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infinite variances.
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1. Introduction

Let M(ds) be a β-stable random measure on (R, B) with control measure λ and it is totally skewed to 
the right, where β ∈ (0, 2], B is the Borel σ-algebra of R and λ is the Lebesgue measure. For every t ≥ 0, 
let ft(s) ≡ 1{0≤s<t}(t − s)α with α > −1/β. From Samorodnitsky and Taqqu [12, Chapter 3], we know that 
the stochastic integral

Wα,β(t) :=
∫
R

ft(s)M(ds) =
t∫

0

(t− s)αM(ds) (1.1)

defines a β-stable random process. When β �= 1, its finite-dimensional distribution is determined by the 
characteristic function

E

(
ei

∑n
k=1 θkWα,β(tk)

)
= exp

{
−

∫
R

|Φ(s)|β(1 − isign(Φ(s)) tan(βπ2 ))ds
}
, (1.2)

where 0 ≤ t1 < t2 < · · · < tn, θk ∈ R for all 1 ≤ k ≤ n and Φ(s) =
∑n

k=1 θkftk(s). Furthermore, for 
non-negative θ1, θ2, · · · , θn,
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E

(
e−

∑n
k=1 θkWα,β(tk)

)
= exp

{
−

∫
R

Φβ(s)ds/ cos(βπ/2)
}
. (1.3)

In this study, we refer to this as the (β, α)-type Riemann–Liouville process (abbreviated as (β, α)-RLP).
The (β, α)-RLP is self-similar with the index H = α + 1/β, i.e. for any c ≥ 0,

{Wα,β(ct), t ≥ 0} d= {cα+1/βWα,β(t), t ≥ 0}.

This can be viewed as the fractional integration of a β-stable Lévy process that is totally skewed to the 
right and that is not symmetric when β < 2. Moreover, {Wα,β(t)} is a fractional martingale (Hu et al. [6]) 
when 1 < β ≤ 2. In addition, we note that the (β, α)-RLP defined in this study differs slightly from the 
“RLP” defined in Lifshits and Simon [11] where a RLP is supposed to be symmetric.

A branching particle system is a type of stochastic model where particles move independently and evolve 
according to a given law, where this system is applicable in various fields including physics and mathematical 
biology. It is interesting to study how branching particle systems can be used to reconstruct or explain 
stochastic phenomena or models. For example, branching particle systems have been used to reconstruct 
measure-valued processes (see Le Gall [7] and the references therein), Gaussian fields (see Li and Xiao 
[9,10]), Gaussian processes, and stable processes (see Bojdecki et al. [1,3] and the references therein). The 
aim of this note is to find the (β, α)-RLPs for some branching particle systems.

The branching particle systems considered in this note are assumed to be defined as follows. At the 
beginning, the particles are distributed according to a Poisson random measure with intensity measure λ in 
the space Rd. The particles then move and evolve independently, where they move according to a symmetric 
α-stable Lévy process. The lifetime of each particle is an exponential random variable with parameter 1. If 
a particles dies at site x, it immediately splits into several particles according to a branching mechanism 
with the generating function

f(s) = s + σ(x)(1 − s)1+β

1 + β
, σ(x) ∈ [0, 1], 0 < β ≤ 1.

New particles start their movements and evolution from their “birthplaces” according to the aforementioned 
law. When σ(x) ≡ 1, the branching particle systems are simply the classical (d, α, β)-branching particle 
systems (e.g., see Gorostiza and Wakolbinger [5]). In this study, we use the function σ(x) to focus on the 
situation where the particles may have different branching mechanisms at different sites (e.g., see Dawson and 
Fleischmann [4]) and, for convenience, we refer to the models as the σ-mixed (α, β)-systems. In particular, 
we focus on the case where d = 1 < α < 1 + β ≤ 2 and 0 <

∫
R
σ(x)dx < ∞ in the sequel.

Let N(s) denote the empirical measure of the σ-mixed (α, β)-system at time s, i.e., for each measurable 
set A ⊂ R, N(s)(A) is the number of particles at time s in set A. Let

Y (t) =
t∫

0

(N(s) − E(N(s)))ds, t ≥ 0,

which is called the occupation time fluctuation process, where E(N(s)) is the expectation functional under-
stood as 〈E(N(s)), φ〉 = E(〈N(s), φ〉) for all φ ∈ S(R), the space of smooth rapidly decreasing functions, 
and 〈μ, f〉 denotes the integral 

∫
fdμ for a measure μ and a measurable function f . We find that as T → ∞, 

the functional limit of Y (T ·)/FT with FT = T (2+β)/(1+β)−1/α exists, where its temporal structure comprises 
a (1 + β, 1 − 1/α)-RLP.

The remainder of this paper is organized as follows. In Section 2, we state our result and present some 
preliminary facts. In Section 3, we give the proof of the main result. Unless stated otherwise, in the sequel, 
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let K :=
∫
R
σ(x)dx/(1 + β), and M , M1, and M2 are unspecified positive finite constants that are not 

necessarily the same in each occurrence.

2. Preliminaries

Let N(s) be the random counting measure of the σ-mixed (α, β)-system. Let ξ be the symmetric α-stable 
Lévy process. Denote its semigroup by {Lt}t≥0 and the transition density by pt, i.e.,

Ltf(x) := E(f(ξ(t + s))|ξ(s) = x) =
∫
R

pt(y − x)f(y)dy

for all s, t ≥ 0, x ∈ R and bounded measurable functions f (to avoid ambiguity, we sometimes write Ltf(x)
as Lt(f(·))(x)). It is well known that

ptu(x) = t−1/αpu(xt−1/α), x ∈ R, t, u > 0, (2.1)

and that

0 ≤ p1(x) ≤ p1(0) = Γ(1/α)
απ

, x ∈ R. (2.2)

For every bounded and integrable function f , define

Gtf(x) =
t∫

0

Lsf(x)ds. (2.3)

By (2.1) and (2.2), it is easy to see that a constant M exists such that for t > 1, α ∈ (1, 2)

Gtf(x) ≤ Mt1−1/α. (2.4)

Standard analysis of branching particle systems (e.g., see Bojdecki et al. [1]) shows that

E(〈N(t), φ〉) =
∫
R

Ltφ(x)dx =
∫
R

φ(x)dx = 〈λ, φ〉.

The occupation time fluctuation process Y = {Y (t), t ≥ 0} can be rewritten as follows:

〈Y (t), φ〉 =
t∫

0

〈N(s) − λ, φ〉ds

for every φ ∈ S(R). Let FT = T (2+β)/(1+β)−1/α and YT (·) = Y (T ·)/FT . Thus, we have the following main 
result presented in this note.

Theorem 2.1. Suppose that d = 1 < α < 1 + β ≤ 2 and 
∫
R
σ(x)dx < ∞. As T → ∞, the process YT

converges weakly to K1χλ in C([0, 1], S ′(R)), where χ(·) is the (1 + β, 1 − 1/α)-RLP and the constant 
K1 = Γ(1/α)

(α−1)π
[
−K cos

( (1+β)π
2

)]1/(1+β).

Remark 2.1. Li [8] studied the special case where β = 1 and obtained a Gaussian Riemann–Liouville process 
that is symmetric. In the present study, Theorem 2.1 generalizes the main result reported by Li [8].
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Remark 2.2. Bojdecki et al. [1,2] studied the classical (d, α, β)-systems under different initial values and 
obtained some new but relatively complicated stable processes. Compared with their stable processes, the 
(1 + β, 1 − 1/α)-RLP is easier to understand and it is closely related to the fractional integrals.

For any n > 0, let 0 ≤ t1 < t2 < · · · < tn ≤ 1. 0 ≤ φk ∈ S(R) for every k = 1, 2, · · · , n. Let

ϕ(x, t) =
n∑

k=1

φk(x)1(0,tk](t) and ψT (x, t) = 1
FT

ϕ(x, t
T

). (2.5)

Define

VψT
(x, t, r) := 1 − Ex

(
exp

{
−

t∫
0

〈N(s), ψT (·, r + s)〉ds
})

(2.6)

and

JψT
(x, t, r) :=

t∫
0

LsψT (·, r + s)(x)ds. (2.7)

Then,

VψT
(x, t, r) ≤ JψT

(x, t, r). (2.8)

Furthermore, by some standard arguments (e.g., see Li [8]), we find that

VψT
(x, t, r) =

t∫
0

Ls

[
ψT (·, r + s)

(
1 − VψT

(·, t− s, r + s)
)]

(x)ds

− 1
1 + β

t∫
0

Ls[σ(·)V 1+β
ψT

(·, t− s, r + s)](x)ds, (2.9)

and that

E

(
exp

{
−

n∑
k=1

〈YT (tk), φk〉
})

= exp
(
I1(T, ψT ) − I2(T, ψT ) + I3(T, ψT )

)
, (2.10)

where

I1(T, ψT ) = 1
1 + β

∫
R

σ(x)dx
T∫

0

J1+β
ψT

(x, T − s, s)ds, (2.11)

I2(T, ψT ) = 1
1 + β

∫
R

σ(x)dx
T∫

0

[
J1+β
ψT

(x, T − s, s) − V 1+β
ψT

(x, T − s, s)
]
ds, (2.12)

and

I3(T, ψT ) =
∫

dx
T∫
ψT (x, s)VψT

(x, T − s, s)ds. (2.13)

R 0
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The inequality a1+β − b1+β ≤ (aβ + bβ)(a − b) for all a ≥ b > 0 implies that

I2(T, ψT ) ≤ 2
1 + β

[
I21(T, ψT ) + 1

1 + β
I22(T, ψT )

]
, (2.14)

where

I21(T, ψT ) =
∫
R

σ(x)dx
T∫

0

Jβ
ψT

(x, T − s, s)ds
T∫
s

Lu−s

(
ψT (·, u)JψT

(·, T − u, u)
)
(x)du, (2.15)

I22(T, ψT ) =
∫
R

σ(x)dx
T∫

0

Jβ
ψT

(x, T − s, s)ds
T∫
s

Lu−s(σ(·)J1+β
ψT

(·, T − u, u))(x)du. (2.16)

3. Proof of the main result

To prove Theorem 2.1, it is sufficient to prove the finite-dimensional convergence of {YT}T≥1 plus their 
tightness. We prove this in two lemmas. For convenience, in this section, 1/α is denoted by ᾱ.

Lemma 3.1. Under the assumptions of Theorem 2.1, YT → K1χλ in finite-dimensional distributions.

Proof. By (1.3) the process χ = {χ(t)} has finite-dimensional distributions determined by the Laplace 
functions

E(e−
∑n

k=1 θkχ(tk)) = exp
{
−

∫
R

[ n∑
k=1

θk(tk − s)1−ᾱ1(0,tk](s)
]1+β

ds/ cos((1 + β)π/2)
}
,

where θk > 0, k = 1, 2, · · · , n and 0 = t0 ≤ t1 < · · · < tn ≤ 1. Lemma 3.4 given by Bojdecki et al. [1] and 
the same argument used by Bojdecki et al. [1, Lemma 3.5] ensure the sufficiency of proving that

lim
T→∞

E

(
exp

{
−

n∑
k=1

〈YT (tk), φk〉
})

= E

(
exp

{
−K1

n∑
k=1

χ(tk)〈λ, φk〉
})

= exp
{
K

∫
R

( Γ(ᾱ)
(α− 1)π

n∑
k=1

∫
R

φk(y)dy(tk − s)1−ᾱ1(0,tk](s)
)1+β

ds
}

(3.1)

for any non-negative φ1, · · · , φn ∈ S(R). According to (2.10), we divide the proof into three steps.
Step 1. We consider the limit of I1(T, ψT ). By applying (2.1), (2.5), and (2.7) to (2.11), we find that

I1(T, ψT ) = 1
1 + β

∫
R

σ(x)dx
T∫

0

( T−s∫
0

LuψT (x, s + u)du
)1+β

ds

= T 2+β

(1 + β)F 1+β
T

∫
R

σ(x)dx
1∫

0

( 1−s∫
0

n∑
k=1

LTuφk(x)1(0,tk](s + u)du
)1+β

ds

= T 2+β−(1+β)ᾱ

(1 + β)F 1+β
T

∫
R

σ(x)dx
1∫

0

( n∑
k=1

Φk(s, T )
)1+β

ds,

where
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Φk(s, T ) =
1−s∫
0

u−ᾱ1(0,tk](s + u)
∫
R

p1((x− y)(Tu)−ᾱ)φk(y)dydu.

By the dominated convergence theorem, it is easy to see that

lim
T→∞

Φk(s, T ) =
1−s∫
0

u−ᾱ1(0,tk](s + u)du
∫
R

p1(0)φk(y)dy

= α

α− 1(tk − s)1−ᾱ1(0,tk](s)
∫
R

p1(0)φk(y)dy. (3.2)

By substituting F 1+β
T = T 2+β−(1+β)ᾱ and the right-hand side of (2.2) into (3.2), we find that as T → ∞,

lim
T→∞

I1(T, ψT ) = K

1∫
0

(
Γ(ᾱ)

(α− 1)π

n∑
k=1

(tk − s)1−ᾱ1(0,tk](s)
∫
R

φk(y)dy
)1+β

ds. (3.3)

Step 2. We consider the limit of I2(T, ψT ). By applying (2.3) and (2.5) to (2.7), we find that

JψT
(x, T − u, u) ≤ M

FT
GT

n∑
k=1

φk(x) (3.4)

for any u ≤ T . By applying (2.4) and (3.4) to (2.15), we obtain a constant M > 0 such that

I21(T, ψT ) ≤ MT

F 2+β
T

∫
R

σ(x)
[( T∫

0

Lv

n∑
k=1

φk(x)dv
)β

T∫
0

Lu

( n∑
k=1

φk

T∫
0

Lw

n∑
k=1

φkdw
)
(x)du

]
dx

≤ MT 1+(1−ᾱ)(2+β)

F 2+β
T

∫
R

σ(x)dx. (3.5)

Therefore, by substituting FT = T (2+β)/(1+β)−ᾱ into (3.5), we can readily obtain

I21(T, ψT ) ≤ M

T 1/(1+β)

∫
R

σ(x)dx → 0. (3.6)

Furthermore, applying (3.4) to (2.16) leads to

I22(T, ψT ) ≤ MT

F 1+2β
T

∫
R

σ(x)
(
GT

n∑
k=1

φk(x)
)β

GT

(
σ(GT

n∑
k=1

φk)1+β
)
(x)dx (3.7)

for some M > 0. From (2.4), (3.7), and the fact that 
∫
R
σ(x)dx < ∞, it follows that

I22(T, ψT ) ≤ M

T ᾱ−1/(1+β) → 0, (3.8)

where the convergence is due to the assumption that β > α− 1. Note that I2(T, ψT ) ≥ 0 because of (2.8). 
By combining (2.12) with (3.5) and (3.8), we find that as T → ∞,

I2(T, ψT ) → 0. (3.9)
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Step 3. We consider the limit of I3(T, ψT ). Let

I31(T, ψT ) :=
∫
R

dx
T∫

0

ψT (x, s)JψT
(x, T − s, s)ds. (3.10)

From (2.13), (2.8), (3.4), and (2.4), it follows that

0 ≤ I3(T, ψT ) ≤ I31(T, ψT ) ≤ T 2−ᾱM

F 2
T

∫
R

n∑
k=1

φk(x)dx (3.11)

for some M > 0. By substituting FT = T (2+β)/(1+β)−ᾱ into (3.11), the fact that β ≤ 1 < 2α − 1 for all 
α ∈ (1, 2) indicates that

I3(T, ψT ) → 0. (3.12)

After combining (2.10) with (3.3), (3.9), and (3.12), we arrive at (3.1). �
Lemma 3.2. Under the assumptions of Theorem 2.1, {YT }T≥1 is tight in C([0, 1], S ′(R)).

Proof. The proof is analogous to that given by Bojdecki et al. [1, Proposition 3.3]. For simplicity, we omit 
some common details.

For any given v, u ∈ [0, 1] with v < u, and n > 2
u−v , let hn ∈ S(R) satisfy supp(hn) ⊂ [v, v+ 1

n ] ∪[u − 1
n , u], 

and hn ≤ 0 on [v, v + 1
n ] with 

∫ v+ 1
n

v
hn(s)ds = −1 and hn ≥ 0 on [u, u − 1

n ] with 
∫ u

u− 1
n
hn(s)ds = 1.

According to the discussion given by Bojdecki et al. [1, Proposition 3.3], it is sufficient to prove that for 
any given nonnegative φ ∈ S(Rd), the constants a ≥ 1, b > 0, and M > 0 exist such that for all T ≥ 1, 
0 ≤ v < u ≤ 1, n ≥ 2/(u − v), and 1 > δ > 0,

1/δ∫
0

(
1 − Re

(
E

[
exp{−iω〈ỸT , φhn〉}

]))
dω ≤ M

δa
(u− v)1+b, (3.13)

where Ỹ is defined as X̃ by Bojdecki et al. [1] (see (3.6) therein). Note that

E

[
exp

{
− iω〈ỸT , φhn〉

}]
= exp

{
I1(T, iωψT,n) − I2(T, iωψT,n) + I3(T, iωψT,n)

}
,

and that

|ViωψT,n
| ≤ JωψT,n

,

where

ψT,n(x, s) = 1
FT

φ(x)h̃n( s
T

) and h̃n(s) =
1∫

s

hn(t)dt.

It is easy to check that
{
|I1(T, iωψT,n) − I2(T, iωψT,n)| ≤ ω1+βI1(T, ψT,n);
|I3(T, iωψT,n)| ≤ ω2I31(T, ψT,n).

(3.14)

In the following, we estimate I1(T, ψT,n) and I31(T, ψT,n) based on the above.
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First, we estimate the upper bound of I1(T, ψT,n). By the same arguments leading to (3.3), we can readily 
find that a constant M > 0 exists that depends on φ such that

I1(T, ψT,n) ≤ M

1∫
0

ds
( 1∫

s

hn(t)(t− s)1−ᾱdt
)1+β

. (3.15)

Let Hn(s) =
∫ 1
s
hn(t)(t − s)1−ᾱdt. Then, by the assumptions on hn, we have

0 ≤ Hn(s) ≤

⎧⎪⎪⎨
⎪⎪⎩

0, s ∈ (u, 1],
(u− s)1−ᾱ, s ∈ [v, u],
(u− s)1−ᾱ − (v − s)1−ᾱ, s ∈ [0, v).

(3.16)

Therefore, (3.15) indicates that

I1(T, ψT,n) ≤ M

v∫
0

((u− s)1−ᾱ − (v − s)1−ᾱ)1+βds + M

u∫
v

(u− s)(1−ᾱ)(1+β)ds

≤ M

1∫
0

((u− v + s)1−ᾱ − s1−ᾱ)1+βds + M(u− v)1+(1−ᾱ)(1+β)

1 + (1 − ᾱ)(1 + β) . (3.17)

We observe that for each x ∈ (0, 1],

1∫
0

((x + s)1−ᾱ − s1−ᾱ)1+βds = x1+(1−ᾱ)(1+β)

1/x∫
0

[(1 + u)1−ᾱ − u1−ᾱ]1+βdu

≤ x1+(1−ᾱ)(1+β)
(
1 +

∞∫
1

[(1 − ᾱ)u−ᾱ]1+βdu
)
,

where we use the facts that for every u ≥ 0, 0 ≤ (1 + u)1−ᾱ − u1−ᾱ ≤ 1 and

(1 + u)1−ᾱ − u1−ᾱ =
1+u∫
u

(1 − ᾱ)x−ᾱdx ≤ (1 − ᾱ)u−ᾱ.

Since ᾱ(1 + β) > 1,

∞∫
1

[(1 − ᾱ)u−ᾱ]1+βdu < ∞.

We can obtain a positive constant M such that

1∫
0

((x + s)1−ᾱ − s1−ᾱ)1+βds ≤ Mx1+(1−ᾱ)(1+β)

for all x ∈ (0, 1]. Therefore, a constant M > 0 exists that is independent of u, v such that
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1∫
0

((u− v + s)1−ᾱ − s1−ᾱ)1+βds ≤ M(u− v)1+(1−ᾱ)(1+β). (3.18)

(3.17) and (3.18) show that a constant M > 0 exists that only depends on φ such that

I1(T, ψT,n) ≤ M(u− v)1+(1−ᾱ)(1+β) (3.19)

for all T > 1 and n > 2/(u − v).

Next, we estimate I31(T, ψT,n). From (3.10), it follows that

I31(T, ψT,n) ≤ 1
F 2
T

T∫
0

h̃n

( s

T

)
ds

T−s∫
0

h̃n

(s + r

T

)
dr

∫
R

φ(x)Lrφ(x)dx.

Note that from the assumptions on hn,

0 ≤ h̃n(s) =
1∫

s

hn(t)dt ≤ 1[u,v](s)

for all s ∈ [0, 1]. Therefore, by using (2.4)

I31(T, ψT,n) ≤ T 2

F 2
T

u∫
v

ds
u∫

s

dr
∫
R

φ(x)LT (r−s)φ(x)dx ≤ M
T 2−ᾱ

F 2
T

u∫
v

ds
u∫

s

(r − s)−ᾱdr. (3.20)

After substituting FT = T (2+β)/(1+β)−ᾱ into (3.20), we find that

I31(T, ψT,n) ≤ M

T 2/(1+β)−ᾱ
(u− v)2−ᾱ ≤ M(u− v)2−ᾱ (3.21)

since β ≤ 1 < 2α − 1. From (3.19) and (3.21), a positive constant M exists that only depends on φ such 
that for all T > 1 and n ≥ 2/(u − v),

|I31(T, ωψT,n)| + |I1(T, ωψT,n)| ≤ M(ω2 + ω1+β)|u− v|2−ᾱ. (3.22)

Since |1 − ez| ≤ |z| when |ez| ≤ 1,
∣∣∣1 − Re

(
E

[
exp

{
− iω〈ỸT , φhn〉

}])∣∣∣ ≤ |I1(T, iωψT,n) − I2(T, iωψT,n)| + |I3(T, iωψT,n)|.

Therefore, (3.14) and (3.22) together imply that for δ ∈ (0, 1)

1/δ∫
0

(
1 − Re

(
E

[
exp

{
− iω〈ỸT , φhn〉

}]))
dω ≤ M

3δ3 |u− v|2−ᾱ,

which completes the proof of (3.13) and the proof of Lemma 3.2. �
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