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conditions. If the relaxation time is sufficiently small and the boundary data is
close to the equilibrium state, the density matrix converges exponentially fast to

g;i?ffsgfr.ized transport in the spinless near-equilibrium steady state. The proof is based on a reformulation of
semiconductors the matrix-valued cross-diffusion equations using spin-up and spin-down densities
Drift-diffusion equations as well as the perpendicular component of the spin-vector density, which removes
Density matrix the cross-diffusion terms. Key elements of the proof are time-uniform positive lower
Exponential decay and upper bounds for the spin-up and spin-down densities, derived from the De
Large-time asymptotics Giorgi—Moser iteration method, and estimates of the relative free energy for the

Free energy spin-up and spin-down densities.
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1. Introduction

Semiconductor lasers and transistor devices may be improved by taking into account spin-polarized
electron injection. The corresponding semiconductor models should include the spin effects in an accurate
way. A widely used model are the two-component spin drift-diffusion equations [15], which can be derived
for strong spin-orbit coupling from the spinorial Boltzmann equation in the diffusion limit [13], describing
the dynamics of the spin-up and spin-down electrons. When the spin-orbit coupling is only moderate,
the diffusion limit in the spinorial Boltzmann equation leads to a matrix spin drift-diffusion model for
the electron density matrix [13,33]. This model contains much more information than the two-component
model, but the strong coupling between the four spin components makes the mathematical analysis very
challenging. The existence of global weak solutions was shown in [25]. In this paper, we investigate the
large-time asymptotics of the density matrix towards a near-equilibrium steady state.

* The authors acknowledge partial support from the Austrian Science Fund (FWF), grants P30000, P33010, W1245, and F65.
* Corresponding author.
E-mail addresses: philipp.holzinger@tuwien.ac.at (P. Holzinger), juengel@tuwien.ac.at (A. Jiingel).

https://doi.org/10.1016/j.jmaa.2020.123887
0022-247X/© 2020 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.jmaa.2020.123887
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2020.123887&domain=pdf
mailto:philipp.holzinger@tuwien.ac.at
mailto:juengel@tuwien.ac.at
https://doi.org/10.1016/j.jmaa.2020.123887

2 P. Holzinger, A. Jingel / J. Math. Anal. Appl. 486 (2020) 123887

1.1. Model equations

We assume that the dynamics of the (Hermitian) density matrix N(z,t) € C2*2 the current density
matrix J(z,t) € C2*2, and the electric potential V (x,t) is given by the (scaled) matrix equations

1/1
N —divJ +iy[N,fi- 7] = —<§tr(N)ao _N>, (1)
T
J=DP Y2(VN + NVV)P~1/2, (2)
— AMAV =tr(N) — g(x) inQ, t >0, (3)

where [A, B] = AB — BA is the commutator for matrices A and B. The (scaled) physical parameters are
the strength of the pseudo-exchange field v > 0, the normalized precession vector i = (p1, pio, p3) € R3,
the spin-flip relaxation time 7 > 0, the diffusion constant D > 0, the Debye length A > 0, and the doping
concentration g(x). Equation (3) is the Poisson equation for the electric potential [24]. The precession
vector plays the role of the local direction of the magnetization in the ferromagnet, and we assume that it is
constant. This assumption is crucial for our analysis. Furthermore, P = o + pji- & = oo + p(u101 + p2oa +
p303) is the matrix of spin polarization of the scattering rates, p € [0, 1) represents the spin polarization,
¢ is the unit matrix in R?*2, and & = (01, 02, 03) is the vector of Pauli matrices, defined by

0 1 0 —i 1 0
1=\1 0)> 2=\i o) 23=\0 —-1)-

The number i is the complex unit, and tr(/N) denotes the trace of the matrix N. Since the Pauli matrices
are traceless, tr(/N) only contains the og-component of N, which is the charge density. The commutator
[N, i - 5] models the precession of the spin polarization. The right-hand side in (1) describes the spin-flip
relaxation of the spin density to the (spinless) equilibrium state.

Equations (1)—(3) are solved in the bounded domain 2 C R? with time ¢ > 0 and are supplemented with
the boundary and initial conditions

1
N = 5npoo, V =Vp on 99, t >0, N(0)=N" inQ. (4)

This means that no spin effects occur on the boundary. For simplicity, we choose time-independent boundary
data; see [40] for boundary data depending on time. Mixed Dirichlet~Neumann boundary conditions may
be also considered as long as they allow for W2 (Q) elliptic regularity results, which restricts the geometry
of 0. Therefore, we have chosen pure Dirichlet boundary data as in [25].

The density matrix IV can be expressed in terms of the Pauli matrix according to N = %noao + 7 -5 and
7i = (n1,n2,n3) is called the spin-vector density. Model (1)—(2), written in the four variables ng,...,ns, is
a cross-diffusion system with the constant diffusion matrix

D 1 —pjii " c RAx4
1—p2 \—pi nl+ (1 —-n)i®j ’

where I is the unit matrix in R3*3. Although this matrix is symmetric and positive definite, the strong cou-
pling complicates the analysis of system (1)—(2), because maximum principle arguments and other standard
tools cannot be (easily) applied.

The spin polarization matrix couples the charge and spin components of the electrons. By comparison of
the coefficients of oy [33], we see that the electron charge density ng satisfies

6tn0 - Dp diVjo = 0, jo = VTLO + TL()VV - QP(Vﬁ + ﬁVV) . /?(:,
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where D, = D/(1 — p?). If p = 0, we recover the classical Van-Roosbroeck drift-diffusion equations [28,37]:
Oing — Ddivjo =0, jo=Vng+neVYV, (5)

coupled with the Poisson equation (3). The boundary conditions are ng = np and V = Vp on 9 and the
initial condition is n(0) = nd in Q, where N° = %ngao + 70 - &. Another special case is given by the two-
component spin drift-diffusion model. The spin-up and spin-down densities n4 = %no + 7 - [i, respectively,

satisfy the equations

1
8{[14,_ — le (D+(V7’L+ + N+VV)) = E(n_ — n+), (6)
1
atn, — le (D,(Vn, + n,VV)) = Z('I’L+ — 77/7), (7)
1
ni:TLTD, V =Vp on 09, ni(O)zingzl:ﬁO-/Z in Q, (8)

where Dy = D/(1 £ p). These equations are weakly coupled through the relaxation term.

Model (1)—(2) was derived in [33] from a matrix Boltzmann equation in the diffusion limit. The scattering
operator in the Boltzmann model is assumed to consist of a dominant collision operator from the Stone
model and a spin-flip relaxation operator. When the scattering rate in the Stone model is smooth and
invariant under isometric transformations, the diffusion D can be identified with a positive number [34,
Prop. 1].

1.2. State of the art

The first result on the global existence of solutions to the Van-Roosbroeck equations (5) (for electrons and
positively charged holes) was proved by Mock [29]. He showed in [30] that the solution decays exponentially
fast to the equilibrium state provided that the initial data is sufficiently close to the equilibrium. These
results were generalized under physically more realistic assumptions on the boundary by Gajewski [16] and
Gajewski and Groger [17,18]. Further large-time asymptotics can be found in [4] for the whole-space problem
and in [8], where the diffusion constant was replaced by a diffusion matrix. Moreover, in [12], the stability
of the solutions in Wasserstein spaces was investigated.

Convergence rates of the whole-space solutions to their self-similar profile were investigated intensively in
the literature. In [9], the relative free energy allowed the authors to prove the self-similar asymptotics in the
L'(R%) norm. The results were improved in [26], showing optimal L?(R?) decay estimates. The asymptotic
profile to drift-diffusion-Poisson equations with fractional diffusion was analyzed in [32,38].

Concerning drift-diffusion models for the spin-polarized electron transport, there are only few mathe-
matical results. The stationary two-component drift-diffusion model (6)—(7) was analyzed in [22], while the
transient equations were investigated in [21]. In particular, Glitzky proved in [21] the exponential decay
to equilibrium. An existence analysis for a diffusion model for the spin accumulation with fixed electron
current but non-constant magnetization was proved in [35] in one space dimension and in [19,20] for three
space dimensions.

Also quantum spin diffusion models have been considered. For instance, in [40], the large-time asymptotics
for a simple spin drift-diffusion system for quantum electron transport in graphene was studied. A more
general quantum spin drift-diffusion model was derived in [5], with numerical experiments in [6]. Numer-
ical simulations for diffusion models for the spin accumulation, coupled with the Landau-Lifshitz—Gilbert
equation, can be found in [1,36]. For spin transport models in superlattices, we refer, for instance, to
[10].
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The existence of global weak solutions to the matrix spin drift-diffusion model (1)—(4) was shown in
[25] with constant precession vector and in [39] with non-constant precession vector but assuming velocity
saturation. Under the condition that the (thermal) equilibrium density is sufficiently small, the exponential
decay to equilibrium was proved in [39]. An implicit Euler finite-volume scheme that preserves some of the
features of the continuous model was analyzed in [11]. The numerical results of [11] indicate that the relative
free energy is decaying with exponential rate, but no analytical proof was given.

In this paper, we prove that the solution (N(t), V(¢)) to (1)—(4) converges exponentially fast to a steady
state (%nooao, Vso), solving the stationary spinless drift-diffusion-Poisson equations

div(Vine + 10cVVie) =0, —AAV, = —g(z) in Q (9)
Neo =np, V =Vp on 09, (10)

under the condition that the boundary data is close to the (thermal) equilibrium state, defined by lognp +
Vp = 0 on 9. Compared to [39], where ||720 || Loo(0) < 1 is needed, our smallness assumption is physically
reasonable; see the discussion in the following subsection.

1.3. Main result and key ideas

Our main result is as follows.

Theorem 1 (Ezponential time decay). Let T > 0 and let Q C R? be a bounded domain with 02 € Ch1.
Furthermore, let 0 <m, <1, A>0,v>0, D>0,0<p<1, q >3, and ji € R3 with |ji| = 1. The data
satisfies g € L>(Q), g > 0 in Q, and

np, Vp € WQ’QU(Q), np > my >0 on 09,

1 )
ng @i L¥(Q), gnE’fi> mn

0.
2>

Let ¢p :=lognp + Vp. Then there exist K >0, Co > 0, and § > 0 such that if ||ppllw2.0@) <9,

[n+(t) = 31l 2) + IV () = Vool (o) < Coe™™, ¢ >0,

where ny are solutions to (6)—(8) and (N, Voo) s the weak solution to (9)—(10). Furthermore, there exists
To > 0 such that if 0 < 7 < 79 then

* —nK"t

HN(t) — %noo0'0||L2(Q;(C2><2) < 006 , t>0,
and Co, C§ > 0 depend on the initial relative free energy H(0) (see (12) below).

The smallness condition on ¢p means that the system is close to equilibrium, as ¢ p = 0 characterizes the
(thermal) equilibrium state. Since the stationary drift-diffusion equations (9) may possess multiple solutions
if ¢p is large in a certain sense [2,30], the condition on ¢p is not surprising. The smallness condition on
the relaxation time, however, seems to be purely technical. It is needed to estimate the drift part when we
derive L?(Q2) bounds for the perpendicular component of 7i. If an entropy structure exists for the equation
for 7, we expect that this condition can be avoided but currently, such a structure is not clear; see [25,
Remarks 3.1-3.2]. If the initial spin-vector density is parallel to the precession vector, we are able to remove
the smallness condition on 7; see Remark 9. We show in Remark 10 that, independently of the initial
spin-vector density, the smallness condition is satisfied in a certain physical regime.
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The analysis of the asymptotic behavior of the solutions to the Van-Roosbroeck drift-diffusion system (5)
and the two-component system (6)—(7) is based on the observation that the relative free energy, consisting
of the internal and electric energies, is a Lyapunov functional along the solutions and that the energy
dissipation can be bounded from below in terms of the relative free energy itself. The strong coupling of
(1)-(2) prohibits this approach. Indeed, we showed in [25, Section 3] that the relative free energy associated
to (1)-(2), consisting of the von Neumann energy and the electric energy, is nonincreasing in time only in
very particular cases.

Our idea is the observation that the matrix system (1)—(2) can be reformulated as drift-diffusion-type
equations in terms of certain projections of the density matrix relative to the precession vector. This
idea was already used in [25] for the existence analysis. The reformulation removes the cross-diffusion
terms, which allows us to apply the techniques of Gajewski and Groger [18] used for the Van-Roosbroeck
model. This idea only works if the precession vector [ is constant. A non-constant vector [ (solving the
Landau-Lifshitz—Gilbert equation) was considered in [41], but this spin model is simplified and no large-time
asymptotics was proved.

More precisely, we decompose the density matrix N = %noao +7-5 and N° = %TLSO'O +i°.&. Then the
spin-up and spin-down densities ny = 1ng & i - i solve (6)~(8). The information on n4 is not sufficient to
recover the density matrix. Therefore, we also consider the perpendicular component of 7 with respect to
i, iy =7 — (7 - fi)[i, which solves

D
Byit, — div <;(vm + ﬁLVV)) — (7L x fi) = —%, (11)

where 7 = /1 — p?, with the boundary and initial conditions 7, = 0 on 99 and 77, = 7° — (7° - ji)ji. The
density matrix can be reconstructed from (n4,n_,7,) by setting ng =ny +n_ and i =7, + (- @) =

St

—

L+ 5(ng —no)f.

A key element of the proof is the derivation of a uniform positive lower bound for n4. This is shown by
using the De Giorgi-Moser iteration method inspired by the proof of [18, Lemma 3.6]. More precisely, we
choose the test functions efw? ' /ny in (6) and (7), respectively, where wy = — min{0,logn+ + m} with
m >0, ¢ € N, and pass to the limit ¢ — oo, leading to ||w ()|~ (o) < K and consequently to the desired
bound w4 (t) > e~™ K in Q. Second, we calculate the time derivative of the free energy

H(t) = / (h(n+|noo) + h(n_|ns) + /\;W(V — Voo)|2) (t)dz, (12)

where h(n4 |ne) = n log(2n4 /ne) — Nt + $neo, leading to the free energy inequality

dH
GO [ (96s = 6p) +n[V(o- ~ 6p))
Q
< O V6|2 / (ns — Inoe)® + (n_ — Ine)?)da, (13)
Q

where ¢+ = logn4 + V are the electrochemical potentials and C; > 0 and Cy > 0 are some constants
independent of the solution and independent of time. The right-hand side can be estimated, up to a factor,
by the free energy H times |V¢ D||%o¢(9)° Furthermore, using the time-uniform positive lower bound for n.,
the energy dissipation (the second term on the left-hand side of (13)) is bounded from below by H, up to
a factor. Therefore, if [Vopl|r~q) < d, (13) becomes, for some time-independent constants C3 > 0 and
04 > O7
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d—H + (Cg — 0462)H <0.

dt
Choosing 62 < C3/C4, the Gronwall inequality implies the exponential decay with respect to the free energy
and, as a consequence, in the L?(2) norm of ny — n., with rate s := C5 — C46% > 0.

Third, we prove the time decay of 7, . Since we are not aware of an entropy structure for (11), we
rely on L?(2) estimates. This means that we use the test function 7, in the weak formulation of (11)
such that the term (7, x [i) -7, vanishes. However, in order to handle the term coming from the doping
concentration, we need a smallness condition on the relaxation time 7 > 0. Such a condition is not needed
in the Van-Rooosbroeck model.

The paper is organized as follows. The stationary equations are studied in Section 2. In Section 3, we
prove the lower and upper uniform bounds for n4, the entropy inequality, and some bounds for the free
energy and energy dissipation. Theorem 1 is proved in Section 4. In the appendix, we prove a uniform L
bound for any function that satisfies an iterative inequality using the De Giorgi—-Moser method.

2. The stationary equations

The existence of weak solutions to the stationary drift-diffusion problem

div(Vine + 1ooVVa) =0, —ANAV,, = no — g(z) in Q, (14)
Neo =Np, Voo =Vp on 9N (15)

with data satisfying the assumptions in Theorem 1 is well known; see [28, Theorem 3.2.1]. The solution
satisfies oo, Voo € HY(Q) N L>(Q) and

0< Mo <N < My, inQ (16)

for some my,, Mo, > 0. Note that we cannot expect uniqueness of weak solutions in general, since there
are devices (thyristors) that allow for multiple physical stationary solutions. However, uniqueness can be
expected for data sufficiently close to the (thermal) equilibrium state [2,31]. We call a solution to (14)—(15)
a (thermal) equilibrium state if the electrochemical potential ¢ := logno + Voo vanishes in €. This state
needs the compatibility condition ¢p :=lognp + Vp = 0 on 9.

The following lemma provides some a priori estimates for (n, V) and shows that the current density
Joo = Moo Voo is arbitrarily small in the L>°(Q2) norm if the boundary data is sufficiently close to the
equilibrium state ¢p = 0 in the W29 (Q) sense.

Lemma 2 (A priori estimates). Under the assumptions of Theorem 1, there exists a constant Co > 0
independent of (Neo, Vo) such that

Vool (0) < Cooll@D w290 (02)-

Proof. Since ny, — g(x) € L*>®(Q), elliptic regularity yields V,, € W2%(Q), and the W2%(Q2) norm of Vi,
depends on Moo, [|Vp|lw2.40 (), and ||g]| L~ (). Using the test function n., —np in the weak formulation of
the first equation in (14), we find that

/\V(noo — nD)|2dx = f/VnD -V(ne —np)dx — /nOOVVOo -V(ne —np)de
Q Q Q

< ([IVapllze (@) + Mool VVio |l L2(0)) IV (00 — D)l L2(02)-
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This implies that

[Vnoollz2() < 2[Vablz2) + Moo [VViellL2(0)
< C(l + ||vnDHL2(Q) + ||VVD||L2(Q)).

Since qo > 3, we have W2%(Q) < W1°°(Q). Thus, b := VV, € L*>®(Q) and elliptic regularity for
Ang +b- Ve = A 2ngo (e — g(x)) € L=(Q)

shows that n., € W29 (Q) with an a priori bound depending on the norms ||np w20 @) and [[nell #1 ().
Summarizing,

Moo lw200 () + Voo [l2.a0 () < C-

It holds that W24 (Q) < C%%(Q) for all 0 < a < 1. Hence, no, € C%%(Q). The first equation in (14)
can be formulated as

div (neoV(dee — ¢p)) = —div(nVop) € L®(Q),
which shows that, by elliptic regularity again,
[poo — éDllWw2a0 () < C(Moo, Moo)||dDIIw2.a0 (2
and, in view of the continuous embedding W29 (Q) — W1 (Q),
[VéoollL=@) < Cllgcollwza0 @) < Cllép|lwza @)
This finishes the proof. O
3. Uniform estimates

In this section, we prove some a priori estimates that are uniform in time. A uniform upper bound for
ny was already shown in [25, Theorem 1.1]. For the convenience of the reader, we present the proof.

Lemma 3 (Uniform upper bound for ny ). Introduce

1 1
M = max {— supnp, sup <—n8 + |70 - ﬁ),supg}.
2 50 o \2 Q

Then
ne(t) <M inQ, t>0.
Proof. We use the test functions (ny — M)™ in (6) and (n_ — M)™ in (7), where 27 = max{0, z}, and add

both equations. Observing that (ng — M)™ =0 on 9Q and (n4(0) — M)t =0 in 2, we find after standard
manipulations that
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/ (g (8) — MY 4 [(n_(t) — M)*2)da

Q

N =

t
+/ Dy|V(ng — M) )*+ D_|V(n_ — M)t |*)dads
0

1
- T or /”+_n ((ny = M) = (n_ — M)")dxds

[
/

— Dy /m_ — M)*VV -V(ny — M) dxds
Q

—D,/ M)Y*VV -V(n_ — M)*dzds
0

—D+M//VV-V(n+—M)+dxds—D,M//VV-V(n,—M)+dmds.

Since z + (2 — M)T is monotone, the first integral on the right-hand side is nonnegative. Then, writing
(ny — M)VV -V(ny — M)T =VV-1V[(ny — M)*]?, integrating by parts, and using the Poisson equation
leads to

N =

/ (004 (8) = MY 4 [(n(t) — M)*[2)da

Q

+

o\ﬂ

/ D [V(ns — MY*[? + D_|V(n_ — M)*|?)duds

< / / ((ne — M) [Py +n_ — g(x))dads

0

2|
o _

/I(vL — M) 2 (ng +n_ — g(z))dxds

2 2
Q
N D;\rzM //<”+ — M)*(ny +n_ — g(x))dzds
0 Q
D_M p
T2 O/Q/("— — M)*(ny +n_ — g(x))dzds.

As M > ||g|| (o) and we integrate only over {n+ > M}, we have ny +n_ —g(z) > 0 on this set. Therefore,
all integrals on the right-hand side are nonnegative, and we conclude that

5 [0 ® = a0 P+ (- (0) = M) ) o

Q
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t

+// D |V(ng = M)T >+ D_|V(n_ — M)*|*)dzds < 0.
0

This shows that (n4(t) — M)" =0 and hence ni(t) < M in Q, ¢t >0. O
Lemma 4 (Uniform positive lower bound for ny ). There exists m > 0 such that for all t > 0,
ny(t) >m>0 in Q.

Proof. We show first that ny is strictly positive with a lower bound that depends on time. For this, we use
the test functions (n4 —m*(¢))” = min{0,ny — m*(t)}, where m*(t) = moe #*, p = 2X72D_M, and

. . oD . 1o, 0 o
mo mln{lanQ 5 ,in (2n0+n M)}>O,

in (6), (7), respectively, and add both equations. Proceeding similarly as in the proof of Lemma 3, we obtain

%/ ((n+ —m*) " (t)* + (n_ — m*)*(t)2)dx

Q

+D+j/|v (ny —m*)™ |Pdxds + D_ //\v )" |?dxds
// ny —n_)((ng —m*)” — (no —m*)7)dads
f%//V[(mrfm )7 )? oVdedsDT/t/V )" - VVdads
0

— D+/m*(5)/V(n+ —m*)” - VVdzds

Q

0
—-D_ O/m*(s) /V(n, —m*)” - VVdzds

Q

+ u/tm*(s)/ ((ny —m*)™ + (no —m*)7)dads.
0 O

The first term on the right-hand side is nonpositive since z — (z — m*)~ is monotone. For the remaining
terms, we use the Poisson equation and the estimate ng = ny +n_ < 2M:

%/ (s —m™)~ (02 + (n_ — m*)~(t)%)dz

Q

- 2)\2//‘ ny —m*)”*(no — g(x))dxds
0
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S 2a? / / |(n “2(no — g(=))dxds

_ % /m*<s) /(n+ —m*) (no — g(x))dads

D_ £y —
< S5 lgllimco / s =m0 =) ) dads.
Q

In the last inequality, we used 2M — A>D'y < 0. By Gronwall’s lemma, this shows that ny > m*(t) > 0
in Q.

In the second step, we prove that ny is strictly positive uniformly in time. The idea is to use the Di
Giorgi-Moser iteration method similarly as in the proof of Lemma 3.6 in [18]. We set wy = —(lognL+m)~ €
L2(0,T; H'(€)) and take the test function e'w? ' /ni in (6), (7), respectively, where 0 < —log(m./2) <
m < 1 and g € N, ¢ > 2. Because of the previous step, which ensures that ni > 0, this test function is well
defined. Moreover, log(np/2) + m > log(m./2) + m > 0 and log(n3/2 + 7 - i) + m > log(m./2) + m > 0
t

such that w = 0 on dQ and w(0) = 0 in Q. Formally, we compute 9 (e'w?) — efw? = —getwd 'nI1dn.

Therefore, integrating this identity formally over  and (0,¢) and using (6)—(7),

/es(wi + w?)dxds
Q

/ wit wi?
= —q/es(<8tn+, + >+ <8tn, — >>ds
TL+ n_—
0
-1

t
a- q
_a [ 3 wi  wl
= 27_/6 /(m_ n_)( - - )dxds
0

¢
t
s q—2 g—1y VN4
—Dyq [ e [(Vng+n VV)-((¢—Dwi " +wi ) " dxds
+
00

—
®
;
Ny
=
+
S
| =
=
N~—
N~—
QU
&
o .
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Vn_

— Dq/tes /(Vn, +n_VV) - ((g—Dw?? +w?h) dxds,

Q

where (-,-) is the duality product of H=1(Q) and H}(€). The computation can be made rigorous by a
density argument; see [23, (5.18)] for a similar statement. Since z — (—(log z +m)~)?~!/z is nonincreasing
for z > 0, the first term on the right-hand side is nonpositive, giving

/ ¢t (w (t) + w? (1)) dz — j ! ¢ (! + w )duds

Q

t
< fD_s_q/eS /((q — Dwl? +wl ) (|Vwy > = VV - Vg )dzds

— D_q/es /((q — Dw?™? + wq__l)(|Vw_\2 — VV - Vw_)dxds.

Taking into account the Poisson equation and the inequalities D, < D_, wy > 0, and ng < 2M, this

/ et (w () + w (t))de — /t / ¢ (w? + w? )dads
Q 0 Q

4D -1
4D+(a=1) /e /(|Vwi/2\2 + Iqu,/2|2)d1:ds

becomes

0 Q
4D
+q /e / /212 4 gy at /22 )dzds
0
S D+q e <U}+ —+ UJ+> (TLO — g(x))dxds
0
D
_Qq/e /( )(no— (x))dxds
0 Q
¢
2D+M/
0

t
M
e /qur —l—wJr dacds—!— /e/ 1)dxds
0 Q
Q/

¢ ¢
2D M
/e (wl —l—w‘i)dxds—&— / / dxds. (17)
0 0

In the last inequality, we used Young’s inequality: quwl ' < (¢ — 1)w% + 1. We infer that

t
/et(wi(t) +w? (t))dz + Ko / / es(|Vwi/2|2 + \qu_/2|2)dxds
0 Q

Q
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¢
1q// (wl + w?)dzds + Kae'
0

for some constants Ky, Ky, K5 > 0 which are independent of ¢ and time.
Lemma 11 in the appendix shows that w4 is bounded in L* with a constant which depends on the
L*°(0,T; L' (9)) norm of wx. Therefore, it remains to estimate w4 in this norm. To this end, we take q = 2

n (17):
/et(wi(t)—i—w dm—/e /er—i—w )dxds
Q Q

¢
8
+ §D+/es/(|V’w3/2|2+ |Vwi/2\2)da:d5

t

_M
/es/dmds.
0 Q

t
4D_M
< 2 /e/w++w da:ds+
0

By the Poincaré inequality, for some constants C; > 0, we obtain

/et(wi(t)—f—w%(t))dxg/es/( Ci(w? +w?) + Co(w? +w?))dzds + Cse’.
o) 00

Since f(z) = —C123 + Ce2? = (—Ciz + Co)x? has a maximum Cy > 0 for z > 0, we can estimate the
right-hand side by e!(Cy meas(2) + C3). Division by e’ leads to

(w2 (1) + w? (t))dz < Cy := Cymeas(Q) + Cs,

R

which does not depend on time. In particular, this shows that w. is bounded in L>(0,T; L'(Q2)) uniformly
in time. Thus, by Lemma 11, ||w+ ()| 1) < K for some constant K > 0 and n(t) > exp(—K — m) in
Q, t > 0. This finishes the proof. O

Remark 5. The factor e’ is necessary to derive time-uniform bounds. Indeed, without this factor, the last
term on the right-hand side of (17) becomes 4D_ M\~2 fot fQ dsdx which is unbounded as t =+ co. O

We introduce the relative free energy
A2 9
H(t) = [  h(nslneo) + h(n-|neo) + o [V(V = Voo )7 | (t)dz,
Q

where h(ni|ne) = ng log(2ny /ne) — ny + %noo, and the electrochemical potentials ¢+ = logny + V.

Lemma 6 (Relative free energy estimate). It holds that

dH D
G [ IV 0P+ (0 — o))

Q
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22 [ (@0 = )+ (0 — o)) Ve P
Q
1
- — [ (Vi - vio)da
Q

Proof. Using the Poisson equation and the definitions ¢+ =logni + V and ¢o, = logne + Vi, it follows
that

H 2 2n_
cfi—t = <6tn+,log %> + <8tn_,log nL> —NOA(V = Vo),V = Vy)

= <6tn+,log Z—+ + log 2> + <8tn_, log Z—_ + log 2> + (Oi(ny +n_),V = V)
= (Oiny4, o4 — Poo +10g2) + (O4n—, d— — dpoo + log 2) (18)

This can be made rigorous similarly as in [23, formula (5.18)], together with the techniques in [14, Theorem
3, p. 287].
Next, we subtract D4 x(14) from (6) and (7), respectively:

Oy — Dy div (nyV(dy — doo) + (ny — 3700)Voeo) = *%(mr —n_),
om_ —D_div (n_V(¢— — ¢poo) + (= — 3n00) Vo) = f%(n_ —ny).

Inserting these equations into (18), we find that

dH

= Dr [nil¥s — 6Pz - D [0 |6~ )P
Q Q

- Dy /(n+ - %nw)v¢w V(o4 — doc)dz

—D_ noo V¢OO ' (¢— - ¢00)dx
[

_ % (ny —n_)(logn, — logn_)dz.
Q

We use the elementary inequality

(y — z)(logy —log z) > (\/g—\/Z)Q for y,z >0 (19)

PN

to estimate the last term. Then the Young inequality and the lower bound ny > m lead to

dH D D_
E < _TJF /n+|v(¢+ - ¢oo)|2dx - 7 \/TL,|V(¢, - d)oo)|2dx
Q Q
D, D_
+ o (ny — 2ne0)?| Voo [2da + o /(n — In00)? Voo [*dz
Q Q
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finishing the proof. O

Lemma 7 (Lower bound for the chemical potentials). It holds that

V(¢ — ¢oo)\|%2(9) +V(e- — %o)”%%ﬂ)
> C(|lns — gnoclla(a) + In— = gnocll T2y + IIV(V = Vao) [ Z2())

where C' > 0 depends only on M, My, X\, and ).
Recall that M is the upper bound for ny (see Lemma 3) and M is the upper bound for ns (see (16)).

Proof. It holds that ¢+ — ¢oo + log2 = 0 on 9. Thus, the Young and Poincaré inequalities yield for any
e >0,

[ 1 = 4} 02 — 6 +low2)do < ellns — dnclaey + C(Eo — boe + o8 2
Q

<elns = §noollT2(0) + Cle, DV (dx — doo)ll72(0)- (20)

Inserting the definitions of ¢+ and ¢, taking into account the Poisson equation —A2A(V — V) = ng — neo
and inequality (19), and finally using the bounds m < ny < M and me, < Noo < My, we obtain

[ = 3n)(0s — 0 +log2do + / (n- = 1noe)(6- — oo + log2)da

o

/(n+— ins)(logny — log(3n dx—i—/ — 1no)(logn_ —log(3nu))dx

Q Q

+ [ (no — noo)(V — Voo )dx
Q/ 0

%/(M—\/Qnioo) d + - /(\/ni \/2700) d:c+>\2/ IV(V = Vo) 2da
Q

1 (ny —noo/2)? 1 (n_ —ns/2)?

_ZQ/(\/%JF dx+1/ e der)\QQ/W(VVOO)Fdx

>y /(n znoo) dx + Co /( _ - %noo)Qd:c—F /\2/|V(V — Vo) |Pdz,

Q Q

where Cy = (VM + /M /2)2. Combining this estimate with (20) and taking e < C;, we conclude the
proof. O

Lemma 8 (Bounds for the relative free energy). There exist constants Cy, Cy > 0 independent of the solution
and time such that

H < Cy(IIV(g4 — ¢oo)“%2(9) + V(o - ¢oo)||%2(9)),

H > Cu(lns = §ncollzz(o) + In- = 3700 72(0)-
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Proof. Set f(y) = ylog(y/z) — y + z for some fixed z > 0. A Taylor expansion shows that

Yy - o / 1., 2 (y - 2)2
ylog —y+2= 1) = &)+ £ =)+ 31O -9 = L7

where & is between y and z. Consequently, since ni > m and Ny > Moo,

2n 1 1
n4 log n—: — N4 + 57’2;00 < E(ni — %noo)z’
where C1 = min{m, m«/2}, and, using Lemma 7, we find that
I 1 2 1 2 2
H < max 20,2 (Int = 3n00ll72(0y + - = 3n00llT2(0) + IVV = Vao)72(0y)

1 A2
< e { 5o, 5 U0 = 0oy + V(0 - 6l

For the second estimate, we use

2

2 1 — ine
n4 log % —Ng + —Ngo > (ns — 370) where 2C5 = max{M, M. /2},

oo 2 2C5 ’

to conclude that

1
H> 2, / ((ng — 3ns)® + (n- — nw)?)da.
Q

This finishes the proof. O
4. Proof of Theorem 1

The starting point is the free-energy inequality in Lemma 6. We need to estimate the integral containing
Voo In view of Lemmas 2 and 8,

/ (12 — 11002 Voo 2 < [Vhoo2 ey 11 — 30022y
Q

< CZ 161200 (0 17 = 3700l|72(0) < CXCli* 16D 1372000 () H- (21)

By the lower bound of n4 and Lemma 7, the free-energy inequality in Lemma 6 becomes

dH (Dym D_C% 1 ,
o (T~ P00 ey ) H + G-IV Ve <0

Let 6 > 0 satisfy 2k := Dym/(2Cy)—D_(CZ /Cy)6? > 0 and choose np and Vp such that||¢plly2.a ) < 0.
Then Gronwall’s lemma implies that H(t) < H(0)exp(—2«t) for ¢ > 0. By Lemma 8,

s (8) = el 2@y + lIn—(8) = Sncclliz < CH©O)Y2e™, ¢ > 0.

The H'(2) elliptic estimate for the Poisson problem —A?A(V — Vi) = (ny — ineo) + (n- — $ns0) in €,
V — Vs = 0 on 09 gives
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IV = Vel oy < Clina (8) = dneellza(y + Clln(8) = Sncllzzga) < O,

which proves the first estimate. For the second result, recall that we can decompose N(t) as N(t) =
2(ny +n_)og+ (AL + 2(ny —n_)i@) - & We use i, as a test function in (11):

].d - 2 D = 2 1 = |2
Q Q Q
D D
:_%/wvm?~vszx:—W/\mf(no—g(x))dx
Q Q

D S o2
< W||9HL°°(Q)/|TU-| dz.
Q

Thus, if 7 < 29A?/(D||g|| L (a)), the Poincaré inequality shows that

d

E/\m|2da;+20(p,n7ﬂ)/\m?da: <.

Q Q

By Gronwall’s lemma,
175 ()l p2@) < 17L(0)||2(@ye PP > 0.

Therefore, we find that

HN(t) - %"OOUOHLz(Q;sz) < H(%(”Jr — gMoo) + 3 (0 — %noo))UOHLz(Q;(CW?)

+ ||’ﬁ:J_ + %(TLJF —n_)i) - EHLZ(Q;C?“)

< C;Il/2H(O)1/267m + ”ﬁl(o)”L?(Q)efC(D,n,Q)t < Cgef,{*t’

where C§ = max(2CI;1/2H(O)1/2, [171(0)||£2(q)) and &* = min(x, C(D,n,Q)t). This concludes the proof of
Theorem 1.

Remark 9 (Special initial spin-vector density). Let ji = (0,0,1)T and 7i° = (0,0,n3). Then the components
n1 and nsy of the spin-vector density satisfy the equation

n

with boundary conditions n; = 0 on 0f2 and initial conditions n;(0) = 0 in Q. The unique solution is
given by n;(t) = 0 for all ¢t > 0 and ¢ = 1,2. Since @ = 7y + (7 - @) = i, + ns3fi, the perpendicular
component vanishes, 7, (t) = 0. We conclude that the dynamics of the system is completely determined
by n4, and the proof of Theorem 1 gives the exponential decay without any condition on 7. In particular,
the density matrix N () = 1(ny +n_)oo + 3(n4 — n_)os converges exponentially fast towards 1n..oo as
t—o00. O

Remark 10 (Smallness condition on the relazation time). We discuss the physical relevance of the smallness
condition of the scaled relaxation time 7 < 2nA*/(D||g| p(q))- In scaled variables, we may assume that
D =1 and ||g||z=(a) = 1. The scaled Debye length is given by A\* = e,Ur/(¢L?g*) = 2.7-10~!, where the
physical parameters are explained in Table 1. We have assumed that the semiconductor material is lowly
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Table 1
Physical parameters.
Parameter Physical meaning Numerical value
q elementary charge 1.6 - 10719 As
€s permittivity constant 10712 As/(Vem)
1o (low field) mobility constant 1.5-10% cm?/(Vs)
Ur thermal voltage at 7' = 50K 4.3-107%V
g maximal doping concentration  10®/cm®
To spin-flip relaxation time 107125
L length of the device 10~ % cm

doped. The scaled relaxation time is 7 = 79/t*, where the typical time is defined by t* = L?/(uoUr) =
1.5 - 10~''s. The spin-flip relaxation time is assumed to be 7y = 1ps. This value is realistic in GaAs
quantum wells at temperature T' = 50 K; see [7, Figure 1]. It follows that 7 = 6 - 10~2. Thus, the inequality
7 < 20A\?/(D||gll L= () is satisfied if n > 0.11 or p < 0.99. This covers almost the full range of p €
0,1). O

Appendix A. A boundedness result

The following lemma is an extension of a result due to Kowalczyk [27], based on an iteration technique
[3]. It slightly generalizes [25, Lemma A.1]. Although the result should be known to experts, we present a
proof for completeness.

Lemma 11 (Boundedness from iteration). Let Q C R% (d > 1) be a bounded domain and let wg/z €
L2(0,T; HX(Q)) N CY([0,T); L*(Q)) for all ¢ € N with q > 2 with w; > 0, w; = 0 on 9%, and w;(0) = 0 in
Q fori=1,...,n. Assume that there are constants Ky, K1, Ko > 0 and «, 8 > 0 such that for all ¢ > 2,
t>0,

n

" ¢
/etZwi(t)qu+Ko/ GSZ|ng/2‘2dIdS
o =1 0o i=l

¢

< K¢ //es ngdxds + KogPet. (22)
0o o =1

Then
wi(t) < K = Ks(Z will oo (0,051 (22)) + 1) inQ, t>0,
1=1

where K3 depends only on «, 8, d, Q, Ko, K1, and K.

Proof. We apply the Gagliardo—Nirenberg inequality [42, p. 1034] with 8 = d/(d 4+ 2) < 1 and the Poincaré
inequality to deal with the integral over w{ on the right-hand side of (22):

2 2 212(1—-0
/ wide = w320y < Crl| V2|3 g w2 |7
Q

2 14+d/2 — 2
< eVl |22y + C1 TP V2 w23 0

for any € > 0. Choosing ¢ = K(/(2¢“ K1), which is equivalent to K1¢% = Ky/2, (22) becomes
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t
Ko S% /2|2
/ Zw t)%dx + 7//6 Z|le- |“dzds
0o =1

Q

s

< Cpqttd/2) [ ||w; ds + Koq"el,

[

M-

o
.
Il
A

where Cy depends on d, Ky, and K;. We obtain

t

Z ”wi(t)”%q(g) < C2qa(1+d/2 / ~(e=s) Z [Jwi(s ||Lq/2 ds + Ksq”

i=1 0

and, taking the supremum over time,

oi“Ethwz Moy < Cog™ (1~ supanz M3asa(ey + Kad”

<O qa(1+d/2) sup Z H'LU'L ||Lq/2(Q) + K2q
<S<tz 1

We choose ¢ = 2 for k > 0 and set by = > -, szH + 1. Then

L2 (0,T;L2" (Q))

n

bk < 02204(1+d/2)k Z Hw

k
’L'||ioo(0)T;L2k_1(Q)) + (K2 + 1)2ﬁk

< max {CQZO‘(HCI/Q), (K2 + 1)1/k25}k<z [[w ||L°° 0152251 () T 1)

2
< max {02204(1-1-(1/2)7 (K2 + 1)2,8}16(2 le |ikoolo T.L251 () + 1)
= 'kai—l’

where

~ = max {022a(1+d/2)7 (K2 + I)Qﬁ}'

To solve this recursion, we set ¢, = 7k+2bk. Then

o < VPRIRE_ = (P b)) =iy,

. . k k+1
which gives ¢, < cg < 72

root,

& ok L
will e .74 () < B <A77F *H <Z will o< (0,701 (2)) + 1)'
=1

The limit £ — oo concludes the proof. O

b%k. Consequently, b, = v *"2¢;, < 72]6“”“*21)8’6 and, after taking the 2Fth
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