend on the rival players’

strategies.
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Let us now recall the following reformulation of a generalized Nash equi-

librium problem in terms of quasi-variational inequality.

Lemma 4. [13] For any ν = 1, . . . , N , let Cν be a non-empty subset of

R
nν , θν : Rn → R and Kν : C−ν = ΠN

i=1,i �=νCi ⇒ R
nν be such that θν is

continuously differentiable in both variables and convex with respect to the xν

variable and the constraint maps Kν are closed convex valued maps. Then

a point x̄ is a generalized Nash equilibrium of GNEP ((θν)ν , (Kν)ν) if and

only if it is a solution of the quasi-variational inequality QV I(F,K) where

K : C =
∏

ν Cν ⇒ R
n is defined by K(x) =

∏p
ν=1 Kν(x

−ν) and the map

F : Rn → R
n is such that F (y) =

∏p
ν=1 ∇νθν(·, y−ν)(yν).

Now, we derive the following result on the existence of generalized Nash

equilibrium by combining the Theorem 4 and Lemma 4.

Theorem 5. For any ν = 1, . . . , N , let Cν be a non-empty closed convex

subset of Rnν , θν : Rn → R and Kν : C−ν = ΠN
i=1,i �=νCi ⇒ Cν, where θν is

continuously differentiable in both variables and convex with respect to the xν

variable and the constraint maps Kν are either single-valued continuous map

or closed lower semi-continuous convex-valued map with intKν(μ
−ν) �= ∅ for

all μ−ν ∈ C−ν. Assume that for every for every μ = (μν , μ−ν) ∈ C =
∏

ν Cν,

∃ ρμ > 0, ∀ x ∈
∏
ν

Kν(μ
−ν) \ B̄(0, ρμ), ∃ y ∈

∏
ν

Kν(μ
−ν) with

||y|| < ||x|| such that 〈∇νθν(x), x
ν − yν〉 ≥ 0 for each ν,

and there exists ρ > max{ρμ : μ ∈ C} so that
∏

ν Kν(μ
−ν) ∩ B̄(0, ρ) is non-

empty for all μ ∈ C. Then the GNEP ((θν)ν , (Kν)ν) defined by the function

(θν)ν and the maps (Kν)ν admits at least one Generalized Nash equilibrium.

25



Acknowledgment

The second author acknowledges the Erasmus Mundus Euphrates fel-

lowship 2015 by Universidade de Santiago de Compostela for providing the

financial support for this research work. The research was done while the
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