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NON-VANISHING OF HILBERT POINCARÉ SERIES

MONI KUMARI

Abstract. We prove some non-vanishing results of Hilbert Poincaré series. We derive
these results, by showing that the Fourier coefficients of Hilbert Poincaré series satisfy some
nice orthogonality relations for sufficiently large weight as well as for sufficiently large level.
To prove later results, we generalize a method of E. Kowalski et. al.

1. Introduction

The vanishing or non-vanishing of Poincaré series of integral weight for the group SL2(Z)
is a mysterious problem. Here, there is a conjecture that none of the Poincaré series vanish.
Several papers have appeared to investigate this conjecture. The first non-trivial result
towards this question was given by R. A. Rankin [8] in 1980, who showed that there are
constants B > 4 log 2 and k0 such that the Poincaré series Pn,k,1(z) does not vanish identically
for

n � k2 exp

(−B log k

log log k

)
, (1)

provided k � k0, where Pn,k,1(z) is the n-th Poincaré series of integral weight k and of level 1.
His proof uses the fact that the Fourier coefficients of Poincaré series has an explicit formula
as an infinite series involving Bessel functions and Kloosterman sums and sharp estimates for
the magnitude of Kloosterman sums. Later, J. Lehner [6] and C. J. Mozzochi [7] generalized
the Rankin’s result for an arbitrary Fuchsian group and for the congruence subgroup Γ0(N)
respectively. In 1986 E. Gaigalas [2], using Weil’s estimate for the Kloosterman sum proved
the following. “For any m ∈ N there exist infinitely many k ∈ 2N for which the m-th
Poincaré series of weight k (with respect to any finite index subgroup of SL2(Z)) is not
identically zero.” It is notable that the non-vanishing of Poincaré series is related to the
famous conjecture of Lehmer [5], which says that τ(n) �= 0, for all n � 1, where τ is the
Ramanujan τ -function.

As we know that the space of Hilbert modular forms is a generalization of the space
of elliptic modular forms, it is natural to ask the vanishing or non-vanishing of Hilbert
Poincaré series. To the best of our knowledge, in the literature there is no result concerning
this problem. In this article, we give an answer for this question in terms of weight as well as
level aspects. More precisely, we prove that for a fixed level I and for any finite set A ⊂ O∗

F ,
there exist a positive constant kA such that for all k � kA and for any ν ∈ A

P�k,ν,I(z) �≡ 0. (2)
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See section 2 for the notations. We also prove an analogous result with respect to level. Note
that in a particular case we get a generalization of Gaigalas’s result for Hilbert Poincaré
series.

For the proof of our main results, we first prove (see Theorem 3.1 and Theorem 3.2) that
the Fourier coefficients of Hilbert Poincaré series satisfy some nice orthogonality relations
with respect to weight as well as level. These intermediate results generalize the work of
E. Kowalski et. al. [4]. The main ingredients to prove these orthogonality relations are
basic Fourier analysis for functions of several variables and dominated convergence theorem.
These results may be of independent interest.

The paper is organized as follows. Section 2 contains some notations and a brief intro-
duction about Hilbert modular forms. Here we also state the results of Kowalski et. al. [4]
for Poincaré series. Furthermore, their method has been extended to Hilbert Poincaré series
in section 3. The main results of the paper which is about the non-vanishing of Hilbert
Poincaré series are given in section 4.

2. Notations and preliminaries

Let F be a totally real number field of degree n over Q and OF be its ring of algebraic
integers. Assume that σ1, σ2, ..., σn denote the real embeddings of F . We write αi = σi(α)
for α ∈ F and 1 � i � n. The trace and norm of α ∈ F are defined by tr(α) =

∑n
i=1 αi

and N(α) =
∏n

i=1 αi respectively. For α ∈ Cn, the trace and norm are defined by the sum
and the product of its components respectively. More generally, if c = (c1, c2, · · · , cn), d =
(d1, d2, · · · , dn), z = (z1, z2, · · · , zn) and m = (m1,m2, · · · ,mn) ∈ Cn, then the norm and
trace are define by

N(cz + d) :=
n∏

i=1

(cizi + di) and tr(mz) :=
n∑

i=1

mizi.

For α ∈ OF , we write α � 0 to demonstrate that either α = 0 or α is totally positive (means
all the conjugates of α are positive) and α� 0 for α to be totally positive.

Let GL+
2 (R) be the set of all matrices in GL2(R) with positive determinant. We know

that the group GL+
2 (R) acts on the upper half plane H = {x+ iy ∈ C : y > 0} via,(

a b
c d

)
z =

az + b

cz + d
.

Now by using the above action, we define an action of GL+
2 (OF )) on Hn. Using all the

embeddings of F and fixing their order, we embed GL2(F ) into GL2(R)
n. The image of

GL2(OF ) in GL2(R)
n is discrete. We denote the set of elements in GL2(F ) (respectively

GL2(OF )) with totally positive determinant by GL+
2 (F ) (respectively GL+

2 (OF )). For g =
(g1, g2, · · · , gn) ∈ GL+

2 (R)
n and z = (z1, z2, · · · , zn) ∈ Hn, we define

gz := (g1z1, g2z2, · · · , gnzn),
which deduces an action of GL+

2 (F ) and hence of GL+
2 (OF ) on Hn.

In this paper, we shall work with the Hilbert modular group

ΓF = SL2(OF ) :=

{(
a b
c d

)
: a, b, c, d ∈ OF , ad− bc = 1

}
,
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and its congruence subgroups of level I, which is defined by

Γ0(I) :=
{(

α β
γ δ

)
∈ ΓF : γ ∈ I

}
,

where I ⊆ OF is a non-zero integral ideal.
Let g = (g1, g2, · · · , gn) ∈ GL+

2 (R)
n, z = (z1, z2, · · · , zn) ∈ Hn, and k = (k1, k2, · · · , kn) ∈

Zn. We define

μ(g, z)k :=
n∏

j=1

(detgj)
−kj/2(cjzj + dj)

kj ,

where gj =

( ∗ ∗
cj dj

)
. Furthermore, for a function f defined on Hn, we set

(f |kg)(z) = μ(g, z)−kf(gz).

2.1. Hilbert modular forms. A Hilbert modular form of weight k ∈ Nn
0 for a congruence

subgroup Γ of ΓF is a holomorphic function f : Hn → C such that

f |k γ = f, for all γ ∈ Γ.

For n = 1, we also need holomorphicity condition at the cusps of Γ. Note that for n > 1,
a Hilbert modular form is automatically holomorphic at the cusps by the Koecher principle
[3, Sec 1.4]. In addition, f is called a Hilbert cusp form if it vanishes at all the cusps of Γ.
Let Mk(Γ) denotes the space of Hilbert modular forms of weight k ∈ Nn

0 for the congruence
subgroup Γ and Sk(Γ) be the subspace of cusp forms. These are finite dimensional complex
vector spaces and Sk(Γ) is a Hilbert space with respect to the Petersson inner product

〈f, g〉 :=
∫
Γ\Hn

f(z)g(z)yk
dxdy

y2
,

where z = x + iy, dx = dx1 · · · dxn and dy = dy1 · · · dyn. If f ∈ Mk(Γ0(I)), where I ⊆ OF

is a non-zero integral ideal, then we call f to be a Hilbert modular form of weight k and of
level I. Note that if F = Q, then Mk(Γ) is the space of elliptic modular forms.

By the Koecher principle, f ∈Mk(Γ) has a Fourier expansion at the cusp ∞ of the form

f(z) =
∑
m∈Λ∗

Γ
m�0

ame
2πitr(mz),

where

ΛΓ =

{
μ ∈ F :

(
1 μ
0 1

)
∈ Γ

}
, Λ∗

Γ =
{
μ ∈ F : tr(μΛΓ) ⊆ Z

}
. (3)

Here Λ∗
Γ is called the dual space of ΛΓ. Note that if Γ = Γ0(I) then ΛΓ = OF and Λ∗

Γ = O∗
F .

Now we introduce some notations which will be used in later sections. For an inte-
ger x ∈ N0, we denote 	x = (x, x, · · · , x) ∈ Nn

0 . For ν = (ν1, ν2, · · · , νn) ∈ Nn
0 and z =

(z1, z2, · · · , zn) ∈ Cn, we put

|ν| =
n∑

i=1

νi, ν! =
n∏

i=1

νi! and zν =
n∏

i=1

zνii .
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For an integral ideal I of OF , we denote the norm of I by N (I) := [OF : I]. For z =
(z1, z2, · · · , zn) ∈ Hn, we always write Im(z) = (Im(z1), Im(z2), · · · , Im(zn)). Throughout the
paper, we write Poincaré series for Poincaré series of the group SL2(Z) and its congruence
subgroups.

2.2. Hilbert Poincaré Series: Let I ⊆ OF be a non-zero integral ideal and Γ0(I) be
the associated congruence subgroup. For a totally positive element ν of O∗

F and weight
k = (k1, k2, · · · , kn) (kj > 2, j = 1, 2, · · · , n), we define the ν-th Hilbert Poincaré series as
follows:

Pk,ν,I(z) =
∑

M∈Γ∞\Γ0(I)
μ(M, z)−ke2πitr(ν(Mz)), (4)

where Γ∞ =

{(
1 μ
0 1

)
: μ ∈ OF

}
. It is well known that Pk,ν,I ∈ Sk(Γ0(I)).

For more details on the theory of Hilbert modular forms, we refer [1] and [3].

2.3. Orthogonality of Fourier coefficients of Poincaré series. Here we recall some
results obtained by Kowalski et. al. [4], concerning the orthogonality properties of the
Fourier coefficients of Poincaré series. In the next section we generalize them for Hilbert
Poincaré series.

Let k > 2 and m � 1 be integers. Let Pm,k,q(z) be the m-th Poincaré series of weight k for
the group Γ0(q). Recently, Kowalski et. al. [4] proved that the Fourier coefficients pm,k,q(n)
of the Poincaré series Pm,k,q(z) satisfy the following orthogonal relations with respect to
weight k as well as the level q.

Proposition 2.1. With notations as above, for fixed m � 1 and n � 1, we have

lim
k→∞

pm,k,1(n) = δ(m,n),

where δ(·, ·) is the Kronecker symbol.

Furthermore, they also showed similar result with respect to another important parameter,
the level q.

Proposition 2.2. With notations as above, for fixed k � 4,m and n, we have

lim
q→∞

pm,k,q(n) = δ(m,n).

Note that the above orthogonality relations can be obtained by applying the trace formula
to Poincaré series. But in [4], the authors gave a completely different and a soft proof.
Furthermore, in the same paper they have also obtained a similar orthogonality results for
the coefficients of Siegel Poincaré series

3. Intermediate results: Orthogonality relations

In this section, we extend Proposition 2.1 and Proposition 2.2 for Hilbert Poincaré se-
ries, which will be used to get our main results. We remark that these results may be of
independent interest.

Let pk,ν,I(μ) be the μ-th Fourier coefficient of the Hilbert Poincaré series Pk,ν,I defined by
(4), where μ ∈ O∗

F . First, we prove that the Fourier coefficients pk,ν,I satisfy an orthogonality
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relation for sufficiently large k. The main ingredient for the proof is dominated convergence

theorem. In Theorem 3.1, we shall only work with parallel weight 	k = (k, k, ..., k).

Theorem 3.1. [Weight aspect] Let P�k,ν,I be the ν-th Hilbert Poincaré series of weight 	k
and of level I. Then for fixed ν � 0 and μ� 0, we have

lim
k→∞

p�k,ν,I(μ) = δ(ν, μ).

Proof. From the theory of Fourier analysis for function of several variables, we have

p�k,ν,I(μ) = vol(Ω)−1

∫
Ω

P�k,ν,I(z)e
−2πitr(μz)dz,

where for an arbitrary y ∈ Rn
+, Ω = {z = x+ iy : x ∈ OF \Rn}. For our purpose, we choose

y with N(y) > 1. Now taking the limit as k →∞ on both sides of the above equation, we
obtain

lim
k→∞

p�k,ν,I(μ) = vol(Ω)−1 lim
k→∞

∫
Ω

P�k,ν,I(z)e
−2πitr(μz)dz. (5)

We want to apply the dominated convergence theorem for interchanging the limit and in-
tegration on the right hand side of (5). Now we prove the following two assertions, which
enable us to apply the dominated convergence theorem for the sequence {P�k,ν,I}k�1.

(a) For any z ∈ Ω, as k →∞ we have

P�k,ν,I(z)→ e2πitr(νz). (6)

(b) For all k > 2 and z ∈ Ω, there exist an integrable function G on Ω such that

|P�k,ν,I(z)| � G(z).

To prove the first assertion, we show that as k → ∞ exactly one of the term in the series
expansion of P�k,ν,I (defined by (4)) converges to e2πitr(νz) and others (individually) tend to
0. Any term in the series expansion looks like

μ(M, z)−
�ke2πitr(ν(Mz)),

for some M =

( ∗ ∗
γ δ

)
∈ Γ∞ \ Γ0(I). Note that γ = 0 only for one such M and so we can

choose M = Iid to be a representative. Therefore, in this case

μ(M, z)−
�ke2πitr(ν(Mz)) = e2πitr(νz), (7)

for all weight 	k and z ∈ Hn. Now suppose γ �= 0. For z = (z1, z2, · · · , zn) ∈ Hn it is easy to
see that Im(tr(ν(Mz))) > 0, which gives

|μ(M, z)−
�ke2πitr(ν(Mz))| � |μ(M, z)−

�k|.
Since 0 �= γ ∈ OF , i.e., N(γ) ∈ Z, and hence N(γ)2 � 1. Now

|μ(M, z)|2 =
n∏

j=1

|γjzj + δj|2 �
n∏

j=1

(γjyj)
2 = N(γ)2N(y)2 � N(y)2,

where yj = Im(zj) for 1 � j � n. Combining the last two inequality, we get

|μ(M, z)−
�ke2πitr(ν(Mz))| � N(y)−k.
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We know that for z ∈ Ω, N(y) > 1. Therefore, for any z ∈ Ω the above inequality yields

|μ(M, z)−
�ke2πitr(ν(Mz))| → 0 as k →∞. (8)

Thus the claim (6) follows from (7) and (8).
For the proof of the assertion (b), we define a function G(z) on Hn by

G(z) =
∑

M∈Γ∞\Γ0(I)
|μ(M, z)|−3.

It is a well-known (see [1, lemma 5.7]) fact that the above series is an absolutely convergent
and convergences uniformly in every compact subset of Hn. Since the domain Ω is compact
in Hn, therefore G(z) is integrable on Ω, i.e.,∫

Ω

G(z)dz <∞.

Also for any z ∈ Ω, we obtain

|P�k,ν,I(z)| �
∑

M∈Γ∞\Γ0(I)
|μ(M, z)−

�ke2πitr(ν(Mz))| �
∑

M∈Γ∞\Γ0(I)
|μ(M, z)|−3.

In other words, for every positive integer k > 2 and z ∈ Ω, we get

|P�k,ν,I(z)| � G(z),

which proves the required result.
Now the dominated convergence theorem allows us to interchange limit and integration in

equation (5). Therefore using (6), we have

lim
k→∞

p�k,ν,I(μ) = vol(Ω)−1

∫
Ω

e2πitr(νz)e−2πitr(μz)dz = δ(ν, μ).

This completes the proof. �
Next, we prove that the Fourier coefficients pk,ν,I also satisfy a similar orthogonality rela-

tion with respect to other important parameter, the level I. The proof, as before, uses the
dominated convergence theorem for the sequence {Pk,ν,I(z)}N (I)�1. Here we work with any
weight k ∈ Nn

0 , not necessarily parallel weight.

Theorem 3.2. [Level aspect] Let Pk,ν,I be the ν-th Hilbert Poincaré series of weight
k ∈ Nn

0 of level I. Then for fixed k > 2, ν � 0 and μ� 0, we have

lim
N (I)→∞

pk,ν,I(μ) = δ(ν, μ).

Proof. As before, we start with the integral formula

pk,ν,I(μ) = vol(Ω)−1

∫
Ω

Pk,ν,I(z)e−2πitr(μz)dz.

Taking limit N (I) tends to infinity on the both sides of the above equation, we get

lim
N (I)→∞

pk,ν,I(μ) = vol(Ω)−1 lim
N (I)→∞

∫
Ω

Pk,ν,I(z)e−2πitr(μz)dz. (9)

For simplifying the right hand side of the above equation, we need to interchange the limit
and integration. For that we use the dominated convergence theorem. To apply this theorem,
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we prove the following two assertions. First, every element in the sequence {Pk,ν,I(z)}N (I)�1

is bounded by some integrable function on Ω. Second,

Pk,ν,I(z)→ e2πitr(νz), as N (I)→∞, ∀ z ∈ Ω. (10)

For k = (k1, k2, · · · , kn) ∈ Nn with kj > 2 for all 1 � j � n, we define

Gk(z) =
∑

M∈Γ∞\ΓF

|μ(M, z)|−k.

It is a well-known fact (see [1, lemma 5.7]) that the above series is an absolutely convergent
and convergences uniformly in every compact subset of Hn. Since the domain Ω is compact
in Hn, therefore Gk(z) is integrable on Ω, i.e.,∫

Ω

Gk(z)dz <∞.

Hence for a fixed k ∈ Nn and following the arguments as in the proof of the previous theorem,
we have

|Pk,ν,I(z)| � Gk(z), (11)

for every integral ideal I of OF and for all z ∈ Hn. This proves the first assertion.
For the proof of the claim (10), we proceed as follows. Note that Γ∞ \ Γ0(I) is a subset

of Γ∞ \ ΓF , therefore we write (4) as

Pk,ν,I(z) =
∑

M∈Γ∞\ΓF

ΔI(M)μ(M, z)−ke2πitr(ν(Mz)), (12)

where

ΔI

((
α β
γ δ

))
=

{
1 if γ ∈ I,
0 otherwise.

For M =

( ∗ ∗
γ δ

)
∈ Γ∞ \ ΓF , consider a general term

ΔI(M)μ(M, z)−ke2πitr(ν(Mz)) (13)

in the Poincaré series Pk,ν,I(z) defined by (12). If γ = 0 then by definition,

ΔI(M) = 1

for all non-zero integral ideal I. Also M ∈ Γ∞, hence we can take M to be the identity
matrix Iid. Therefore, we have

ΔI(M)μ(M, z)−ke2πitr(ν(Mz)) = e2πitr(νz), (14)

for every non-zero integral ideal I. Next, if γ �= 0, then

ΔI(M) = 0,

for all I with N (I) > N (γOF ). Hence

lim
N (I)→∞

ΔI(M)μ(M, z)−ke2πitr(ν(Mz)) = 0. (15)

The assertion (10) follows if we take limit N (I) tends to ∞ in the definition (12) and using
(14) and (15).
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Now interchanging the limit and integration in (9) and further using (10) gives the required
result. �

4. non-vanishing of Hilbert Poincaré series

The main goal of the paper is to prove some non-vanishing results for Hilbert Poincaré
series, which we prove here. Using Theorem 3.1 and Theorem 3.2, we prove that the Hilbert
Poincaré series does not vanish identically for sufficiently large weight as well as sufficiently
large level respectively.

Theorem 4.1. Let ν ∈ O∗
F , where O∗

F is the dual space defined by (3). Let P�k,ν,I be the

ν-th Hilbert Poincaré series of (parallel) weight 	k and level I. Then for fixed ν and level I,
there exist a positive constant k0 such that for all k > k0, we have

P�k,ν,I �≡ 0.

Proof. From Theorem 3.1, we know that for a totally positive ν ∈ O∗
F ,

lim
k→∞

p�k,ν,I(ν) = 1.

Hence, there exist some constant k0 > 0 such that for all k > k0, we have

p�k,ν,I(ν) �= 0,

equivalently,
P�k,ν,I �≡ 0,

which completes the proof of the theorem. �
Remark 4.1. More generally, the above theorem is equivalent to the following statement.
For any finite set A ⊂ O∗

F of indices and for any finite set B of levels, there exist a positive
constant k0 such that for all k > k0, we have

P�k,ν,I �≡ 0,

for all ν ∈ A and I ∈ B.

In a particular case of the Theorem 4.1 when F = Q, we get the following non-vanishing
result of Poincaré series.

Corollary 4.2. For any positive integer m, there exist a positive constant k0 such that for
all k > k0, we have

Pk,m,q �≡ 0,

where Pk,m,q be the m-th Poincaré series of weight k and of level q.

Note that Corollary 4.2 generalizes an earlier result of Gaigalas [2] and gives a completely
different proof. Moreover, our result is stronger than that.

In the following theorem, we show the non-vanishing of Hilbert Poincaré series with respect
to level, when the weight is fixed.

Theorem 4.3. Let ν ∈ O∗
F . Then for a fixed 2 < k ∈ Nn and ν, there exist a positive

constant n0 such that
Pk,ν,I �≡ 0,

for all integral ideal I with N(I) � n0.
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Proof. A direct application of Theorem 3.2 and similar arguments as in the proof of Theo-
rem 4.1, give the required result. �
Remark 4.2. Similar to the Remark 4.1, we point out that the above theorem holds good for
finitely many weights as well as finitely many indices.

Again if the field F is Q then using Theorem 4.3, we have the following non-vanishing
result for Poincaré series Pk,m,q.

Corollary 4.4. For any positive integer m and for a fixed weight k ∈ N, there exist a positive
constant q0 such that for all q > q0, we have

Pk,m,q �≡ 0.

5. concluding remark

It would be interesting to get the analogous result of Rankin, stated in the introduction,
for Hilbert Poincaré series. Although our results are weaker than the expected analogous
Rankin’s result, but the beauty of our proof is that it uses only elementary techniques. We
neither used the explicitly expression for the Fourier coefficients of Hilbert Poincaré series
nor any estimates for corresponding Bessel function or the generalized Kloosterman sums.

Note that the Fourier coefficients of Siegel Poincaré series also satisfy orthogonality rela-
tions, proved by Kowalski et. al. [4]. From this, one can obtained the similar results like
Theorem 4.1 and Theorem 4.3 for Siegel Poincaré series. We also expect that by following
the method of this paper, one can prove the analogous non-vanishing results for Poincaré
series of half-integral weight modular forms.
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