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We study the dynamics of a prey-predator interaction model that incorporates: (1) 
reduction of prey growth rate, in the form of fear effect, in presence of predator; 
and (2) group defense of prey, against predation, by using the Monod-Haldane 
type functional response. Moreover, we interrelate these two factors, through the 
predator-taxis sensitivity, as the total time or energy for foraging and defense 
is constant for prey. If the prey invests more time or energy for group defense, 
then reproduction may decrease due to that investment. We provide detailed 
mathematical results, including, basic dynamical properties, existence of positive 
equilibria, asymptotic stability of all equilibria, Hopf-bifurcation, direction and 
stability of bifurcated periodic solutions. We also provide some global features 
and possible occurrence of multi-stability in our model. Furthermore, we perform 
detailed numerical simulations to validate our mathematical results numerically. 
Our mathematical and numerical results suggest that the predator-taxis sensitivity 
should be less than some threshold density, for possible survivability of predator. We 
provide some sensitivity analysis of our model solutions with respect to the three 
important model parameters, namely, the predator-taxis sensitivity, level of fear, 
and the tolerance limit of predator. We can observe that the perturbation of the 
tolerance limit of predator has the greatest influence over model dynamics. Initially, 
the predator-taxis sensitivity has a positive effect on prey as its decreases the killing 
rate, however, for long run, its effect is negative on both the solutions, as it decreases 
the growth rate of prey, which affects overall fitness of both the populations. Our 
results may provide some useful biological insights on predator-prey interactions.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

One of the central topics in ecology and evolutionary biology, is to study the different mechanisms 
related to the predator-prey interaction. Among these mechanisms, predation is relatively easy to observe 
in nature, as it involves direct killing, thus removing individuals from the population [12,16]. Consequently, 
predation is the most powerful force in a prey-predator interaction, particularly in altering behavior, which 
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can shape traits, associated with both prey and predator, but especially traits related to prey’s behavior [23]. 
Every prey species adjust their activity budgets, and show a variety of anti-predator responses, like change 
of habitat (move from high-risk habitat and relocate to low-risk habitat), foraging activity (reduction of 
foraging activity to reduce the probability of detection by predators), vigilance (increase vigilance to detect 
a predator more in advance), some physiological changes, defense and grouping tendencies, etc. [32,16,27].

It is well established that prey grouping is a form of anti-predator behavior in many prey species [25,
13], and some studies also examined that how group size responds to the predation risk [5,9,14]. The 
advance predator detection is the main benefit when the preys are in a group. However, sometimes larger 
groups are more detectable by predators. It is widely accepted that increasing the defense against the 
predator is costly and leads to a decline preys foraging intake, and the selection will favor individuals who 
optimally balance the benefits of risk reduction against its costs [20]. Therefore, many prey (like ungulates, 
Ungulata) gather into large groups to reduce the individual defense cost by using “many eyes” effects and 
enhance their survival through the “safety in number” [4]. Ungulates show many anti-predator responses, 
however these can be categorized into two, reduction of probability of detection by the predators and 
enhancement the probability of surviving after detection by a predator by increasing their group defense 
or group size [22]. Group defense and the risk of predation have been studied in many natural populations, 
including birds, fish, and invertebrates (sparrowhawks, Accipiter nicus, preying on redshanks, Tringa tetanus
[17]; cichlids, Aequidens pulcher, preying on guppies, Poecilia reticulate [21]; wasps preying on orb-weaving 
spiders, Metapeira incrassate [31]) as well as mammalian predators and prey (cheetahs, Acinonyx jubatus, 
preying on gazelles, Gazella thompsoni [18]; lions, Panthera leo, preying on mixed ungulate herds, [30]). 
Japanese honeybees form a “hot defensive ball” around the hornet to defend the attack [24].

In the present paper, we consider the group defense among preys as an anti-predator behavior of prey 
population. Mathematical model on group defense was first introduced by Freedman and Wolkowicz Freed-
man and Wolkowicz [19], after that several attempts have been made. The most common and simplest 
way to incorporate group defense is by considering Holling type IV functional response or Monod-Haldane 
functional Response [3,19]. In Holling type IV functional response predator cannot survive above some 
upper threshold of prey density. Another approach is to consider that the predation mostly occurs on the 
perimeter of the herd (prey gathers together to graze and that the outermost individuals suffering most by 
the predator attacks from outside), which is modeled by the square root term [1,33]. Here, we consider the 
Holling type IV functional response to incorporate the group defense of prey.

However, there are two important factors, namely energy and time limitations, which restraining wild 
animal activities. To survive under the risk of predation, prey may shorten its activity periods and sacrifice 
some of its foraging time to vigilance, however prey need to balance between defense time and foraging 
intake. Because, high level of anti-predator behavior over long time results shorten foraging and leads to 
starvation, which impacts on growth. Therefore, there are both costs and benefits for prey in prey defense. 
Here, we incorporate the cost as a form of growth reduction of prey due to predation fear. Predation 
extremely affects prey population, not only because it associates with direct killing but also predation fear 
is a predominant factor in the feeding ecology. Almost all aspects of prey biology may be affected due to 
predation fear [15], such as decreased feeding rate [8], altered diets [10], as well as the force to change the 
habitat, which may carry a high cost, especially if the new habitat is of suboptimal quality [7,2,17]. In order 
to survive under risk of predation, scared prey forage less, which forced them to adopt survival mechanisms 
like starvation, and could reduce their birth rate [12,16]. Sometimes higher level of anti-predator response 
causes prey to leave their habitat temporarily, which greatly affects juvenile prey’s physical condition and 
harmful impact on their survival as adults [12,11]. As an anti-predator behavior bird flees away from their 
nests at the first sign of danger, which may increase their probability of survival in short-term but reduce 
their reproduction as a long-term cost, which may affect overall population [16].

Many biologists realized that in prey-predator interaction, the cost of fear should be incorporated along 
with direct predation [28]. However, due to the lack of field experimental evidence, this fear effect has 
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not been incorporated into mathematical models, except some recent studies [34,29]. Recent experiment 
by Zenette at al. [35], on song sparrows Melospiza Melodia, showed that the offspring production can be 
reduced up to 40% due to predation fear only, without direct killing. Prey-predator models with varieties 
of functional response have been studied in literature; however such functional responses only considered 
direct killing, no matter how complicated they are. Very few mathematical models are there, where this 
reduction of prey growth rate has been considered [34].

In the literature, authors only consider the group defense, which is beneficial for prey, as it decreases 
the rate of predation. However, defense is not always beneficial, as due to this investment, there may be a 
reduction in prey growth. Therefore, in the present study, we consider the reduction of prey growth rate, in 
the form of fear factor, in presence of group defense through Monod-Haldane type functional response. Our 
study objective includes, (i) What are the dynamical effects of growth rate reduction in the form of fear, 
when prey shows group defense as an anti-predator response? (ii) Moreover, we are interested in how these 
two factors are interrelated with each other through predator-taxis sensitivity? The remainder of the paper 
is organized as follows: Section 2 is designated for the development of our model, which considers both fear 
and group defense, and how they are interrelated through predator-taxis sensitivity. Detailed equilibrium 
analysis and their stability are given in the Section 3. In this section, we also discuss about some global 
features of the proposed model, multi-stability, direction and stability of Hopf-bifurcation, etc. Also, we 
validate our analytical results numerically in this section. Sensitivity of model solutions to some important 
model parameters is discussed in Section 4. The paper ends with the results and conclusions, which are 
presented in Section 5.

2. Formulation of mathematical model

First, we assume that the preys growth follows the logistic dynamics, which can be split into three 
different parts, namely, the birth, the natural death, and the density dependent death due to intra-specific 
competition among preys. Therefore, in the absence of predator, the prey dynamics is governed by the 
following ordinary differential equation

dx
dt = rx− d1x− d2x

2 (2.1)

where x is the population density of prey, r is the birth rate of prey, d1 is the natural death rate of prey, 
and d2 is the death rate due to intra-prey competition. It is easy to show that the solution x(t) for any 
positive initial value for (2.1) tends to 0 when r ≤ d1, that is, the prey always goes to extinction. Hereafter, 
we assume that r > d1.

Next, in the presence of predator, we incorporate the predation term p(x) in prey dynamics and also 
include the predator dynamics explicitly into (2.1). In this study, we consider prey group defense as an 
anti-predator response. Mainly two well known approaches are there to incorporate the group defense 
in predator-prey competition. One is by considering Holling type IV or Monod-Haldane type functional 
response [19] and another is to consider that the predation mostly occurs on the perimeter of herd which is 
modeled by the square root term [1,33]. Therefore, our general predator-prey model with group defense is 
given by

dx
dt = rx− d1x− d2x

2 − p(x)y
dy
dt = cp(x)y −m(y)y.

(2.2)

Here, y is the density of predator population, c is the conversion efficiency from prey biomass to predator 
biomass and m(y) is the death of predator, which could be density dependent or density independent. Here 
we consider density independent death rate of predator, i.e., m(y) = m. In this study, we consider the 
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group defense following Holling type IV functional response, i.e., p(x) = βx
a+bx+x2 , where β is the rate of 

predation, a > 0 is the half-saturation constant, and the parameter b is the tolerance limit of predator. 
The successful predation rate of predator decreases if the defense level or equivalently the tolerance limit of 
predator increases.

As we discussed in the introduction section, due to energy and time limitations, high level of anti-predator 
behavior over long time may have a cost also, which can reduce the prey growth rate. In fact, some fields 
experiments suggest that the predation fear can significantly reduce the reproduction of prey [34]. Therefore, 
in the present study we incorporate the cost through predation fear, in the presence of predator population, 
which depends on predator population density. Thus, in the presence of predator population, we modify 
the above equation (2.2) by multiplying the reproduction term of prey rx by a factor f(k, y) = 1

1+ky which 
accounts for the cost of anti-predator defense due to predation fear [34,29]. Thus our model (2.2) becomes

dx
dt = rxf(k, y) − d1x− d2x

2 − p(x)y
dy
dt = cp(x)y −m(y)y.

(2.3)

Here, the parameter k refers to the level of fear which reflects the reduction of prey growth rate due to the 
anti-predator behavior. As k increases the growth rate of prey decreases. Moreover, in the current study, we 
consider d1 and d2 as constant. Although, without any direct experimental evidence, some research suggests 
that predator fear may lead to lower survival rates of adult preys, due to some physiological impacts when 
they are young [11]. Therefore, one may consider d1 and d2 as a function of predator density (e.g., d1 and 
d2 may be an increasing function of y).

In the above formulation, both the cost (in the form of fear factor) and benefit due to group defense are 
independent to each other. However, they may not be independent to each other, as total time and energy is 
limited. That is, if prey invest more time and energy for group defense then reproduction may decrease more 
due to that investment. Therefore, we interrelate these two factors through a parameter called predator-taxis 
sensitivity ‘α’. As the predator-taxis sensitivity increases, in other words, when preys are more sensitive to 
predation, they will increase their group defense and successful predation rate will decrease. However, at the 
same time their reproduction rate also decreases as foraging time and energy decrease, in other words level 
of fear increases. Here we consider both the tolerance limit of predator b and the level of fear k increases 
linearly with respect to the predator-taxis sensitivity α (i.e., b �→ bα and k �→ kα). Therefore, we modify the 
functions f(k, y) and p(x) in model (2.3), as f(k, y) ≡ f(k, α, y) = 1

1+kαy , and p(x) ≡ p(α, x) = βx
a+bαx+x2 , 

i.e., both the successful reproduction rate of prey and the successful predation rate of predator decrease if 
the defense level or equivalently predator-taxis sensitivity α increases. Therefore, our final model becomes,

dx
dt = rx

1+kαy − d1x− d2x
2 − βxy

a+bαx+x2

dy
dt = cβxy

a+bαx+x2 −my
(2.4)

Description of parameters and their values are given in the Table 1. In the above model (2.4), if we consider 
α = 1, then the group defense and the cost of fear are independent to each other. By the definition of k, α, 
y, f(k, α, y) and p(α, x), we have the following properties:

f(0, α, y) = 1, f(k, α, 0) = 1, f(k, 0, y) = 1, limk→∞ f(k, α, y) = 0,

limy→∞ f(k, α, y) = 0, limα→∞ f(k, α, y) = 0, ∂f(k,α,y)
∂k < 0, ∂f(k,α,y)

∂α < 0,
∂f(k,α,y)

∂y < 0, limα→∞ p(α, x) = 0, ∂p(α,x)
∂α < 0.

The basic dynamical property of the model (2.4) is summarized in the following theorem:
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Table 1
Description of parameters and their fixed values for Model (2.4).

Parameter Description Value
r birth rate of prey 0.2
k level of fear 0.5
α predator-taxis sensitivity 0.25
d1 natural death rate of prey 0.1
d2 death due to intra-prey competition 0.2
β rate of predation 0.5
a half-saturation constant 0.1
b tolerance limit of predator 0.5
c conversion efficiency of biomass 1
m natural death rate of predator 0.25

Theorem 2.1. For the system (2.4), R2
+ is positively invariant. Moreover, the system (2.4) is dissipative, 

i.e., every solution of (2.4) is ultimately bounded in R2
+, with the following properties

limt→∞ supx(t) ≤ r−d1
d2

limt→∞ sup
[
x(t) + 1

cy(t)
]
≤

{ r−d1
d2

if m>r−d1

(r−d1+m)2
4d2m if m≤r−d1.

Proof. For any x ≥ 0 and y ≥ 0, we have

dx

dt

∣∣∣
x=0

= 0 and dy

dt

∣∣∣
y=0

= 0,

which implies that x = 0 and y = 0 are invariant manifolds, respectively. Due to the uniqueness of a solution, 
we can conclude that the set R2

+ is positively invariant for the system (2.4).
Now,

dx
dt ≤ rx

1+kαy − d1x− d2x
2

≤ (r − d1)x− d2x
2.

Consider the system

dz
dt = (r − d1)z − d2z

2,

whose solution satisfies that

limt→∞ sup z(t) ≤ r−d1
d2

.

By the comparison theory, we have

limt→∞ supx(t) ≤ r−d1
d2

.

Now we define w(t) = x(t) + 1
cy(t), then

dw
dt = rx

1+kαy − d1x− d2x
2 − m

c y

< rx− d1x− d2x
2 −m(w − x)

= (r − d1 + m)x− d2x
2 −mw.

Define f(x) = (r − d1 + m)x − d2x
2,
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maxx≥0 f(x) = f
(

r−d1+m
2d2

)
= (r−d1+m)2

4d2
.

Since limt→∞ supx(t) ≤ r−d1
d2

, ∀ ε > 0, ∃ T > 0, s.t. x(t) ≤ r−d1
d2

+ ε for t > T .
Case I: r−d1

d2
< r−d1+m

2d2
(i.e., m > r − d1)

First, choose some ε > 0 such that r−d1
d2

+ ε < r−d1+m
2d2

. Now,

max
x≤ r−d1

d2
+ε

f(x) = f
(

r−d1
d2

+ ε
)

=
[
r − d1 + m− d2

(
r−d1
d2

+ ε
)](

r−d1
d2

+ ε
)

= (m− d2ε)
(

r−d1
d2

+ ε
)
.

Hence,

dw
dt ≤ (m− d2ε)

(
r−d1
d2

+ ε
)
−mw

and limt→∞ supw(t) ≤
(m−d2ε)

(
r−d1
d2

+ε
)

m

letting ε → 0, we have

limt→∞ sup
[
x(t) + 1

cy(t)
]
≤ r−d1

d2
( if m > r − d1).

Note that r−d1
d2

+ ε < r−d1+m
2d2

⇔ 0 < ε < m−r+d1
2d2

. Therefore,

min
0≤ε≤m−r+d1

2d2

(m− d2ε)
(
r − d1

d2
+ ε

)
= (m− d2ε)

(
r − d1

d2
+ ε

) ∣∣∣
ε=0

= m(r − d1)
d2

.

Case II: m ≤ r − d1

max
x≤ r−d1

d2
+ε

f(x) = f
(

r−d1+m
2d2

)
= (r−d1+m)2

4d2

⇒ dw
dt ≤ (r−d1+m)2

4d2
−mw

⇒ limt→∞ supw(t) ≤ (r−d1+m)2
4d2m

. �
The theorem shows that, when the death rate of the predator is large (m > r − d1), we have

lim
t→∞

sup
(
x(t) + 1

c
y(t)

)
≤ r − d1

d2
,

when it is small (m ≤ r − d1), we have

lim
t→∞

sup
(
x(t) + 1

c
y(t)

)
≤ (r − d1 + m)2

4d2m
.

Note that

(r − d1 + m)2

4d2m
− r − d1

d2
= 1

4d2m
(r − d1 −m)2 ≥ 0.

Hence, when the predator’s death rate is small (m ≤ r − d1), then the upper bound of limit supremum 
of the ‘total population’ is higher, compared to the higher predator’s death rate (m > r − d1), which is 
reasonable from the biological point of view.
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3. Equilibrium analysis

The Model (2.4) has three non-negative equilibria:

1. The trivial extinction equilibrium E0 = (0, 0), which always exists.
2. The axial equilibrium, where only prey population survive is given by E1 =

(
r−d1
d2

, 0
)
, which exists if 

r > d1.
3. Other non-negative interior steady states of (2.4) can be solved from the following equations

r
1+kαy − d1 − d2x− βy

a+bαx+x2 =: g(x, y)
cβx

a+bαx+x2 −m =: f(x)
(3.1)

From f(x) = 0, we can get the expression of x as follows:

xi = (cβ−mbα)∓
√

(cβ−mbα)2−4m2a
2m , i = 1, 2, (3.2)

where x1 ≤ x2. From g(x, y) = 0, we can get a quadratic polynomial of y in terms of x as follows:

(m2kα)y2 +
[{ (

c2βd2 + cmd1 −mbαcd2
)
x−macd2

}
kα + m2

]
y

+
[{ (

c2βd2 + cmd1 −mbαcd2
)
x−macd2

}
− cmrx

]
= 0.

(3.3)

Depending on the parameter values and corresponding xi for i = 1, 2, our proposed system (2.4) would have 
none, one or two interior steady states.

We provide the following theorem regarding the number of interior equilibrium corresponding to the 
system (2.4).

Theorem 3.1.

(a) The system (2.4) has no interior steady states if any of the following conditions hold:

ma

x1
+ m(r − d1)

d2
≤ cβ −mbα or cβ −mbα < 2m

√
a.

(b) The system (2.4) has a unique interior steady state E∗
1 = (x1, y1) if the following conditions hold:

max
{

2m
√
a,

ma

x2
+ m(r − d1)

d2

}
< cβ −mbα <

ma

x1
+ m(r − d1)

d2
.

(c) The system (2.4) has two interior steady states E∗
1 = (x1, y1) and E∗

2 = (x2, y2) if the following condi-
tions hold:

2m
√
a < cβ −mbα <

ma

x2
+ m(r − d1)

d2
.

Proof. From the expression of xi in the equation (3.2),

xi > 0 iff cβ −mbα > 0 and (cβ −mbα)2 ≥ 4m2a,

i.e., x > 0 iff cβ −mbα > 2m
√
a.
i
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A straightforward application of the Descartes sign rule, we can easily verify that the equation (3.3)
has at most one real positive root for suitable values of different parameters and variable x as follows. We 
rename the coefficients of the equation (3.3) as

C1 = m2kα (> 0)

C2 =
[{ (

c2βd2 + cmd1 −mbαcd2
)
x−macd2

}
kα + m2

]
C3 =

[{ (
c2βd2 + cmd1 −mbαcd2

)
x−macd2

}
− cmrx

]
Now, C3 > 0 =⇒

(
c2βd2 + cmd1 −mbαcd2

)
x−macd2 > cmrx

=⇒
[(
c2βd2 + cmd1 −mbαcd2

)
x−macd2

]
kα + m2 > cmrxkα + m2

=⇒ C2 > (crkαx + m)m > 0.

Therefore, by Descartes sign rule, equation (3.3) cannot have any positive real solution, if C3 > 0.
Thus, the equation (3.3) has unique real positive root if and only if

C3 < 0, which gives cβ −mbα <
ma

x
+ m(r − d1)

d2
.

Therefore, under the conditions cβ −mbα > 2m
√
a, the system (2.4) has

(a) no interior equilibrium if max{ma
xi

+ m(r−d1)
d2

, i = 1, 2} < cβ −mbα, i.e., if ma
x1

+ m(r−d1)
d2

< cβ −mbα,
(b) unique positive interior equilibrium if ma

x2
+ m(r−d1)

d2
< cβ −mbα < ma

x1
+ m(r−d1)

d2
, and

(c) two positive interior equilibrium if cβ − mbα < min{ma
xi

+ m(r−d1)
d2

, i = 1, 2}, i.e., if cβ − mbα <
ma
x2

+ m(r−d1)
d2

. �
Note: From the existence conditions, we have cβ −mbα > 2m

√
a, which gives α < cβ−2m

√
a

mb . Thus the 

predator taxis sensitivity α must be less than the threshold density 
(

cβ−2m
√
a

mb

)
for possible survivability of 

predator at a positive equilibrium point.
In the Fig. 1, we fix the parameters as r = 0.2, k = 0.5, d1 = 0.1, d2 = 0.2, β = 0.5, a = 0.1, b = 0.5, 

c = 1, m = 0.25 and varied the parameter α. For α = 3, there is no interior steady state for the system 
(2.4) (Fig. 1(a)), for α = 2.5 there is unique interior steady state E∗

1 = (0.1734, 0.0388) (Fig. 1(b)) and for 
α = 2.7 there are two interior steady states E∗

1 = (0.25, 0.0398) and E∗
2 = (0.4, 0.0225) (Fig. 1(c)).

Next, we provide the following theorems regarding the stability of equilibria corresponding to the system 
(2.4).

Theorem 3.2. The extinction equilibrium E0 is locally asymptotically stable if r − d1 < 0. In fact, E0 is 
globally asymptotically stable under this condition.

Proof. The eigenvalues at the extinction equilibrium E0 are given by λ1 = r − d1 and λ2 = −m (< 0). 
Thus E0 is locally asymptotically stable if r − d1 < 0.

The global asymptotic stability of E0 under the condition r − d1 < 0 follows from the Theorem 2.1 and 
the local stability of E0. �
Theorem 3.3. The unique prey-only equilibrium E1 exists and is locally asymptotically stable if r−d1 > 0 and 
cβ−mbα < mad2

r−d1
+ m(r−d1)

d2
. Moreover, E1 is globally asymptotically stable when r−d1 > 0 and cβ−mbα <

2m
√
a. In particular, E1 is globally asymptotically stable when r − d1 > 0, cβ − mbα < mad2

r−d1
+ m(r−d1)

d2
, 

and r−d1 <
√
a.
d2
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Fig. 1. Number of interior steady states for model (2.4) with varying α. The other parameter values are fixed as mentioned in the 
Table 1.

Proof. The eigenvalues at the axial equilibrium E1 are given by λ1 = −(r − d1) (< 0) and λ2 =
(r−d1)[d2(cβ−mbα)−m(r−d1)]−mad2

2
αbd2(r−d1)+(r−d1)2+ad2

2
, where λ2 < 0 if (r − d1) [d2(cβ −mbα) −m(r − d1)] < mad2

2, i.e., if 
cβ − mbα < mad2

r−d1
+ m(r−d1)

d2
. Thus, E1 is locally asymptotically stable if r − d1 > 0 and cβ − mbα <

mad2
r−d1

+ m(r−d1)
d2

.
From (2.4), we define g(x) as follows:

1
y

dy

dt
= cβx

a + bαx + x2 −m ≡ g(x).

It is easy to show that g(x) attains its maximum at x =
√
a.

First, consider the case r−d1
d2

≥ √
a.

Now

g(
√
a) = cβ

√
a

2a+bα
√
a
−m,

=
√
a(cβ−mbα−2m

√
a)

2a+bα
√
a

.

By the assumption cβ −mbα < 2m
√
a, define ε = 2m

√
a− (cβ −mbα) > 0, we have

g(
√
a) = − ε

√
a

2a+bα
√
a
< 0.

Hence,
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1
y
dy
dt = g(x) ≤ − ε

√
a

2a+bα
√
a

= −ε; with ε > 0,

⇒ y(t) ≤ Ce−εt for some constant C > 0,

⇒ y(t) → 0 as t → ∞.

Now we need to exclude the possibility that some subsequence of (x(t), y(t)) converges to E0.
Choose εy > 0, sufficiently small, then

sgn
( 1
x
dx
dt

) ∣∣∣
y=εy

= sgn
(

r
1+kαεy

− d1 − d2x− βεy
a+bαx+x2

)
= sgn

[
r(a + bαx + x2) − (d1 + d2x)(1 + kαεy)(a + bαx + x2) − βεy(1 + kαεy)

]
= sgn

[
−βkαε2y −

(
kα(d1 + d2x)(a + bαx + x2) + β

)
εy + (a + bαx + x2)(r − d1 − d2x)

]
> 0 ∀x < r−d1

d2
and for sufficiently small εy > 0

⇒ dx
dt > 0 ∀x < r−d1

d2
and for sufficiently small y > 0.

This proves that there exist no solution converging to E0, when x < r−d1
d2

and sufficiently small y > 0.
Now, since y(t) → 0 as t → ∞, we have

dx
dt → (r − d1)x− d2x

2,

⇒ x(t) → r−d1
d2

.

Note that

mad2

r − d1
+ m(r − d1)

d2
− 2m

√
a = m (r − d1 −

√
ad2)

2

d2(r − d1)
> 0,

which implies that 2m
√
a < mad2

r−d1
+ m(r−d1)

d2
. Now, cβ −mbα < 2m

√
a ensures that

cβ −mbα <
mad2

r − d1
+ m(r − d1)

d2
.

This shows that E1 is globally asymptotically stable if cβ −mbα < 2m
√
a.

Next, consider the case r−d1
d2

<
√
a.

It is easy to check that g
(

r−d1
d2

)
< 0, if cβ −mbα < amd2

r−d1
+ m(r−d1)

d2
.

Note that lim supt→∞ x(t) ≤ r−d1
d2

. These show that y(t) → 0 as t → ∞. Similarly, we can prove E1 is 
globally asymptotically stable if cβ −mbα < amd2

r−d1
+ m(r−d1)

d2
when r−d1

d2
<

√
a. �

Theorem 3.4. The interior equilibrium E∗
1 exists and is locally asymptotically stable if 2m

√
a < cβ−mbα <

ma
x1

+ m(r−d1)
d2

and y1 <
d2c

2βx2
1

m2(bα+2x1) , however, the other interior equilibrium E∗
2 is always a saddle, when it 

exists.

Proof. Now, the Jacobian matrix at the interior equilibrium is given by

JE∗
i

=
[
J11 J12
J21 J22

]
=

⎡
⎣ xi

(
βyi(bα+2xi)

(a+bαxi+x2
i )2

− d2

)
−xi

(
rkα

(1+kαyi)2 + β
a+bαxi+x2

i

)
cβyi(a−x2

i )
(a+bαxi+x2

i )2
0

⎤
⎦ .

Thus, the characteristic equation at the interior equilibrium is
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Table 2
Existence and stability conditions of equilibria for model (2.4).

Equilibrium Existence conditions Stability conditions
E0 = (0, 0) always exists r < d1

E1 =
(

r−d1
d2

, 0
)

r > d1 cβ − mbα < mad2
r−d1

+ m(r−d1)
d2

E∗
1 = (x1, y1) 2m

√
a < cβ − mbα < ma

x1
+ m(r−d1)

d2
y1 <

d2c
2βx2

1
m2(bα+2x1)

E∗
2 = (x2, y2) 2m

√
a < cβ − mbα < ma

x2
+ m(r−d1)

d2
always saddle

λ2 − J11λ− J12J21 = 0,

λ2 +
xi

[
d2

(
a+bαxi+x2

i

)2−βyi(bα+2xi)
]

(a+bαxi+x2
i )

2 λ + cβxiyi(a−x2
i )

[
rkα(a+bαxi+x2

i )+β(1+kαyi)2
]

(a+bαxi+x2
i )3(1+kαyi)2 = 0.

(3.4)

The roots will be real negative or complex conjugate with negative real parts if

x2
i < a and yi <

d2
(
a + bαxi + x2

i

)2
β (bα + 2xi)

= d2c
2βx2

i

m2 (bα + 2xi)
.

However, x2
2 can not be less than a. In fact x2

2 < a implies 
[
(cβ −mbα)2 − 4m2a

]
+ (cβ − mbα)×√

(cβ −mbα)2 − 4m2a < 0 which is not possible. Thus the interior equilibrium E∗
2 is always unstable 

(saddle, since the constant term of the characteristic equation is negative, thus by the Descartes sign rule, 
one eigenvalue is positive and one is negative).

On the other hand, x2
1 < a implies (cβ −mbα)2 > 4m2a which is true whenever E∗

1 exists. Thus, the 

interior equilibrium E∗
1 is locally asymptotically stable when it exists and the condition y1 <

d2c
2βx2

1
m2(bα+2x1)

holds. �
We summarize the existence and stability conditions of all the equilibria in the Table 2.
Next, we investigate the possibility of Hopf-bifurcation at the interior equilibrium E∗

1 by considering the 
parameter α, the predator-taxis sensitivity, as the bifurcation parameter.

The interior equilibrium E∗
1 loses its stability through Hopf-bifurcation when the eigenvalues are complex 

conjugate with zero real parts. We consider α as the bifurcation parameter. Let λ(α) = λr(α) + iλi(α) be 
an eigenvalue of the characteristic equation (3.4). After substituting the value of λ(α) in equation (3.4), and 
separating the real and imaginary parts, we get

λ2
r − λ2

i − J11λr − J12J21 = 0,

2λrλi − J11λi = 0.
(3.5)

At the Hopf-bifurcation point, we have λr(α) = 0. We set α = αH , λr(αH) = 0, and put λr = 0 in (3.5). 
Therefore,

λ2
i + J12J21 = 0,

J11λi = 0, where λi 
= 0.

Therefore, from the above equations, we have J11(αH) = 0, and λi(αH) =
√

−J12(αH)J21(αH) > 0, i.e., 
det(JE∗

1 )
∣∣∣
α=αH

= −J12(αH)J21(αH) > 0.
Thus, at the Hopf-bifurcation point, we have

J11(αH) = 0 ⇒ αH =
[
βy1 − 2d2x1(a + x2

1)
]
±

√
βy1 [βy1 − 4d2x1(a− x2

1)]
2 .
2d2bx1
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Differentiating equations (3.5), w.r.t. α and putting λr(α) = 0, we have

−J11
d(λr)
dα − 2λi

d(λi)
dα = d(J12J21)

dα ,

2λi
d(λr)
dα − J11

d(λi)
dα = λi

d(J11)
dα .

By solving the above system of equations, we have

d(λr)
dα

∣∣∣
α=αH

=
2λ2

i
d(J11)
dα − J11

d(J12J21)
dα

J2
11 + 4λ2

i

∣∣∣
α=αH


= 0,

provided 
[
2λ2

i
d(J11)
dα − J11

d(J12J21)
dα

] ∣∣∣
α=αH


= 0.

Theorem 3.5. If det(JE∗
1 )
∣∣∣
α=αH

= −J12(αH)J21(αH) > 0, and d(λr(α))
dα

∣∣∣
α=αH


= 0, hold, then the interior 
equilibrium E∗

1 of model (2.4) is locally asymptotically stable when α < αH , and undergoes Hopf-bifurcation 
at E∗

1 when α = αH .

The following theorem will give the direction and stability of Hopf-bifurcation around the interior steady 
state E∗

1 .

Theorem 3.6. Let define L as

L := 3fxxxf2
y − fygxfxyy +

(
2
√

−fygxfxyyy1 − fxy − 2fxxyfyx1
)

[
fxxfy + 3fxxxf2

yx1 − gxfyy − fygxfxyyx1 −
√
−fygx (fyfxxy − 3gxfyyy) y1

]
.

Then the Hopf bifurcation is supercritical if L < 0 and it is subcritical if L > 0, where

fy = J12 = − rx1kα
(1+kαy1)2 − βx1

a+bαx1+x2
1

fxx = −2d2 + 2βy1(bα+2x1)
(a+bαx1+x2

1)2
− 2βx1y1(bα+2x1)2

(a+bαx1+x2
1)3

+ 2βx1y1
(a+bαx1+x2

1)2

fxy = − rkα
(1+kαy1)2 − β

(a+bαx1+x2
1)

+ x1β(bα+2x1)
(a+bαx1+x2

1)2

fyy = 2x1rk
2α2

(1+kαx1)3

fxxx = −6βy1(bα+2x1)2
(a+bαx1+x2

1)3
+ 6βy1

(a+bαx1+x2
1)2

+ 6βx1y1(bα+2x1)3
(a+bαx1+x2

1)4
− 12βx1y1(bα+2x1)

(a+bαx1+x2
1)3

fxxy = 2β(bα+2x1)
(a+bαx1+x2

1)2
− 2βx1(bα+2x1)2

(a+bαx1+x2
1)3

+ 2βx1
(a+bαx1+x2

1)2

fxyy = 2rk2α2

(1+kαy1)3

fyyy = − 6x1rk
3α3

(1+kαy1)4

gx = J21 = cβy1
(a+bαx1+x2

1)
− cβx1y1(bα+2x1)

(a+bαx1+x2
1)2

The proof is given in the appendix.
Multi-stability: From the existence and stability conditions for different equilibria, there is a possibility 

of bi-stability. Our system (2.4) is bi-stable between the equilibria E1 and E∗
1 , if the following conditions 

hold

r − d1 > 0, 2m
√
a < cβ −mbα < min

{ma + m(r − d1)
,
mad2 + m(r − d1)} and y1 <

d2c
2βx2

1
2 .
x1 d2 r − d1 d2 m (bα + 2x1)
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For the following set of parameters values α = 2.7, r = 0.2, k = 0.5, d1 = 0.1, d2 = 0.2, β = 0.5, a = 0.1, 
b = 0.5, c = 1 and m = 0.25, we have

r − d1 = 0.1 > 0, y1 = 0.0398 <
d2c

2βx2
1

m2 (bα + 2x1)
= 0.2250,

and

2m
√
a = 0.1581 < cβ −mbα = 0.1625 < min

{ma

x1
+ m(r − d1)

d2
= 0.2250, mad2

r − d1
+ m(r − d1)

d2
= 0.175

}
.

In the Fig. 4, the red region is the bi-stable region of both the equilibria E1 and E∗
1 .

In addition to the local and global stability of different equilibria for Model (2.4), the following theorem 
shows the stability and instability of prey-only equilibrium when there exists one or two interior attractors.

Theorem 3.7.

(a) When there exist two interior equilibria E∗
1 and E∗

2 , the prey-only equilibrium E1 is always locally 
asymptotically stable.

(b) When there exists unique interior equilibrium E∗
1 , the prey-only equilibrium E1 is always unstable.

Proof. (a) Two interior equilibria exist if

2m
√
a < cβ −mbα < ma

xi
+ m(r−d1)

d2
; i = 1, 2. (3.6)

Under this condition the equation (3.3) has positive real solution, which satisfies the first equation of 
(3.1),

i.e., r
1+kαy − d1 − d2xi − βy

a+bαxi+x2
i

= 0

=⇒ r
1+kαy − d1 − d2xi ≥ 0

=⇒ r − d1 − d2xi > 0

=⇒ 1
xi

> d2
r−d1

.

Now, the prey-only equilibrium E1 is locally asymptotically stable if

cβ −mbα < mad2
r−d1

+ m(r−d1)
d2

=⇒ cβ −mbα < mad2
r−d1

+ m(r−d1)
d2

< ma
xi

+ m(r−d1)
d2

; i = 1, 2.
(3.7)

Now, we exclude the possibility of

mad2
r−d1

+ m(r−d1)
d2

< cβ −mbα < ma
xi

+ m(r−d1)
d2

; i = 1, 2. (3.8)

From the left inequality of (3.8):

mad2
r−d1

+ m(r−d1)
d2

< cβ −mbα,

⇐⇒ m(r − d1)2 − (cβ −mbα)d2(r − d1) + mad2
2 < 0,

⇐⇒ (cβ−mbα)d2−
√

(cβ−mbα)2d2
2−4m2ad2

2
2m < r − d1 <

(cβ−mbα)d2+
√

(cβ−mbα)2d2
2−4m2ad2

2
2m ,

⇐⇒ d x < r − d < d x
2 1 1 2 2
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From the second equation of (3.1), we have

(cβ −mbα)xi = mx2
i + am; i = 1, 2.

By using the above equation, the right inequality of (3.8) is written as

cβ −mbα < ma
xi

+ m(r−d1)
d2

; i = 1, 2

⇐⇒ (mx2
i + am)d2 < mad2 + m(r − d1)xi; i = 1, 2

⇐⇒ d2xi < r − d1; i = 1, 2

⇒ d2x2 < r − d1.

Therefore, in (3.8), left and right inequalities contradict each other. Hence (3.6) and (3.7) imply that 
E1 is locally asymptotically stable when there exist two interior equilibria.

(b) System (2.4) has unique interior equilibrium if the following conditions hold

max{2m
√
a,

ma

x2
+ m(r − d1)

d2
} < cβ −mbα <

ma

x1
+ m(r − d1)

d2
.

These xi (i = 1, 2) satisfy the first equation of (3.1) which gives 1
xi

> d2
r−d1

, i.e., 1
x2

> d2
r−d1

. Thus

mad2

r − d1
+ m(r − d1)

d2
<

ma

x2
+ m(r − d1)

d2
< cβ −mbα,

therefore E1 is unstable when there exists unique interior equilibrium E∗
1 . �

Theorem 3.8. The unique interior equilibrium E∗
1 is globally asymptotically stable if y1 <

d2c
2βx2

1
m2(bα+2x1) and 

0 < r − d1 < min{d2bα, ad2
bα }, i.e., E∗

1 is globally asymptotically stable if max{2m√
a, ma

x2
+ m(r−d1)

d2
} <

cβ −mbα < ma
x1

+ m(r−d1)
d2

, y1 <
d2c

2βx2
1

m2(bα+2x1) and 0 < r − d1 < min{d2bα, ad2
bα }.

Proof. From the Theorems 3.2, 3.4 and 3.7, for the global stability of E∗
1 , it is sufficient to prove that under 

the above conditions there are no periodic orbits in {(x, y)|x ≥ 0, y ≥ 0}. First, we make the substitution 
dt = (a + bαx + x2)dτ , then the model (2.4) becomes

dx
dτ =

(
rx

1+kαy − d1x− d2x
2
) (

a + bαx + x2)− βxy

dy
dτ = cβxy −my

(
a + bαx + x2) . (3.9)

Taking Dulac function D(x, y) = 1
xy for the system (3.9), we have

div
∣∣∣
(PD,QD)

= ∂
∂x (P (x, y)D(x, y)) + ∂

∂y (Q(x, y)D(x, y))

= 1
y

[
−3d2x

2 − 2
(
d1 + d2bα− r

1+kαy

)
x−

(
ad2 + d1bα− rbα

1+kαy

)]
,

where

P (x, y) =
(

rx

1 + kαy
− d1x− d2x

2
)(

a + bαx + x2)− βxy and Q(x, y) = cβxy −my
(
a + bαx + x2) .

Now if d1 +d2bα− r > 0 (i.e., r − d1 < d2bα) and ad2 +d1bα− rbα > 0 
(
i.e., r − d1 < ad2

bα

)
then d1 +d2bα−

r > 0 and ad2 + d1bα − rbα > 0 for any y ≥ 0. Moreover, above two conditions are sufficient for 
1+kαy 1+kαy
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Fig. 2. Here α = 2.5, and the other parameters are fixed as mentioned in the Table 1. In this case the other two equilibria E0 and 
E1 are always saddle.

div
∣∣∣
(PD,QD)

< 0 in {(x, y)|x ≥ 0, y ≥ 0}. Therefore, by Dulac criteria and together with the Theorems 3.2, 

3.4 and 3.7, the interior equilibrium E∗
1 is globally asymptotically stable if 0 < r−d1 < min{d2bα, ad2

bα }. �
Here, we provide some numerical simulations to show the dynamics when system (2.4) has unique or two 

interior equilibria, with prey-only equilibrium, being unstable or locally asymptotically stable, respectively.
When the unique interior steady state E∗

1 = (x1, y1) exists, it is locally asymptotically stable if 
y1 <

d2c
2βx2

1
m2(bα+2x1) and spiral source otherwise. In this case, both prey-only equilibrium E1 and extinction 

equilibrium E0 are saddle.
In Fig. 2, we fix α = 2.5, k = 0.5, d1 = 0.1, d2 = 0.2, β = 0.5, a = 0.1, b = 0.5, c = 1, m = 0.25. Then 

for r = 0.18 the system (2.4) has a stable unique interior steady state E∗
1 = (0.1734, 0.0273) (Fig. 2(a)) and 

for r = 0.2 there exists a stable limit cycle around the unique interior steady state E∗
1 = (0.1734, 0.0388)

(Fig. 2(b)). In this case, the system (2.4) has only one attractor: if y1 <
d2c

2βx2
1

m2(bα+2x1) the system goes to the 

stable unique interior steady state E∗
1 or there can be a stable limit cycle around E∗

1 if y1 >
d2c

2βx2
1

m2(bα+2x1) .

Now when the system (2.4) has two interior steady states E∗
1 and E∗

2 , E∗
1 is stable for y1 <

d2c
2βx2

1
m2(bα+2x1) . 

However E∗
2 is always saddle. In this case the prey-only equilibrium E1 is always locally asymptotically 

stable, whereas the extinction equilibrium E0 is always saddle.
In Fig. 3, we fix the parameters α = 2.7, k = 0.5, d1 = 0.1, d2 = 0.2, β = 0.5, a = 0.1, b = 0.5, c = 1, 

m = 0.25. Then for r = 0.2 (Fig. 3(a)) the system (2.4) has two interior equilibria: E∗
1 = (0.25, 0.0398), which 

is a spiral sink and E∗
2 = (0.4, 0.0225), which is a saddle. In this case the system (2.4) has two attractors: 

the stable interior equilibrium E∗
1 and stable prey only equilibrium E1. For r = 0.23 (Fig. 3(b)), the system 

(2.4) has two interior equilibria: E∗
1 = (0.25, 0.0622), which is a spiral source and E∗

2 = (0.4, 0.0546) which is 
a saddle. There is a stable limit cycle around E∗

1 . Also in this case, there are two attractors for system (2.4): 
the stable limit cycle around E∗

1 and the stable prey-only equilibrium E1. Finally, for r = 0.24 (Fig. 3(c)), 
the system has two interior equilibria E∗

1 = (0.025, 0.0694) which is a spiral source and E∗
2 which is a 

saddle. However, in this case the equilibrium prey-only state E1 attracts the solution starting at almost all 
the initial conditions. The oscillation of E∗

1 becomes so large, such that it touches the stable manifold of E1
and leads to the extinction of predator population.

Moreover, we plot the existence and stability of all equilibria in the Fig. 4. In this figure, we fix the 
parameters k = 0.5, d1 = 0.1, d2 = 0.2, β = 0.5, a = 0.1, b = 0.5, c = 1, m = 0.25 and vary the 
other two important parameters r and α from 0 to 0.5 and 0 to 3, respectively. Here, in the black region 
(r < d1), the extinction equilibrium E0 is globally asymptotically stable, and no other equilibria exist 
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Fig. 3. Here α = 2.7, and the other parameters are fixed as mentioned in the Table 1. In this case the prey-only equilibrium E1 is 
always locally asymptotically stable, whereas the extinction equilibrium E0 is always saddle.

in this region (E0 is the only attractor, i.e., every solution curve will go to the extinction state). The 
prey only equilibrium E1 exists and is locally asymptotically stable in the regions yellow, red and green (
cβ −mbα < mad2

r−d1
+ m(r−d1)

d2

)
, whereas in yellow region there does not exist any interior equilibria (E1 is 

the only attractor), however, in red and green region there always exist two interior equilibria E∗
1 and E∗

2 . 
In red region the interior equilibrium E∗

1 is locally asymptotically stable (here E1 and E∗
1 are two attractors 

for the system (2.4)), however in green region both the interior equilibria are unstable (here also there may 
be two attractors, one is a stable E1, and another may be a stable limit cycle around E∗

1). Finally, the
unique interior attractor E∗

1 exists in the blue and cyan regions, however it is locally asymptotically stable 
only in the blue region. Only a unique attractor exists in this case. In the blue region the unique attractor 
is the stable unique interior steady state E∗

1 and in the cyan region the unique attractor is stable limit cycle 
around E∗

1 .
Fig. 5, shows the existence of the number of interior equilibria and their stability, as well as the stability 

of all boundary equilibria with respect to varying α. When there exists two interior equilibria, one is always 
saddle (E∗

2 ), and the other one is always locally asymptotically stable (E∗
1 ). When there exists unique 

interior equilibrium (E∗
1), it either could be stable or a source, where the other two boundary equilibria E0

and E1 are saddle.
Next, we draw the bifurcation diagram of both prey and predator, with respect to the parameter α (the 

predator-taxis sensitivity) in the Fig. 6. From this figure, we can see that the predator population can 
survive only for the small values of α. If the value of the predator-taxis sensitivity is high (α > 2.736), 
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Fig. 4. Existence and stability of all equilibria in α −r parameter plane. The other parameters are fixed as mentioned in the Table 1. 
Black: E0 is globally asymptotically stable, no other equilibria exist, yellow: E1 exists and stable, interior equilibria do not exist, 
green: both the interior equilibria E∗

1 and E∗
2 exist but both are unstable, however E1 exists and stable, red: both interior equilibria 

exist, with E∗
1 stable and E1 exists and stable, blue: unique interior attractor exists and stable, no other equilibria exist, cyan: 

unique interior equilibrium exists with spiral source E∗
1 . (For interpretation of the colors in the figure(s), the reader is referred to 

the web version of this article.)

Fig. 5. The figure shows the stability of boundary equilibria (E0 and E1) and describes the number of interior equilibria and their 
stability when α changes from 0 to 3, where y-axis is the population size at corresponding equilibria. Blue represents the sink 
(stable); green represents the saddle; and red represents the source. All the parameter (except α) values are taken from the Table 1.

then the predator population can not survive (panel D in the figure). As we increase the value of α the 
coexistence of prey-predator changes at stable equilibrium (panel A) to stable oscillatory coexistence (panel 
B) to stable equilibrium (panel C) and finally to extinction of predator (panel D).

4. Sensitivity of model solutions

In this section, we analyze the sensitivity of model (2.4) solutions for both the variables prey and predator, 
with respect to some important model parameters, namely, the predator-taxis sensitivity (α), the level of 
fear (k), and the tolerance limit of predator (b), respectively. Here, the sensitivity system given by the partial 
derivatives of variables X = {x, y} of the model (2.4) is derived with respect to the parameters q = {α, k, b}
(the details method is given in [6]). The semi-relative sensitivity curves for prey [q δx ] and predator [q δy ]
δq δq
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Fig. 6. Here r = 0.175, and all the other parameters are fixed as mentioned in the Table 1. A: stable coexistence of prey and 
predator at the equilibrium, B: oscillatory coexistence of both prey and predator, C: stable coexistence of prey and predator at 
the equilibrium, and D: extinction of predator and only prey population survives.

are presented in Figs. 7(a) and 7(b), whereas the logarithmic sensitivity curves for prey [ qx
δx
δq ] and predator 

[ qy
δy
δq ] are presented in Figs. 7(c) and 7(d), respectively.
From the semi-relative sensitivity solutions, we can observe that the perturbation of b (the tolerance 

limit of predator) exhibit its greatest influence over both prey and predator. At the initial stage (t <≈ 3
time unit), the effect of α is just opposite to the effect of other two parameters, k and b, for both prey 
and predator, whereas at later stage, all the parameters have similar effect on solutions. Initially, the effect 
of α is positive for the prey and negative for the predator. However, for long run its effect is negative for 
both prey and predator populations. It may be due to the fact that initially it is beneficial for prey as it 
decreases the death of prey due to predation (which increases the adult survivability), however for long run, 
it is not beneficial for prey as it decreases the growth rate of prey, which greatly affects overall fitness of the 
population. All the parameters have largest negative effects on both prey and predator at around 40 time 
unit, but a decreased effect over time.

From the logarithmic sensitivity solution curves we can interpret the percentage changes in the solutions 
induced by positive perturbations of the parameters. The graphs in Fig. 7(c), suggests that perturbations 
of α, k and b have a negative impact upon solution of prey population, however, the impact decreases over 
time and after t = 50 time unit the effect is negligible. The graphs also suggest that at time t ≈ 25 unit 
the parameter b causes more than 400% change in solution of prey population. Similarly, perturbations of 
all the studied parameters have a negative impact upon predator solution and this negative effect increases 
over time Fig. 7(d). At time t = 200 unit the parameter b causes a roughly 700% change in the solution of 
predator population.

5. Conclusions

In the present paper, we formulate an ODE model on predator-prey interactions by considering both 
fear and group defense of prey in the presence of predator. We consider the Monod-Haldane-type response 
function (also known as Holling type IV functional response) for predation, which can capture the group 
defense of prey. We consider the fear factor as a reduction of prey birth rate due to the time and energy 
investment for defense. Moreover, we interrelate the reduced growth rate (the fear effect) and group defense 
by the parameter predator-taxis sensitivity. Since, the total time and/or energy are limited for the prey, then 
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Fig. 7. Here, r = 0.5, α = 0.15, and all the other parameters are fixed as given in the Table 1. The figure describes the semi-relative 
and logarithmic sensitivity solutions of both prey and predator, with respect to the important model parameters, namely, the 
predator-taxis sensitivity (α), level of fear (k), and tolerance limit of predator (b), respectively.

if the prey invests more time and/or energy (i.e., when predator-taxis sensitivity increases) towards group 
defense, then their birth rate should be decreased (though its increases their survival against predation).

We provide complete dynamics of our proposed ODE model. We provide the positivity and boundedness 
of solutions, for both cases, when the predator death rate is below and above some threshold density. Also, 
the upper bound of the limit supremum of the total population is high when the predator death rate is below 
the threshold density, compared to the other case. We provide the conditions for existence of the number of 
positive equilibria and their stability. Some global features of boundary equilibria and coexistence equilibria 
are also provided. We discuss about the possible attractors of our system solutions in the entire parameter’s 
space, and validate our results numerically. In addition, we provide the additional results on the cases, (1) 
when the system has two interior equilibria then the prey-only equilibrium is always stable, and (2) when 
the system has unique interior equilibrium then the prey-only equilibrium is always a saddle.

Our mathematical analysis and numerical simulations suggest that the large predator-taxis sensitivity 
could destabilize the system, and the predator population could be extinct. Sensitivity of model solutions 
with respect to three studied parameters, namely, the predator-taxis sensitivity, level of fear, and the toler-
ance limit of predator, shows that the perturbation of tolerance limit of predator has the greatest influence 
over both prey and predator. Interestingly, at the initial time, the predator-taxis sensitivity has a positive 
effect on prey; however, at the later time, it could have negative effect on both prey and predator.
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Studies on prey-predator interactions with different important mechanisms, have been a motivation in 
theoretical ecology, which generally could enhance our understanding on real-world ecological systems. It 
would be interesting to study the dynamics of our proposed model with various realistic time delays, with or 
without the reaction-diffusion effect. Moreover, group defense can be incorporated in the model by choosing 
some other response functions. It would be interesting to consider how these response functions change 
dynamical properties obtained by the present study. These are some of our future research goals.
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Appendix A

Proof of the Theorem 3.6. To find the stability and direction of Hopf bifurcation, we calculate the 1st
Lyapunov coefficient. Let u = x − x1 and v = y − y1, then the system (2.4) becomes

du
dt = r(u+x1)

1+kα(v+y1) − d1(u + x1) − d2(u + x1)2 − β(u+x1)(v+y1)
a+bα(u+x1)+(u+x1)2 := f(u, v),

dv
dt = cβ(u+x1)(v+y1)

a+bα(u+x1)+(u+x1)2 −m(v + y1) := g(u, v)

Now, considering the Taylor’s series expansion at (u, v) = (0, 0) up to 3rd order, we have

du
dt = J11u + J12v + f1(u, v),
dv
dt = J21u + J22v + g1(u, v),

(A.1)

f1(u, v) and g1(u, v) are the higher order terms of u and v, given by

f1(u, v) = fuuu
2 + fuvuv + fvvv

2 + fuuuu
3 + fuuvu

2v + fuvvuv
2 + fvvvv

3,

g1(u, v) = guuu
2 + guvuv + gvvv

2 + guuuu
3 + guuvu

2v + guvvuv
2 + gvvvv

3

where

fu = J11 = r
1+kαy1

− d1 − 2d2x1 − βy1
(a+bαx1+x2

1)
+ βx1y1(bα+2x1)

(a+bαx1+x2
1)2

= −d2x1 + βx1y1(bα+2x1)
(a+bαx1+x2

1)2

fv = J12 = − rx1kα
(1+kαy1)2 − βx1

a+bαx1+x2
1

fuu = −2d2 + 2βy1(bα+2x1)
(a+bαx1+x2

1)2
− 2βx1y1(bα+2x1)2

(a+bαx1+x2
1)3

+ 2βx1y1
(a+bαx1+x2

1)2

fuv = − rkα
(1+kαy1)2 − β

(a+bαx1+x2
1)

+ x1β(bα+2x1)
(a+bαx1+x2

1)2

fvv = 2x1rk
2α2

(1+kαy1)3

fuuu = −6βy1(bα+2x1)2
(a+bαx1+x2

1)3
+ 6βy1

(a+bαx1+x2
1)2

+ 6βx1y1(bα+2x1)3
(a+bαx1+x2

1)4
− 12βx1y1(bα+2x1)

(a+bαx1+x2
1)3

fuuv = 2β(bα+2x1)
(a+bαx1+x2

1)2
− 2βx1(bα+2x1)2

(a+bαx1+x2
1)3

+ 2βx1
(a+bαx1+x2

1)2

fuvv = 2rk2α2

(1+kαy1)3

f = − 6x1rk
3α3
vvv (1+kαy1)4
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and

gu = J21 = cβy1
(a+bαx1+x2

1)
− cβx1y1(bα+2x1)

(a+bαx1+x2
1)2

gv = J22 = cβx1
(a+bαx1+x2

1)
−m = 0

guu = −2cβy1(bα+2x1)
(a+bαx1+x2

1)2
+ 2cβx1y1(bα+2x1)2

(a+bαx1+x2
1)3

− 2cβx1y1
(a+bαx1+x2

1)2

guv = cβ
(a+bαx1+x2

1)
− cβx1(bα+2x1)

(a+bαx1+x2
1)2

gvv = 0

guuu = 6cβy1(bα+2x1)2
(a+bαx1+x2

1)3
− 6cβy1

(a+bαx1+x2
1)2

− 6cβx1y1(bα+2x1)3
(a+bαx1+x2

1)4
+ 12cβx1y1(bα+2x1)

(a+bαx1+x2
1)3

guuv = − 2cβ(bα+2x1)
(a+bαx1+x2

1)2
+ 2cβx1(bα+2x1)2

(a+bαx1+x2
1)3

− 2cβx1
(a+bαx1+x2

1)2

guvv = 0

gvvv = 0

Here all the partial derivatives are calculated at the bifurcation point, i.e., (u, v) = (0, 0). Thus system (A.1)
can be written as

U̇ = JE∗
1U + F (U),

where U =
(
u, v

)T

and F =
(
f1(u, v), g1(u, v)

)T

=
(
fuuu

2 +fuvuv+fvvv
2 +fuuuu

3 +fuuvu
2v+fuvvuv

2 +

fvvvv
3, guuu2 + guvuv + guuuu

3 + guuvu
2v
)T

.
Now, Hopf bifurcation occurs when fu = J11 = 0, i.e., at the Hopf bifurcation point, the eigenvalue will 

be purely imaginary, which is given by i
√
−fvgu. Eigenvector corresponding to this eigenvalue i

√
−fvgu is 

given by v =
(
fv, i

√
−fvgu

)T

. Now, we define Q =
(
Re(v), −Im(v)

)
=

[
fv 0
0 −

√
−fvgu

]
. Now, let U = QZ

or Z = Q−1U , where Z =
(
z1, z2

)T

. Therefore, under this transformation, the system is reduced to

Ż =
(
Q−1JE∗

1Q
)
Z + Q−1F

(
QZ

)
.

This can be written as [
ż1
ż2

]
=

[
0 −

√
−fvgu

√
−fvgu 0

][
z1
z2

]
+

[
F1(z1, z2)
F2(z1, z2)

]
,

where F1(z1, z2) and F2(z1, z2) are given by

F1(z1, z2) = 1
fv

[
fuuf

2
v z

2
1 −

√
−fvgufuvfvz1z2 − fvgufvvz

2
2 + fuuuf

3
v z

3
1 −

√
−fvgufuuvf

2
v z

2
1z2

− fvgufuvvfvz1z
2
2 − fvgu

√
−fvgufvvvz

3
2

]
F2(z1, z2) = − 1√

−fvgu

[
guuf

2
v z

2
1 −

√
−fvgufvguvz1z2 + guuuf

3
v z

3
1 −

√
−fvguguuvf

2
v z

2
1z2

]
The direction of Hopf bifurcation is determined by the sign of the 1st Lyapunov coefficient, which is given 
by

L := 1
16

[
∂3F1
∂z3

1
+ ∂3F1

∂z1∂z2
2

+ ∂3F2
∂z2

1∂z2
+ ∂3F2

∂z3
2

]
+ 1√

[
∂2F1

(
∂2F1

1 + ∂2F1
2

)
− ∂2F2

(
∂2F2

2 + ∂2F2
2

)
− ∂2F1

2
∂2F2

2 + ∂2F1
2

∂2F2
2

]
.
16 −fvgu ∂z1∂z2 ∂z1 ∂z2 ∂z1∂z2 ∂z1 ∂z2 ∂z1 ∂z1 ∂z2 ∂z2
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We use maple software to simplify the expression of L, which is given as follows:

L := 3fuuuf2
v − fvgufuvv +

(
2
√
−fvgufuvvy1 − fuv − 2fuuvfvx1

)
[
fuufv + 3fuuuf2

vx1 − gufvv − fvgufuvvx1 −
√
−fvgu (fvfuuv − 3gufvvv) y1

]
.

Now by Perko [26], Hopf-bifurcation is supercritical if L < 0 and it is subcritical if L > 0. �
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