
Accepted Manuscript

A remark on Denjoy’s inequality for PL circle homeomorphisms with two break
points

Akhtam Dzhalilov, Alisher Jalilov, Dieter Mayer

PII: S0022-247X(17)30821-1
DOI: http://dx.doi.org/10.1016/j.jmaa.2017.09.003
Reference: YJMAA 21671

To appear in: Journal of Mathematical Analysis and Applications

Received date: 4 July 2016

Please cite this article in press as: A. Dzhalilov et al., A remark on Denjoy’s inequality for PL circle homeomorphisms with two
break points, J. Math. Anal. Appl. (2017), http://dx.doi.org/10.1016/j.jmaa.2017.09.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are
providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jmaa.2017.09.003


A Remark on Denjoy’s inequality for PL circle
homeomorphisms with two break points 1

Akhtam Dzhalilov2 Alisher Jalilov3, Dieter Mayer4

Abstract

It is well known that for a P -homeomorphism f of the circle S1 = R/Z with
irrational rotation number ρf the Denjoy’s inequality | logDfqn | ≤ V holds, where V
is the total variation of logDf and qn, n ≥ 1, are the first return times of f . Let h be
a piecewise-linear (PL) circle homeomorphism with two break points a0, c0, irrational
rotation number ρh and total jump ratio σh = 1. Denote by Bn(h) the partition
determined by the break points of hqn and by μh the unique h-invariant probability
measure. It is shown that the derivative Dhqn is constant on every element of Bn(h)
and takes either two or three values. Furthermore we prove, that logDhqn can be
expressed in terms of μh- measures of some intervals of the partition Bn(h) multiplied
by the logarithm of the jump ratio σh(a0) of h at the break point a0.

1 Introduction

Let f be an orientation preserving homeomorphism of the circle S1 ≡ R/Z with lift
F : R → R, which is continuous, increasing and fulfills F (x̂ + 1) = F (x̂) + 1 for x̂ ∈ R a
lift of x. The circle homeomorphism f is then defined by f(x) = F (x̂) (mod 1), x ∈ S1.

The rotation number ρf is defined by ρf := lim
n→∞

Fn(x̂)−x̂
n (mod 1). Here and below, F i

denotes the i-th iteration of the lift F . It is well known, that the rotation number ρf
does not depend on the point x̂ ∈ R and is irrational if and only if f has no periodic
points (see [5]). The rotation number ρf is invariant under topological conjugations. We
shall assume the rotation number ρf to be irrational throughout this paper. We use the
continued fraction representation ρf = 1/(k1 + 1/(k2 + ...)) := [k1, k2, ..., kn, ...) of the
rotation number ρf . Denote by pn/qn = [k1, k2, ..., kn], n ≥ 1, its n−th convergent. The
numbers qn, n ≥ 1 are the first return times of f and satisfy the recursive relations
qn+1 = kn+1qn + qn−1 for n ≥ 1, where q0 = 1, and q1 = k1.

A natural extension of circle diffeomorphisms are piecewise smooth homeomorphisms
with break points or shortly, the class of P-homeomorphisms.

The class of P-homeomorphisms consists of orientation preserving circle homeomor-
phisms f which are differentiable except at a finite or countable number of break points
xb, at which the one-sided positive derivatives Df− and Df+ exist, which do not coincide
and for which there exist constants 0 < c1 < c2 < ∞, such that

• c1 < Df−(xb) < c2 and c1 < Df+(xb) < c2 for all xb ∈ BP (f), the set of break
points of f in S1;

• c1 < Df(x) < c2 for all x ∈ S1\BP (f);
• logDf has finite total variation in S1.
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The ratio σf (xb) =
Df−(xb)
Df+(xb)

is called the jump ratio of f at xb and σf =
∏

xb
σf (xb)

its total jump ratio.
Piecewise linear PL circle homeomorphisms are the simplest examples of class P-

homeomorphisms. They occur in many other areas of mathematics such as group theory,
homotopy theory and logic via the Thompson groups. PL circle homeomorphisms with
two break points were considered by Herman in [13] to obtain homeomorphisms of arbi-
trary irrational rotation number which admit no invariant probability measure equivalent
to Lebesgue measure. We recall Herman’s theorem.

Theorem 1.1. (See [13].) Let h be a PL circle homeomorphism with two break points and
irrational rotation number ρh. Then the h- invariant probability measure μh is absolutely
continuous with respect to Lebesgue measure l if and only if its break points belong to the
same orbit.

In the following we denote PL circle homeomorphisms always by h. The invariant
measures of piecewise smooth P - homeomophisms with a finite number of break points
were studied by many authors (see for instance [13], [4], [22], [20], [10],[1], [12]). Dzhalilov,
Mayer and Safarov proved in [12], that the invariant measures of piecewise C2+ε (ε > 0)
smooth P - homeomorphisms f with irrational rotation number ρf and non trivial total
jump ratio σf are singular w.r.t. Lebesgue measure. In this case the conjugacy ϕ between
f and the linear rotation fρ is a singular function.

The behaviour of Df qn is a classical problem in the theory of circle homeomorphisms
and plays a key role for their dynamics (see for instance [14], [15], [18], [19], [6]). Let
us recall two of Denjoy’s classical results generalized to P -homeomorphisms (see [7],[13]).
The first one is a theorem on the bounds of Df qn :

Theorem 1.2. Let f be a P -homeomorphism with irrational rotation number ρf . Then
for any x with f s(x) �∈ BP (f), 0 ≤ s < qn the following inequality holds:

(1) | logDf qn(x)| ≤ V,

where V is the total variation of logDf in S1.

The other one is an important fact concerning the expectation of logDf qn

Theorem 1.3. Let f be a P -homeomorphism with irrational rotation number ρf . Then
for every n ≥ 1

(2)

∫
S1

logDf qn(x)dμf = 0

Inequality (1) is called Denjoy’s inequality. If Denjoy’s inequality holds for the
map f with irrational rotation number ρ := ρf , then this implies the existence of a map
ϕ : S1 → S1 conjugating f and the linear rotation fρ with lift Fρ(x̂) = x̂+ ρ (see [5]). In
this case, the conjugation ϕ, satisfying f = ϕ−1◦fρ◦ϕ, is an essentially unique homeomor-
phism of the circle. Another natural question arising is to ask for the smoothness of the
conjugation ϕ and its dependence on the smoothness of the homeomorphism f . Since the
conjugating map ϕ and the unique f -invariant measure μf are related by ϕ(x) = μf ([0, x])
(see [5]), regularity properties of the conjugating map ϕ imply corresponding properties
of the density of the absolutely continuous invariant measure μf . Fundamental results on
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smoothness of h were obtained by V.I. Arnold [3], M. Herman [13], J.C. Yoccoz [23], Y.
Katznelson and D. Ornstein [14], K. Khanin and Y. Sinai [15], respectively K.Khanin and
A.Teplinskii [18]. All the results on smoothness properties of ϕ show its close relations to
sharp estimates in Denjoy’s inequality and arithmetic properties of the rotation number
ρf . For example, it was shown in [14], [15] and [19] for a C2+ε(S1) diffeomorphism f
with irrational rotation number ρf , that the conjugation ϕ is C1-smooth if the sequence
Kn := sup

S1

| logDf qn(x)| tends to zero exponentially fast . Y. Katznelson and D. Ornstein

[14] have shown, that convergence of the sum of the sequence K2
n is enough for abso-

lute continuity of the conjugating map ϕ. Indeed, they proved for a wider class of circle
diffeomorphisms the following theorem.

Theorem 1.4. (See[14]). If logDf is absolutely continuous on the circle, D logDf ∈ Lp

for some p > 1, and the rotation number ρf is irrational, then

(3)

∞∑
n=1

K2
n < ∞.

In particular, if the rotation number is of bounded type i.e. the entries ki’s in the contin-
ued fraction expansion of ρf are bounded, then the conjugacy ϕ and its inverse ϕ−1 are
absolutely continuous with square-summable derivatives.

Our main goal in the present paper is to express for a piecewise-linear (PL) homeomor-
phism h with two break points a0 and c0 and total jump ratio σh = 1 the derivative Dhqn

of hqn by the jump ratio σh(a0) and the μh-measures of intervals of the partition Bn(h) of
S1 determined by the break points of hqn . Thereby μh denotes the unique invariant proba-
bility measure of h. To start, take some x0 ∈ S1. Using its orbit {xi = f i(x0), i ∈ Z} one

defines a sequence of natural partitions of the circle. Namely, let I
(n)
0 (x0) be the closed

interval in S1 with endpoints x0 and xqn = f qn(x0). Notice, in the clockwise orientation
of the circle the point xqn is for n odd to the left of x0, and to its right for n even. If we

denote by I
(n)
i (x0) = f i(I

(n)
0 (x0)), i ≥ 1, the iterates of the interval I

(n)
0 (x0) under f , then

it is well known, that the set ξn(x0) of intervals with mutually disjoint interior, defined as

ξn(x0) = {I(n−1)i (x0), 0 ≤ i < qn} ∪ {I(n)j (x0), 0 ≤ j < qn−1},

determines for any n a partition of the circle. The partition ξn(x0) is called the n-th
dynamical partition of the point x0.

Consider now an arbitrary P -homeomorphism f with irrational rotation number ρf
and two break points a0 and c0, which are not on the same orbit. Denote by pn

qn
the

partial convergents of ρf . We will next determine the location of the break points of
f qn and the derivative Df qn on S1. Obviously the map f qn has 2 qn break points de-
noted by BPn

f := BPn
f (a0) ∪ BPn

f (c0) with BPn
f (a0) := {a∗0, a∗−1, ..., a∗−qn+1}, respec-

tively BPn
f (c0) := {c∗0, c∗−1, ..., c∗−qn+1}, where a∗−i = f−i(a0), respectively c∗−i = f−i(c0),

0 ≤ i ≤ qn− 1. It is clear, that these break points of the map f qn define a partition Bn(f)
of the circle S1 into 2 qn intervals with pairwise non-intersecting interior.

Let ξn(a
∗
0) be the n-th dynamical partition determined by the break point a∗0 = a0

with respect to the map f . Then one has for the second break point c∗0 either c∗0 ∈ I
(n)
i0

(a0)

for some 0 ≤ i0 < qn−1, or c∗0 ∈ I
(n−1)
j0

(a0) = f j0((a0, a−qn ]) ∪ f j0((a−qn , aqn−1)) for some

0 ≤ j0 < qn, i.e. c
∗
0 ∈ f j0((a0, a−qn ]) or c∗0 ∈ f j0((a−qn , aqn−1)). The two last cases we have
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to treat separately. The following three lemmas describe the location of the break points
of f qn in intervals of certain n-th dynamical partitions .

Lemma 1.5. Assume c∗0 ∈ I
(n)
i0

(a∗0) for some i0 with 0 ≤ i0 < qn−1. Then the break points
a∗−i, c

∗
−i, 0 ≤ i ≤ qn−1} of f qn belong to the following elements of the dynamical partition

ξn(a
∗
0) (see also Fig 3.1):

• a∗0 ∈ I
(n)
0 (a∗0);

• c∗−i0+s = f s(c∗−i0) ∈ I
(n)
s (a∗0), 0 ≤ s ≤ i0;

• a∗−qn+s = f s(a−qn) ∈ f s(a∗0, a−qn ]) ⊂ I
(n−1)
s (a∗0), 1 ≤ s ≤ i0;

• a∗−qn+s, c
∗
−qn−i0+s = f s(c−qn−i0) ∈ f s((a∗0, a−qn ]) ⊂ I

(n−1)
s (a∗0), i0 + 1 ≤ s ≤ qn − 1.

aqn

•
c∗−i0

×
a∗0 c−i0−qn a−qn aqn−1

aqn+1

•
c∗−i0+1

a1 c−i0−qn+1

×
a∗−qn+1

aqn−1+1

...

aqn+i0

•
c∗0 ai0 c−qn

×
a∗−qn+i0

aqn−1+i0

aqn+i0+1 c1 ai0+1

•
c∗−qn+1

×
a∗−qn+i0+1

aqn−1+i0+1

...

a2qn−1 cqn−i0−1 aqn−1
•

c∗−i0−1

×
a∗−1 aqn−1+qn−1

Fig. 3.1

Lemma 1.6. Assume c∗0 ∈ f i0((a∗0, a−qn ]) for some 0 ≤ i0 < qn. Then the break points of
f qn belong to the following elements of the dynamical partition ξn(c

∗
−i0) of the break point

c∗−i0 (see Fig 3.2):

• c∗−i0 , a
∗
0 ∈ I

(n)
0 (c∗−i0)

• c∗−i0+s = f s(c∗−i0), a∗−qn+s = f s(a−qn) ∈ f s([c∗−i0 , a−qn ]) ⊂ I
(n−1)
s (c∗−i0), 1 ≤ s ≤

i0;
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• c∗−qn−i0+s = f s(c∗−qn−i0), a∗−qn+s = f s(a−qn) ∈ f s([c−i0 , c−qn ]) ⊂ I
(n−1)
s (c∗−i0),

i0 + 1 ≤ s ≤ qn − 1.

c−i0+qn

×
a∗0

•
c∗−i0 a−qn c−i0−qn c−i0+qn−1

c−i0+qn+1 a1

•
c∗−i0+1

×
a∗−qn+1

c−i0−qn+1 c−i0+qn−1+1

...

cqn ai0

•
c∗0

×
a∗−qn+i0

c−qn cqn−1

cqn+1 ai0+1 c1

×
a∗−qn+i0+1

•
c∗−qn+1

cqn−1+1

...

c2qn−i0−1 aqn−1 cqn−i0−1
×
a∗−1

•
c∗−i0−1 cqn−1+qn−i0−1

Fig. 3.2

Lemma 1.7. If c∗0 ∈ f i0((a−qn , aqn−1 ]) for some i0 with 0 ≤ i0 < qn, the break points
of f qn are located in the following elements of the dynamical partition ξn(a

∗−qn+1) of the
break point a∗−qn+1 (see also Fig 3.3):

• a∗−qn+1+s = f s(a∗−qn+1), c∗−i0+1+s = f s(c∗−i0+1) ∈ I
(n−1)
s (a∗−qn+1), 0 ≤ s ≤ i0 − 1;

• a∗−qn+i0+1+s = f s(a∗−qn+i0+1), c∗−qn+1+s = f s(c∗−qn+1) ∈ I
(n−1)
i0+s (a∗−qn+1), 0 ≤ s ≤

qn − i0 − 1.

a1

×
a∗−qn+1

•
c∗−i0+1

a1+qn−1
c−i0−qn+1 a−qn+qn−1+1

...

ai0

×
a∗−qn+i0

•
c∗0 ai0+qn−1

c−qn a−qn+qn−1+i0

ai0+1

×
a∗−qn+i0+1

c1 ai0+qn−1+1

•
c∗−qn+1

a−qn+qn−1+i0+1
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...

aqn

×
a∗0 cqn−i0 aqn−1+qn

•
c∗−i0 aqn−1

Fig. 3.3

Next we consider a P -homeomorphism f with irrational rotation number ρf and two
break points a∗0 := a0, a

∗
i0
:= f i0(a0), i0 > 0, on the same orbit. Put ni0 := min{n : qn ≥

i0}. Assume that n > ni0 . If the total jump ratio σf = 1, the map f qn has 2i0 break points

a∗−qn+1 := a−qn+1, a
∗
−qn+2 := a−qn+2, ... , a

∗
−qn+i0 := a−qn+i0

and
a∗1 := a1, a

∗
2 := a2, ..., a

∗
i0 := ai0 .

If σf �= 1 the map f qn has qn + i0 break points

a∗−qn+1 := a−qn+1, a
∗
−qn+2 := a−qn+2, ... , a

∗
0 := a0, ... , a

∗
i0 := ai0 .

One has the following

Lemma 1.8. Assume f is a P -homeomorphism with irrational rotation number ρf and
two break points a∗0 := a0, a

∗
i0
:= f i0(a0), i0 > 0, on the same orbit. Choose n > ni0.

1) If σf = 1, then one finds for the break points a∗−qn+s+1, a
∗
s+1 of f qn

• a∗−qn+s+1, a
∗
s+1 ∈ f s([a∗1, a∗−qn+1]) ⊂ I

(n−1)
s+1 (a∗0) ∈ ξn(a

∗
0), 0 ≤ s ≤ i0 − 1 ;

(see Fig 3.4)

2) if σf �= 1, we have

• a∗0 ⊂ I
(n−1)
0 (a∗0);

• a∗−qn+1+s, a
∗
1+s ∈ f s([ai0+1, a

∗
−qn+i0+1]) ⊂ I

(n−1)
i0+1+s(a

∗
0), 0 ≤ s ≤ qn − i0 − 2.

• a∗s+1 ∈ f s([a∗1, a∗−qn+1]) ⊂ I
(n−1)
1+s (a∗0), i0 ≤ s ≤ qn − i0 − 1.

aqn+s+1

×
a∗s+1

×
a∗−qn+s+1

aqn−1+s+1

Fig. 3.4

Lemmas 1.5 to 1.8 show the location of the break points of f qn on elements of different
n-th dynamical partitions determined by the map f , respectively their order along the
circle. Indeed these lemmas hold true also for any pure rotation fρ with ρf irrational and
any two points a0, c0 ∈ S1, whose preimages under f qn

ρ correspond to the break points of
the P -homeomorphism f qn .
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Next we apply these Lemmas to a PL circle homeomorphism h with irrational rotation
number ρh, when the two break points a∗0 = 0, c∗0 = c0 are not on the same orbit and the
total jump ratio σh = 1.

In case of Lemma 1.5 and Lemma 1.7 the break points PBn(a
∗
0) originating from

a∗0 = 0 and the break points PBn(c
∗
0) originating from c∗0 = c0 alternate in their order

along the circle S1 . Let n be odd. Obviously these break points define a system of disjoint
subintervals of the circle, given in case of the assumption in Lemma 1.5 by (see Fig 3.1)

(4) [c∗−i0+s, a
∗
−qn+s], 1 ≤ s ≤ i0,

respectively

(5) [c∗−i0−qn+s, a
∗
−qn+s], i0 + 1 ≤ s ≤ qn.

We combine these subintervals to the subsets

An :=

i0⋃
s=1

[c∗−i0+s, a
∗
−qn+s], Bn :=

qn⋃
s=i0+1

[c∗−i0−qn+s, a
∗
−qn+s].

In case of the assumption in Lemma 1.7 the subintervals are given by (see Fig 3.3)

(6) [a∗−qn+s, c
∗
−i0+s], 1 ≤ s ≤ i0,

respectively

(7) [a∗−qn+s, c
∗
−i0−qn+s], i0 + 1 ≤ s ≤ qn,

which we combine to the subsets

An :=

i0⋃
s=1

[a∗−qn+s, c
∗
−i0+s], Bn :=

qn⋃
s=i0+1

[a∗−qn+s, c
∗
−i0−qn+s],

For n even, the orientation of the above intervals has to be reversed. Therefore in case of
Lemma 1.5 we have the following system of disjoint intervals

(8) [a∗−qn+s, c
∗
−i0+s], 1 ≤ s ≤ i0,

respectively

(9) [a∗−qn+s, c
∗
−i0−qn+s], i0 + 1 ≤ s ≤ qn.

In case of Lemma 1.7 one finds

(10) [c∗−i0+s, a
∗
−qn+s], 1 ≤ s ≤ i0,

respectively

(11) [c∗−i0−qn+s, a
∗
−qn+s], i0 + 1 ≤ s ≤ qn.

In case of Lemma 1.5 and n even, respectively in case of Lemma 1.7 and n odd, the subsets
An and Bn can be defined as before. The above constructions show, that the boundaries of
every interval in the subsets An and Bn consist of break points from PBn(a

∗
0) respectively

PBn(c
∗
0). In the following we abbreviate the jump ratio of h at the break point a∗0 by

σ := σh(a
∗
0) =

Dh−(0)
Dh+(0)

.

We can then formulate our first main result.
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Theorem 1.9. Let h be a PL circle homeomorphism with irrational rotation number ρh
and two break points a∗0 = 0 and c∗0 := c0, whose total jump ratio σh = 1, and which lie on
different orbits. Assume c∗0 fulfills the assumptions of Lemma 1.5 repectively Lemma 1.7
for some i0 with 0 ≤ i0 < qn−1. Then in case of Lemma 1.5

(12) (Dhqn(x))(−1)
n
=

{
σμh(An∪Bn)−1, if x ∈ An ∪Bn

σμh(An∪Bn), if x ∈ S1 \ (An ∪Bn);

respectively in case of Lemma 1.7 ,

(13) (Dhqn(x))(−1)
n+1

=

{
σμh(An∪Bn)−1, if x ∈ An ∪Bn

σμh(An∪Bn), if x ∈ S1 \ (An ∪Bn).

Theorem 1.9 shows that Dhqn is constant on every element of Bn(h) and takes only
two values under the assumptions of Lemmas 1.5 and 1.7. Moreover, the values of Dhqn

are determined by the jump ratio σ = σh(a
∗
0) and the μh-measure of An ∪Bn.

In case of the assumption on c�0 in Lemma 1.6 we can define again a system of disjoint
subintervals determined by the elements in Bn(h). Let n be odd. Then these subintervals
are as follows (see Fig 3.2):

(14) [c∗−i0+s, a
∗
−qn+s], 1 ≤ s ≤ i0,

respectively

(15) [a∗−qn+s, c
∗
−i0−qn+s], i0 + 1 ≤ s ≤ qn.

For n even, the orientation of the above intervals has to be reversed. To determine in the
case of Lemma 1.6 the values of Df qn we define

(16) An :=

i0⋃
s=1

[c∗−i0+s, a
∗
−qn+s], Bn :=

qn⋃
s=i0+1

[a∗−qn+s, c
∗
−i0−qn+s].

Then the following theorem holds.

Theorem 1.10. Let h be a PL circle homeomorphism with two break points a∗0 = a0 and
c∗0 = c0 with σh = 1, which lie on different orbits. Assume c∗0 fulfills the assumption of
Lemma 1.6 for some i0 with 0 ≤ i0 < qn. Then for all n ≥ 1

(17) (Dhqn(x))(−1)
n
=

⎧⎨
⎩

σμh(An)−μh(Bn)−1, ifx ∈ An,

σμh(An)−μh(Bn)+1, if x ∈ Bn,

σμh(An)−μh(Bn), if x /∈ An ∪Bn.

It remains to discuss the case of a PL-homeomorphism h with irrational rotation
number ρh and two break points a∗0 = 0 and a∗i0 = hi0(a∗0), i0 > 0, on the same orbit. In
this case the break points of hqn alternate in their order along the circle S1. Denote by
Un(a

∗
s), 1 ≤ s ≤ i0, the closed intervals with endpoints a∗s and a∗−qn+s. Obviously these

subintervals are disjoint. Lemma 1.8 implies, that Un(a
∗
s) ⊂ I

(n−1)
s (a∗0), 1 ≤ s ≤ i0. Next

we define for every n ≥ 1

(18) Un =

i0⋃
s=1

Un(a
∗
s).

Then one has

8



Theorem 1.11. Let h be a PL circle homeomorphism with two break points a∗0 = 0 and
a∗i0 = hi0(a0), i0 > 0, with σh = 1, which lie on the same orbit. Put ni0 := min{n : qn ≥
i0}. For n > ni0 one finds

(19) (Dhqn(x))(−1)
n+1

=

{
σμh(Un), if x ∈ Un

σμh(Un)−1, if x ∈ S1 \ Un,

2 Proof of the Lemmas 1.5 - 1.8

We start with the proofs of Lemmas 1.5 - 1.7.
Proof of Lemma 1.5. Remember, that for arbitrary x ∈ S1 the points xqn = f qn(x)

and x−qn = f−qn(x) lie on opposite sides of x. Assume c∗0 = c0 ∈ Ini0(a
∗
0) for some

0 ≤ i0 < qn−1 and hence c∗−i0 ∈ In0 (a
∗
0) (see Fig 3.1). Suppose n to be odd. Then we have

in the clockwise order on S1:

aqn ≺ c∗−i0 ≺ a∗0 ≺ c−i0−qn ≺ a−qn ≺ aqn−1 .

Since f is orientation preserving we get also

f s(aqn) ≺ fs(c∗−i0) ≺ fs(a∗0) ≺ fs(c−i0−qn) ≺ fs(a−qn) ≺ fs(aqn−1)

for all 0 ≤ s ≤ i0, which proves the first three assertions of Lemma 1.5.
It is also obvious, that

f s(a∗0) ≺ fs(c−i0−qn) ≺ fs(a−qn) ≺ fs(aqn−1)

for all i0 + 1 ≤ s ≤ qn − i0, which proves the last assertion of Lemma 1.5.
Proof of Lemma 1.6. The interval Jn

0 (c
∗
−i0) = [c−i0+qn , c−i0+qn−1 ] contains only the

two break points a∗0, c∗−i0 of f qn . More precisely, we have (see Fig 3.2)

c−i0+qn ≺ a∗0 ≺ c∗−i0 ≺ a−qn ≺ c−i0−qn ≺ c−i0+qn−1

which implies the first assertion of Lemma 1.6.
Next, the renormalization interval Jn

1 (c
∗
0) = [c−i0+qn+1, c−i0+qn−1+1] contains also two

break points of f qn , namely a∗−qn+1 and c∗−i0+1. The last two break points belong to the

interval In−11 (c∗−i0). We have (see Fig 3.2)

c∗−i0+1 ≺ a∗−qn+1 ≺ c−i0−qn+1 ≺ c−i0+qn−1+1.

Applying the map f s for 0 ≤ s ≤ i0 − 1 leads to

f s(c∗−i0+1) ≺ fs(a∗−qn+1) ≺ fs(c−i0−qn+1) ≺ fs(c−i0+qn−1+1)

which implies the second assertion of Lemma 1.6.
It is also clear, that

c1 ≺ a∗−qn+i0+1 ≺ c∗−qn+1 ≺ cqn−1+1

Hence for 1 ≤ s ≤ qn − i0 − 2

f s(c1) ≺ fs(a∗−qn+i0+1) ≺ fs(c∗−qn+1) ≺ fs(cqn−1+1).
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which implies the third assertion of Lemma 1.6.
Proof of Lemma 1.7. Consider the n-th dynamical partition ξn(a

∗−qn+1) of the
break point a∗−qn+1. To determine the location of the break points of f qn in the intervals
of ξn(a

∗−qn+1) under the assumption of Lemma 1.7, we use the structure of this dynamical
partition and the monotonicity of f to arrive for 0 ≤ s ≤ qn − 1 at

f s(a1) ≺ fs(a∗−qn+1) ≺ fs(c∗−i0+1) ≺ fs(aqn−1+1) ≺ fs(c−i0−qn+1) ≺ fs(a−qn+qn−1+1).

It is easy to see that the first i0 of these relations imply the first i0 claims of Lemma 1.7,
and the last qn − i0 the remaining ones.

Proof of Lemma 1.8. We will prove the first assertion only. The second one can be
proved similarly. It is clear that (see Fig 3.4)

f s(aqn+1) ≺ fs(a∗1) ≺ fs(a∗−qn+1) ≺ fs(aqn−1 + 1)

for all 0 ≤ s ≤ i0 − 1. Consequently, f s(a∗1), f s(a∗−qn+1) ∈ I
(n−1)
s ((a∗1)), 0 ≤ s ≤ i0 − 1,

which proves the assertion of Lemma 1.8.

3 Proof of Theorems 1.9., 1.10. and 1.11.

Proof of Theorem 1.9.
We prove only the case of Lemma 1.5. The case of Lemma 1.7 can be proved analogously.
We furthermore restrict ourselves to the case when n is odd. The even case can be handled
similarly. In case c∗0 fulfills the assumption of Lemma 1.5, we have aqn ≺ c∗−i0 ≺ a∗0 ≺
c−i0−qn ≺ a−qn ≺ aqn−1 (see Fig. 3.1). Obviously the function Dhqn on the circle S1 is
constant on every interval of the partition Bn(h) determined by all break points of hqn .
It makes jumps determined by the jump ratio σ = σh(a

∗
0) at the break points BPn(a

∗
0)

and by the jump ratio σ−1 at the break points BPn(c
∗
0). Taking into account Lemma

1.5 and the structure of the dynamical partitions it follows that the points of BPn(a
∗
0)

and BPn(c
∗
0) alternate in their order around S1 (see Fig. 3.1). We ”renumerate” all

break points BPn(a
∗
0) and BPn(c

∗
0) of h

qn in the counter-clockwise direction as a(1) := a∗0,
a(2) := a∗−1, a(3) := a∗−2, · · · , a(qn) := a∗−qn+1, respectively c(1) := c∗−i0 , c

(2) := c∗−i0−1,
c(3) := c∗−i0−2, · · · , c(qn) := c∗−i0+1. Then we have

a(1) ≺ c(qn) ≺ a(qn) ≺ ... ≺ c(2) ≺ a(2) ≺ c(1) ≺ a(1)

It is clear that

An
⋃

Bn =
qn⋃
s=1

[c(s), a(s)], and

S1 \ (An
⋃

Bn) =
qn⋃
s=1

(a(s+1), c(s))
⋃

(a(1), c(qn)).

Next we determine the values of Dhqn . For s > 1 we have

Dhqn([c(s), a(s)]) = Dhqn− (a(s)) = σDhqn+ (a(s)) = σDhqn([a(s), c(s−1)])

= σDhqn− (c(s−1)) = σσ−1Dhqn+ (c(s−1)) = Dhqn+ (c(s−1)) = Dhqn([c(s−1), a(s−1)])
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So we get
Dhqn([c(s), a(s)]) = Dhqn([c(s−1), a(s−1)])

Iterating the last relation leads to

Dhqn([c(s), a(s)]) = Dhqn([c(1), a(1)]) ≡ Dhqn− (a(1)) = σDhqn+ (a(1)) = σDhqn+ (a∗0)

Hence Dhqn takes the constant value σDhqn+ (a∗0) on An
⋃

Bn.
Next we show, that Dhqn takes the constant value Dhqn+ (a∗0) on S1 \ (An

⋃
Bn). For

this we determine Dhqn first on the interval (a(1), c(qn)). Obviously

Dhqn((a(1), c(qn))) = Dhqn+ (a(1)).

On the other hand one has for s ≥ 1

Dhqn(a(s+1), c(s)) = Dhqn− (c(s)) = σ−1Dhqn+ (c(s)) = σ−1Dhqn([c(s), a(s)]).

The last relation together with

Dhqn([c(s), a(s)]) = σDhqn+ (a∗0)

implies, that for every s ≥ 1

Dhqn(a(s+1), c(s)) = Dhqn+ (a∗0).

For the proof of (12) it is enough to prove under the assumption of n being odd and
therefore aqn ≺ c∗−i0 ≺ a∗0 ≺ c−i0−qn ≺ a−qn ≺ aqn−1 , that

(20) Dhqn+ (a∗0) = σ
(−1)n+1μh(Un)−δ1,(−1)n+1 ,

where δ1,(−1)n+1 = 1 for n odd, respectively δ1,(−1)n+1 = 0 for n even. Notice that the last
equation is true also for n even. Since hqn is an orientation preserving homeomorphism
with irrational rotation number and the same invariant measure μh as the map h, we get
from Theorem 1.3.

(21)

∫
S1

logDhqn(x)dμh(x) = 0.

As mentioned above, the function Dhqn is constant on the subsets Un := An ∪ Bn and
Ūn = S1 \ Un. Therefore∫

S1

logDhqn(x)dμh(x) =

∫
Un

logDhqn(x)dμh(x) +

∫
Ūn

logDhqn(x)dμh(x) = 0

Inserting the constant values of Dhqn on the sets Un respectively Ūn one finds
∫
Un

logDhqn(x)dμh = μh(Un) log(σDhqn+ (a∗0)),

∫
Un

logDhqn(x)dμh = μh(Ūn) logDhqn+ (a∗0) = [1− μf (Un)] logDhqn+ (a∗0),
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and therefore

μh(Un) log(σDhqn+ (a∗0)) + [1− μh(Un)] logDhqn+ (a∗0) = 0.

This shows that μh(Un) log σ = − logDhqn+ (a∗0) respectively Dhqn+ (a∗0) = σ−μh(Un), and
hence formula (20) holds for n odd. For n even, the proof of formula (20) proceeds
similarly. Theorem 1.9 is therefore completely proved.

Proof of Theorem 1.10.
We will prove only the following equation

(22) Dhqn+ (a∗0) = σ
(−1)n(μh(An(i0))−μh(Bn(i0))−δ1,(−1)n−1

for n odd. Since the rotation number ρh of h is irrational and its break points a∗0 and c∗0
are on different orbits, all the intervals in An and Bn are pairwise disjoint. For all x ∈ Bn

one has obviously Dhqn(x) = Dhqn+ (a∗0). But at the break point c∗i0 the function Dhqn(x)
makes the jump Dhqn+ (c∗i0)/Dhqn− (c∗i0) = Dh+(c

∗
i0
)/Dh−(c∗i0) = σ, and therefore it takes

the constant value Dhqn(x) = σ Dhqn+ (a∗0) in this interval containing no break point of hqn .
Indeed, this holds true for all intervals without break points, i.e. for x /∈ An∪Bn. The left
boundary point of any interval in An belongs to the set BP (c∗0) and hence the function
Dhqn(x) makes at these break points the jump Dh+(c

∗
i0
)/Dh−(c∗i0) = σ and therefore

takes the constant value Dhqn(x) = σ2 Dhqn+ (a∗0) for any x ∈ An. This proves assertion
(17).
To prove assertion (22) we use again

∫
S1

logDhqn(x)dμh(x) = 0,

and the possible values of the function Dhqn discussed above. Then

log(σ2 Dhqn+ (a∗0))μfh(An) + log(Dhqn+ (a∗0))μ(Bn) + log(σ Dhqn+ (a∗0))μ(Ū
∗
n) = 0,

where Ū∗n = S1 \ (An ∪Bn). Hence

(log σ){μh(An)− μh(Bn)}+ logDhqn+ (a∗0)) + log σ = 0

This proves equation (22) for n odd. The proof of the theorem for n even is similar.
Theorem 1.10 is therefore completely proved.

Proof of Theorem 1.11.

Let h be a PL circle homeomorphism with two break points a∗0 and a∗i0 = f i0(a0), i0 >
0, and irrational rotation number ρh. Assume n > n0. Then h has 2i0 break points. Put
BPn

h := BPn
h (a

∗
1) ∪BPn

h (a
∗−qn+1) with

BPn
h (a

∗
1) = {a∗1, a∗2, ..., a∗i0},

respectively
BPn

h (a
∗
−qn+1) = {a∗−qn+1, a

∗
−qn+2, ..., a

∗
−qn+i0},

where a∗s = f s(a0), a∗−qn+s = f s(a−qn), 1 ≤ s ≤ i0. For the proof of Theorem 1.11 it is
sufficient to prove the following formula

(23) Dhqn+ (a∗0) = σ
(−1)n+1μh(Un)−δ1,(−1)n+1

12



The partition Bn(h) determined by all break points of hqn has 2i0 closed intervals with
disjoint interior. The map Dhqn is piecewise constant with constant values on the el-
ement of Bn(h). The first assertion of Lemma 1.8 implies that the intervals in Un =
{[a∗s, a∗−qn+s], 1 ≤ s ≤ i0} are pairwise disjoint. Hence the intervals of Ūn = S1 \ Un

are also pairwise disjoint. Next we conclude that • the break points of BPn
h (a

∗
1) and

BPn
h (a

∗−qn+1) alternate in their order on S1;

• the intervals in Un and Ūn alternate in their order on S1; Denote by Ūn(a
∗
s) the

closed interval in Ūn with right endpoint a∗s, 1 ≤ s ≤ i0. It is easy to see that at each point
a∗s of BPn

h (a
∗
1)

(24) Dhqn+ (a∗s) = Dhqn+ (a∗0), Dhqn− (a∗s) = Dhqn− (a∗0), 1 ≤ s ≤ i0.

It is clear that the intervals Un(a
∗
s) and Ūn(a

∗
s) are neighbours with common endpoint a∗s.

It is obvious that
Dhqn− (a∗s)
Dhqn+ (a∗s)

= σh(a
�
0) = σ, 1 ≤ s ≤ i0.

The last relation together with (24) implies Dhqn(x) = σDhqn+ (a∗0) if x ∈ Un respectively
Dhqn(x) = Dhqn+ (a∗0) if x ∈ S1 \ Un. Remains to determine the value of Dhqn+ (a∗0). From
Theorem 1.3 we obtain∫

S1

logDhqn(x)dμh =

∫
Un

logDhqn(x)dμh +

∫
Ūn

logDhqn(x)dμh = 0.

Hence μh(Un) logDhqn+ (a∗0) + μh(Ūn) logDhqn− (a∗0) = 0.
Inserting μh(Ūn) = 1− μh(Un) respectively Dhqn− (a∗0) = σhDhqn+ (a∗0) we get relation (23).
Theorem 1.11 hence is proved.
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Figure captions

Figure 3.1:
Location of the 2 qn break points of f qn in the dynamical partition ξn(a

∗
0) if c

∗
0 ∈ I

(n)
i0

(a∗0) for
some 0 ≤ i0 < qn−1.

Figure 3.2:
Location of the 2 qn break points of f

qn in the dynamical partition ξn(c
∗
−i0) if c

∗
0 ∈ f i0((a∗0, a−qn])

for some 0 ≤ i0 < qn−1.

Figure 3.3:
Location of the 2 qn break points of f qn in the dynamical partition ξn(a

∗
−qn+1) if c∗0 ∈

f i0((a−qn, aqn−1 ]) for some 0 ≤ i0 < qn−1.

Figure 3.4:
Location of the 2 i0 break points of f qn in the dynamical partition ξn(a

∗
0) if c

∗
0 = f i0(a0) = a∗i0

for some i0 > 0 and σf = 1.
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