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We study the relationship between the concept of a continuous ellipsoid Θ cover of 
Rn, which was introduced by Dahmen, Dekel, and Petrushev [7,8,11], and the space 
of homogeneous type induced by Θ. We characterize the class of quasi-distances on 
Rn (up to equivalence) which correspond to continuous ellipsoid covers. This places 
firmly continuous ellipsoid covers as a subclass of spaces of homogeneous type on 
Rn satisfying quasi-convexity and 1-Ahlfors-regularity.
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1. Introduction

Discrete and continuous ellipsoid covers of Rn were introduced by Dahmen, Dekel, and Petrushev in the 
construction and analysis of multilevel preconditioners for partition of unity methods applied to elliptic 
boundary value problems [7] and in the study of Besov spaces with pointwise variable anisotropy [8,9], see 
also the survey [11]. A continuous ellipsoid cover consists of ellipsoids θx,t with centers x ∈ Rn and scales 
t ∈ R satisfying a natural shape condition. Dekel, Han, and Petrushev [10] have shown that an ellipsoid 
cover Θ defines a space of homogeneous type in the sense of Coifman and Weiss [5,6] with a quasi-distance 
ρΘ given by

ρΘ(x, y) := inf
θ∈Θ, x,y∈θ

|θ|. (1.1)

More precisely, Rn equipped with the Lebesgue measure and quasi-distance ρΘ is 1-Ahlfors regular, i.e., 
Lebesgue measure of balls satisfy |BρΘ(x, r)| ∼ r for all x ∈ Rn and r > 0. Subsequently, Dekel, Petrushev, 
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and Weissblat [12] have developed the Hardy spaces Hp(Θ) associated with a continuous ellipsoid cover Θ
for the entire range of 0 < p ≤ 1. Among the results shown in this setting are grand maximal function 
characterization, atomic decomposition, and classification of Hardy spaces [12], the duality of Hardy spaces 
[13], molecular decomposition [1], and boundedness of Calderón-Zygmund singular integral operators [4]. 
In contrast with the general theory of Hardy spaces on spaces of homogeneous type [2,6,14], these results 
work in the full range 0 < p ≤ 1. This is actually the largest class of spaces of homogeneous type on Rn

equipped with Lebesgue measure, where such complete Hp theory has been developed so far.
A natural question arises about the relationship between ellipsoid covers and spaces of homogeneous type 

on Rn. What quasi-distances on Rn are induced by continuous ellipsoid covers? In this paper we answer this 
question by characterizing all quasi-distances (up to equivalence) which correspond to continuous ellipsoid 
covers via the formula (1.1). In addition that ρ is 1-Ahlfors regular, we impose that ρ is quasi-convex. That 
is, there exists a constant Q ≥ 1 such that for every x ∈ Rn and r > 0 there exists an ellipsoid ξ = ξrx with 
center x such that

ξrx ⊆ Bρ(x, r) ⊆ Q · ξrx, (1.2)

where Q · ξ = Q(ξ − x) + x is a dilate of an ellipsoid ξ by a factor Q. The famous maximal volume ellipsoid 
theorem of John [3,16,19] attests that every convex body in Rn is Q-quasi-convex with Q = n. Hence, the 
above definition is a natural generalization of convexity reminiscent of the concept of a quasi-conformal 
mapping [15].

The main result of the paper shows that there is one-to-one correspondence between quasi-convex, 1-
Ahlfors-regular quasi-distances and continuous ellipsoid covers in Rn. In this correspondence we identify 
equivalent quasi-distances and likewise equivalent ellipsoid covers. In other words, a quasi-convex, 1-Ahlfors-
regular quasi-distance ρ gives rise to a continuous ellipsoid cover Ξ = {ξrx : x ∈ Rn, r > 0}, where ξrx satisfies 
(1.2). In turn, a quasi-distance ρΞ, which is induced by Ξ and given by (1.1), is quasi-convex and 1-Ahlfors-
regular, and ρΞ is equivalent to ρ.

While the methods of the proof are quite elementary and require mostly basic properties of ellipsoids, some 
of them could not be found in the existing literature such as Theorem 2.1. The most demanding arguments 
revolve around the inner property which guarantees appropriate growth of balls Bρ(x, r) as r → ∞. It turns 
out that this property is automatically implied by the quasi-convexity and 1-Ahlfors-regularity of ρ. In turn, 
the inner property plays a key role in showing that Ξ = {ξrx : x ∈ Rn, r > 0} satisfies the shape condition, 
which is the key requirement for Ξ to be a continuous ellipsoid cover.

This article is organized as follows. Section 2 is devoted to proving basic properties of ellipsoids such as 
Theorem 2.1. In Section 3 we introduce the notion of a continuous ellipsoid cover, recall some of its known 
properties and prove new ones. In Section 4 we study quasi-convexity and the inner property and show 
the main characterization result of the paper, Theorem 4.9. Finally, in Section 5 we give applications and 
examples of quasi-distances illustrating our main result.

2. Ellipsoids in Rn

In this section we recall some basic properties of ellipsoids in Rn. An ellipsoid ξ in Rn is an image of the 
closed Euclidean unit ball Bn in Rn under an affine map, i.e.,

ξ = Mξ(Bn) + cξ,

where Mξ is an n × n nonsingular matrix and cξ ∈ Rn is the center of ellipsoid ξ. For any ellipsoid ξ and 
λ > 0, define a dilated ellipsoid by

λ · ξ := λMξ(Bn) + cξ.
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The following elementary theorem shows that if one ellipsoid is contained in the other, then we have a 
reverse inclusion relation for a dilated ellipsoid.

Theorem 2.1. If two ellipsoids η and ξ in Rn satisfy η ⊆ ξ, then

ξ ⊆ 2 |ξ||η| · η.

Moreover, if η and ξ have the same center, then the above holds without the factor 2.

Since we could not find Theorem 2.1 in the literature, we will give its proof using three more elementary 
lemmas.

Lemma 2.2. Let D := diag(λ1, λ2, . . . , λn) be a diagonal matrix. If Bn ⊆ D(Bn) + c with c ∈ Rn, then 
Bn ⊆ D(Bn).

Proof. Assume that Bn ⊆ D(Bn) + c, c ∈ Rn. We only need to verify |λi| ≥ 1 for any i = 1, . . . , n. Let 
e1, . . . , en be a standard basis of Rn. Note that

D(Bn) ⊆ {x = (x1, . . . , xn) ∈ Rn : |xi| ≤ |λi| for all i = 1, . . . , n}.

Since Bn − c ⊆ D(Bn), then the absolute value of i’th coordinate of ei − c or −ei − c is ≥ 1. Hence, by the 
above inclusion we have |λi| ≥ 1 for every i = 1, . . . , n. �
Lemma 2.3. Let A be a nonsingular matrix. Let {λi}ni=1 be the eigenvalues of AAT and D :=
diag(

√
λ1, 

√
λ2, . . . , 

√
λn). If Bn ⊆ A(Bn) + c with c ∈ Rn, then there exists an orthogonal matrix U

such that Bn ⊆ UA(Bn) = D(Bn). In particular, λi ≥ 1 for all i = 1, . . . , n.

Proof. Since AAT is a positive symmetric matrix, then there exists an orthogonal matrix U such that 
UAATUT = UA(UA)T = D2. Therefore,

D(Bn) = {Dx ∈ Rn : xTx ≤ 1} = {x ∈ Rn : xT (D2)−1x ≤ 1}
= {x ∈ Rn : xT (UA(UA)T )−1x ≤ 1} = UA(Bn).

Suppose that Bn ⊆ A(Bn) + c with c ∈ Rn. We have

Bn = U(Bn) ⊆ UA(Bn) + Uc = D(Bn) + Uc.

Hence, by Lemma 2.2, we have Bn ⊆ UA(Bn) = D(Bn). �
Lemma 2.4. If two ellipsoids satisfy η ⊆ ξ, then η − cη ⊆ ξ − cξ, where cη and cξ are centers of η and ξ, 
respectively.

Proof. Without loss of generality, we can assume that cη = 0 by using translations. Let

η := Mη(Bn), ξ := Mξ(Bn) + cξ,

for some nonsingular matrices Mη and Mξ. Since

Bn = (Mη)−1η ⊆ (Mη)−1ξ = (Mη)−1MξB
n + (Mη)−1cξ,

by Lemma 2.3 we have Bn ⊆ (Mη)−1MξBn, which yields the required conclusion. �
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Proof of Theorem 2.1. Take any two ellipsoids η := Mη(Bn) + cη ⊆ ξ := Mξ(Bn) + cξ. Without loss of 
generality, we may assume that cη = 0 by using translations. Let A = (Mη)−1Mξ. By Lemma 2.4, we have

Bn = (Mη)−1(η) ⊆ (Mη)−1(ξ − cξ) = ABn. (2.3)

Let D := diag(
√
λ1, 

√
λ2, . . . , 

√
λn), where {λi}ni=1 are the eigenvalues of AAT . By Lemma 2.3, there exits 

an orthogonal matrix U such that UA(Bn) = D(Bn) and hence

U−1D(Bn) = (Mη)−1(ξ − cξ). (2.4)

Since | detU | = 1 and λi ≥ 1 for all i = 1, . . . , n, we have

|ξ|
|η| = |(Mη)−1(ξ − cξ)|

|(Mη)−1(η)| = |U−1(D(Bn))|
|Bn| =

n∏
i=1

√
λi ≥ max

1≤i≤n

√
λi. (2.5)

Therefore, by (2.4) and (2.5) we obtain

(Mη)−1(ξ − cξ) = U−1D(Bn) ⊆ U−1 max
1≤i≤n

√
λiB

n = max
1≤i≤n

√
λiB

n ⊆ |ξ|
|η| (Mη)−1(η). (2.6)

Moreover, using the assumption η ⊆ ξ, we get

Bn = (Mη)−1(η) ⊆ (Mη)−1(ξ) = (Mη)−1(Mξ(Bn) + cξ).

By this and UA(Bn) = D(Bn), we have

Bn = U(Bn) ⊆ U(Mη)−1(Mξ(Bn) + cξ) = D(Bn) + U(Mη)−1cξ.

This implies that Bn − U(Mη)−1cξ ⊆ D(Bn) and hence

U(Mη)−1cξ ∈ −D(Bn) ⊆ − max
1≤i≤n

√
λiB

n = max
1≤i≤n

√
λiB

n.

Combining this with (2.5) yields

(Mη)−1cξ ∈ max
1≤i≤n

√
λiB

n ⊆ |ξ|
|η| (Mη)−1(η).

Hence, by (2.6) we have

(Mη)−1(ξ) ⊆ |ξ|
|η| (Mη)−1(η) + (Mη)−1cξ ⊆ 2 |ξ||η| (Mη)−1(η).

Applying Mη to both sides we finally obtain ξ ⊆ 2 |ξ|
|η| · η.

Finally, if η ⊆ ξ have the same center, then we may assume that cη = cξ = 0. Hence, (2.6) alone implies 
that ξ ⊆ |ξ|η. �
|η|
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3. Ellipsoid covers and quasi-distances on Rn

In this section we recall the properties of a continuous ellipsoid cover Θ, which was originally introduced 
by Dahmen, Dekel, and Petrushev [8]. This includes properties of quasi-distance ρΘ which is induced by the 
cover Θ. Moreover, we translate the shape condition of Θ into a geometric form involving only containment 
of dilates of ellipsoids in Θ.

Definition 3.1. We say that

Θ := {θx,t : x ∈ Rn, t ∈ R}

is a continuous ellipsoid cover of Rn, or shortly a cover, if there exist positive constants p(Θ) := {a1, . . . , a6}
such that:

(i) For every x ∈ Rn and t ∈ R, there exists an ellipsoid θx,t := Mx,t(Bn) + x, where Mx,t is a real n × n

nonsingular matrix, satisfying

a12−t ≤ |θx,t| ≤ a22−t. (3.7)

(ii) Intersecting ellipsoids in Θ satisfy the shape condition requiring that for any x, y ∈ Rn, t ∈ R and s ≥ 0, 
if θx,t ∩ θy,t+s �= ∅, then

a32−a4s ≤ 1/‖(My,t+s)−1Mx,t‖ ≤ ‖(Mx,t)−1My,t+s‖ ≤ a52−a6s. (3.8)

Here, ‖ · ‖ is the matrix norm given by ‖A‖ := max|x|=1 |Ax| for any nonsingular matrix A.

It is worth emphasizing that we do not assume any measurability or continuity condition on a contin-
uous ellipsoid cover Θ. Indeed, by [4, Theorem 2.2] there exists an equivalent ellipsoid cover such that its 
corresponding matrix valued function x �→ Mx,t is continuous for any t ∈ R.

Remark 3.2. The shape condition (ii) in Definition 3.1 has the following equivalent formulation by reversing 
scales. For any x, y ∈ Rn, t ∈ R and s ≥ 0, if θx,t ∩ θy,t−s �= ∅, then

1
a5

2a6s ≤ 1/‖(My,t−s)−1Mx,t‖ ≤ ‖(Mx,t)−1My,t−s‖ ≤ 1
a3

2a4s. (3.9)

Indeed, (3.9) follows from (3.8) applied to θy,t−s and θx,t in place of θx,t and θy,t+s, respectively. Reversing 
this argument, shows the converse implication.

The shape condition (3.8) can be also equivalently restated in terms of dilates of the ellipsoids in Θ
without referring to scale parameter t.

Lemma 3.3. Let Θ = {θx,t : x ∈ Rn, t ∈ R} be a collection of ellipsoids satisfying (3.7). Then, the shape 
condition (3.8) holds if and only if there exists constants a′3 and a′5 such that for any two ellipsoids ξ, η ∈ Θ, 
if |η| ≤ |ξ| and ξ ∩ η �= ∅, then

a′3

(
|η|
|ξ|

)a4

(ξ − cξ) ⊆ η − cη ⊆ a′5

(
|η|
|ξ|

)a6

(ξ − cξ), (3.10)

where cξ and cη are the centers of ξ and η, respectively.
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Proof. By (3.7) for any t, s ∈ R we have

a1

a2
2−s ≤ |θy,t+s|

|θx,t|
≤ a2

a1
2−s (3.11)

Hence, if |θy,t+s| ≤ |θx,t|, then s ≥ −s0, where s0 := log2(a2/a1) ≥ 0. As a partial converse, if s ≥ s0, then 
|θy,t+s| ≤ |θx,t|.

Suppose that the shape condition (3.8) holds for t ∈ R, s ≥ 0, and θx,t ∩ θy,t+s �= ∅. First, we shall show 
that the same condition also holds for s ≥ −s0, albeit for some new constants a′3 and a′5. Indeed, if s ≥ 0, 
then there is nothing new to show. Suppose next −s0 ≤ s ≤ 0. Then, by the reverse form of (3.8), see 
Remark 3.2, we have

1
a5

2−a6s ≤ 1/‖(My,t+s)−1Mx,t‖ ≤ ‖(Mx,t)−1My,t+s‖ ≤ 1
a3

2−a4s.

Take ã3 = min(a3, 1/a5) and ã5 = max(a5, (1/a3)2(a6−a4)s0). Since a6 ≤ a4, for −s0 ≤ s ≤ 0 we have

ã32−a4s ≤ 1
a5

2−a6s and 1
a3

2−a4s ≤ ã52−a6s.

Therefore, if t ∈ R, s ≥ −s0, and θx,t ∩ θy,t+s �= ∅, then

ã32−a4s ≤ 1/‖(My,t+s)−1Mx,t‖ ≤ ‖(Mx,t)−1My,t+s‖ ≤ ã52−a6s. (3.12)

Now suppose we have two ellipsoids ξ, η ∈ Θ such that |η| ≤ |ξ| and ξ ∩ η �= ∅. We write η = θy,t+s and 
ξ = θx,t for some x, y ∈ Rn and t, s ∈ R. Since |η| ≤ |ξ|, we necessarily have s ≥ −s0. By the right-hand 
side inequality of (3.12) we have (Mx,t)−1My,t+s(Bn) ⊆ ã52−a6sBn. Hence, (3.11) implies that

My,t+s(Bn) ⊆ a′5

(
|θy,t+s|
|θx,t|

)a6

Mx,t(Bn), (3.13)

where a′5 = ã5(a2/a1)a6 . Applying the same argument for the left-hand side inequality of (3.12) yields

a′3

(
|θy,t+s|
|θx,t|

)a4

Mx,t(Bn) ⊆ My,t+s(Bn), (3.14)

where a′3 = ã3(a1/a2)a4 . This shows (3.10).
Conversely, suppose that (3.10) holds for ξ, η ∈ Θ, |η| ≤ |ξ|, and ξ ∩ η �= ∅. We claim that the same 

condition holds when |η| ≤ (a2/a1)|ξ| and ξ ∩ η �= ∅, albeit for some new constants ǎ3 and ǎ5. Indeed, if 
|η| ≤ |ξ|, then there is nothing new to show. Suppose that |ξ| ≤ |η| ≤ (a2/a1)|ξ|. Then, by (3.10) and by 
reversing order of inclusions we have

1
a′5

(
|η|
|ξ|

)a6

(ξ − cξ) ⊆ η − cη ⊆ 1
a′3

(
|η|
|ξ|

)a4

(ξ − cξ).

Hence, (3.10) holds with constants ǎ3 = min(a′3, 1/a′5) and ǎ5 = max(a′5, (1/a3)(a2/a1)a4−a6) in place of 
a′3 and a′5, respectively. Now, take any x, y ∈ Rn, t ∈ R, and s ≥ 0 such that θx,t ∩ θy,t+s �= ∅. Letting 
η = θy,t+s and ξ = θx,t, (3.10) yields (3.13) and (3.14). Converting these inclusions into norm inequalities 
using (3.11) yields (3.8) for appropriate constants a3 and a5. �



M. Bownik et al. / J. Math. Anal. Appl. 505 (2022) 125482 7
Remark 3.4. As a consequence of Lemma 3.3 we propose the alternative geometric definition of an ellipsoid 
cover Θ, which will be used in our consideration in Section 4. A collection Θ = {ξrx : x ∈ Rn, r > 0} is a 
continuous ellipsoid cover if there exist positive constants p(Θ) := {a1, . . . , a6} such that:

(i) for every x ∈ Rn and r > 0, ξrx is an ellipsoid with center x and volume satisfying

a1r ≤ |ξrx| ≤ a2r,

(ii) for any ellipsoids ξ, η ∈ Θ, such that |η| ≤ |ξ| and ξ ∩ η �= ∅, we have (3.10).

To translate between two formulations involving scale t ∈ R and “radius” r > 0, it suffices to take θx, t = ξrx, 
where r = 2−t, and then apply Lemma 3.3.

The following lemma from [12, Lemma 2.2] is a direct consequence of the shape condition (3.8).

Lemma 3.5. Let Θ be a continuous ellipsoid cover. Then there exists c > 0 depending only on p(Θ) such 
that for any x ∈ Rn, t ∈ R and λ ≥ 1, we have λ · θx, t ⊆ θx, t−cλ.

The following lemma is a continuous analogue of [8, Lemma 2.8], which was originally shown for discrete 
ellipsoid covers. Hence, for the sake of completeness we include its proof.

Lemma 3.6. Let Θ be a continuous ellipsoid cover. Then there exists a constant s∗ ≥ 0 depending only on 
p(Θ) such that for any ellipsoids θx, t and θy, t+s with θx, t ∩ θy, t+s �= ∅, where x, y ∈ Rn, t ∈ R and s ≥ 0, 
we have θx, t ∪ θy, t+s ⊆ θx, t−� for any � ≥ s∗.

Proof. We write θx, t := Mx,t(Bn) + x, θy, t+s := My, t+s(Bn) + y, and let ω := (Mx, t)−1(θy,t+s − x). Then 
by the shape condition (3.8) and s ≥ 0, we have

diam(ω) := sup
z, z′∈ω

|z − z′| = sup
z, z′∈Bn

|(Mx, t)−1My, t+s(z − z′)|

≤ 2‖(Mx, t)−1My, t+s‖ ≤ 2a52−a6s ≤ 2a5.

This, together with θx, t ∩ θy, t+s �= ∅, implies that

(Mx, t)−1[(θx, t ∪ θy, t+s) − x] = Bn ∪ ω ⊆ (1 + 2a5)Bn. (3.15)

Therefore, we have

θx, t ∪ θy, t+s ⊆ (1 + 2a5) · θx, t

On the other hand, by Lemma 3.5 we have for any λ ≥ 1 + 2a5,

(1 + 2a5) · θx, t ⊆ λ · θx, t ⊆ θx, t−λc.

Hence, Lemma 3.6 holds for s∗ = (1 + 2a5)c. �
Next we move to exploring the relationship between continuous ellipsoid covers and quasi-distances on 

Rn.
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Definition 3.7. A mapping ρ : Rn ×Rn → [0, ∞) is called a quasi-distance if there exists a positive constant 
κ ≥ 1 such that for all x, y, z ∈ Rn,

(i) ρ(x, y) = 0 ⇔ x = y;
(ii) ρ(x, y) = ρ(y, x);
(iii) ρ(x, z) ≤ κ(ρ(x, y) + ρ(y, z)).

Dahmen, Dekel, and Petrushev have shown that an ellipsoid cover Θ induces a quasi-distance ρΘ on Rn, 
see [8, Proposition 2.7]. Moreover, Rn equipped with the quasi-distance ρΘ and the Lebesgue measure is a 
space of homogeneous type which is Ahlfors 1-regular [8, Proposition 2.10]. These results can be summarized 
as follows.

Proposition 3.8. Let Θ be a continuous ellipsoid cover. The function ρΘ : Rn ×Rn → [0, ∞) defined by

ρΘ(x, y) := inf
θ∈Θ

{|θ| : x, y ∈ θ} (3.16)

is a quasi-distance on Rn. Moreover, the Lebesgue measure of balls

BρΘ(x, r) = {y ∈ Rn : ρΘ(x, y) < r} (3.17)

with respect to the quasi-distance ρΘ satisfies

|BρΘ(x, r)| ∼ r for all x ∈ Rn, r > 0, (3.18)

with equivalence constants depending only on p(Θ).

The condition (3.18) states the Lebesgue measure is 1-Ahlfors regular with respect the quasi-distance 
ρΘ. This immediately implies the doubling property |BρΘ(x, 2r)| � |BρΘ(x, r)|, which is a defining feature 
of spaces of homogeneous type introduced by Coifman and Weiss [5,6].

The following result is stated without the proof in [12, Theorem 2.7]. Its proof can be found in [4, 
Proposition 2.10].

Proposition 3.9. Let Θ be a continuous ellipsoid cover and let ρΘ be a quasi-distance as in (3.16). For any 
ball BρΘ(x, r) with x ∈ Rn and r > 0, there exist t1, t2 ∈ R such that

θx, t1 ⊂ BρΘ(x, r) ⊂ θx, t2 and |θx, t1 | ∼ |θx, t2 | ∼ r,

where equivalence constants depend only on p(Θ).

Using Proposition 3.9 we can introduce a more convenient variant of a quasi-distance induced by a 
continuous ellipsoid cover.

Proposition 3.10. Let Θ be an ellipsoid cover. For any x, y ∈ Rn, define

ρ1(x, y) := inf
y∈θx, t∈Θ

|θx, t| and ρ2(x, y) := inf
x∈θy, t∈Θ

|θy, t|.

Then the map ρ̃Θ(x, y) := min{ρ1(x, y), ρ2(x, y)} is a quasi-distance which is equivalent to ρΘ(x, y) as in 
(3.16).
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Proof. It suffices to show that

ρΘ(x, y) ∼ ρ1(x, y) for any x, y ∈ Rn. (3.19)

Indeed, if (3.19) holds, then by symmetry we have ρΘ(x, y) ∼ ρ2(x, y), and therefore

ρΘ(x, y) ∼ min{ρ1(x, y), ρ2(x, y)} = ρ̃Θ(x, y).

Since ρ̃Θ(x, y) = ρ̃Θ(y, x), the fact that ρΘ is a quasi-distance (see Proposition 3.8), implies that ρ̃Θ is also 
a quasi-distance which is equivalent to ρΘ.

Let x, y ∈ Rn. Obviously, ρΘ(x, y) ≤ ρ1(x, y), so it remains to prove that there exists a constant C > 0
such that ρ1(x, y) ≤ CρΘ(x, y). Let r := ρΘ(x, y). By Proposition 3.9, there exist two ellipsoids θx, t1 , θx, t2
with |θx, t1 | ∼ |θx, t2 | ∼ r such that

θx, t1 ⊆ BρΘ(x, 2r) ⊆ θx, t2 .

Since y ∈ BρΘ(x, 2r), by the definition of ρ1(x, y), it follows that

ρ1(x, y) ≤ |θx, t2 | ∼ r = ρΘ(x, y),

which completes the proof of Proposition 3.10. �
4. Quasi-convex quasi-distances on Rn

In this section we show that the quasi-distance ρΘ, induced by a continuous ellipsoid cover Θ, is not only 
1-Ahlfors-regular, but it also satisfies two other crucial properties: quasi-convexity and the inner property. 
We also show the converse statement that any quasi-convex, 1-Ahlfors-regular quasi-distance ρ automatically 
satisfies the inner property and generates a continuous ellipsoid cover Ξ. In addition, the quasi-distance ρΞ, 
induced by Ξ, is equivalent to ρ. This constitutes the main result of the paper.

We start by recalling properties of convex bodies in Rn. A convex body in Rn is a compact convex set 
with nonempty interior. Fritz John [16, p. 202, Theorem III] proved that every convex body in Rn contains 
a unique ellipsoid of maximal volume. The dilate by the dimension n of such ellipsoid contains the original 
convex body, see [3] and [19, Theorem 3.13].

Theorem 4.1. Let K ⊆ Rn be a convex body. Then there exists a unique ellipsoid ξ ⊆ Rn of maximal volume 
such that ξ ⊆ K. Moreover, K ⊆ n · ξ.

Motivated by Theorem 4.1 and the concept of quasiconformal mapping [15] we can generalize the notion 
of convexity.

Definition 4.2. Let Q ≥ 1. We say that a subset K ′ ⊆ Rn is Q-quasi-convex with respect to x ∈ K ′, if there 
exists an ellipsoid ξ ⊆ Rn with center cξ = x such that

ξ ⊆ K ′ ⊆ Q · ξ. (4.20)

By Theorem 4.1, any convex body in Rn is Q-quasi-convex with respect the center of the unique maximal 
volume ellipsoid contained in the convex body, where Q = n. Notice that we do not impose uniqueness in 
the above definition. Namely, for a given set K ′ there could be two different ellipsoids (even of maximal 
volume) satisfying (4.20).
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Definition 4.3. Given a quasi-distance ρ : Rn × Rn → [0, ∞), we say that ρ is quasi-convex if there exists 
Q ≥ 1 such that for any x ∈ Rn and r > 0, the ball

Bρ(x, r) := {y ∈ Rn : ρ(x, y) < r}

is Q-quasi-convex with respect to x. That is, there exists an ellipsoid ξrx with center x such that

ξrx ⊆ Bρ(x, r) ⊆ Q · ξrx. (4.21)

In this case we define the corresponding family of ellipsoids

Ξρ := {ξrx : x ∈ Rn, r > 0}. (4.22)

Lemma 4.4. For any continuous ellipsoid cover Θ, the induced quasi-distance ρΘ given by (3.16) is quasi-
convex.

Proof. For any ball BρΘ(x, r), by Proposition 3.9, there exist two ellipsoids θx,t1 , θx,t2 ∈ Θ and two constants 
d2 ≥ d1 > 0, which depend only on p(Θ), such that θx,t1 ⊆ BρΘ(x, r) ⊆ θx,t2 and

d1r ≤ |θx,t1 | ≤ |BρΘ(x, r)| ≤ |θx,t2 | ≤ d2r.

Since θx,t1 ⊆ θx,t2 , by Theorem 2.1 we conclude that θx,t2 ⊆ |θx,t2 |
|θx,t1 |

θx,t1 ⊆ d2
d1
θx,t1 . Therefore, we have

θx,t1 ⊆ BρΘ(x, r) ⊆ d2

d1
θx,t1 .

This proves that the induced quasi-distance ρΘ is quasi-convex with Q = d2/d1. �
We introduce yet another property of a quasi-distance which will play an important role in our consid-

erations.

Definition 4.5. We say that a quasi-distance ρ on Rn satisfies the inner property if there exist constants 
a = a(ρ), b = b(ρ) > 0 such that for any x ∈ Rn, r > 0 and λ ≥ 1,

aλb(Bρ(x, r) − x) ⊆ Bρ(x, λr) − x. (4.23)

The inner property is stronger than the reverse doubling property [20] since it immediately implies that

anλbn|Bρ(x, r)| ≤ |Bρ(x, λr)| for all λ ≥ 1.

While the inner property (4.23) of ρ is formulated in terms of balls, it can also be equivalently phrased in 
terms of ellipsoids in Ξρ.

Lemma 4.6. Let ρ be a quasi-distance on Rn, which is quasi-convex. Let ξrx be the corresponding ellipsoids as 
in Definition 4.3. Then ρ satisfies the inner property if and only if there exist positive constants a1, b1 > 0
such that for any x ∈ Rn, r > 0 and λ ≥ 1,

a1λ
b1 · ξrx ⊆ ξλrx . (4.24)
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Proof. Since ρ is quasi convex, for every x ∈ Rn and r > 0, there exists an ellipsoid ξrx such that (4.21)
holds. By (4.23), it follows that, for any x ∈ Rn, r > 0 and λ ≥ 1,

aλb(ξrx − x) ⊆ aλb(Bρ(x, r) − x) ⊆ Bρ(x, λr) − x ⊆ Q(ξλrx − x).

Hence, (4.24) holds true with a1 = a/Q and b1 = b. Similarly we can show that (4.24) implies (4.23) with 
a = a1/Q and b = b1. �

The following lemma implies that intersecting ellipsoids in Ξρ of comparable volume have similar shapes.

Lemma 4.7. Let ρ be a quasi-distance which is quasi-convex and 1-Ahlfors-regular. That is, there exists a 
constant c1 ≥ 1 such that

1
c1

r ≤ |Bρ(x, r)| ≤ c1r for all x ∈ Rn, r > 0. (4.25)

Let Ξρ be a family of ellipsoids corresponding to ρ as in Definition 4.3 and let c2 ≥ 1. Suppose that ξ = ξrx, 
η = ξsy ∈ Ξρ, x, y ∈ Rn, r, s > 0, are such that

Bρ(x, r) ∩ η �= ∅ and |η| ≤ c2|ξ|. (4.26)

Then there exists a constant c ≥ 1, which depends only on c1, c2, the triangle inequality constant κ, and the 
quasi-convexity parameter Q, such that η ⊆ c · ξ.

Proof. By the quasi-convexity of ρ, there exists Q ≥ 1 such that

ξ ⊆ Bρ(x, r) ⊆ Q · ξ, η ⊆ Bρ(y, s) ⊆ Q · η. (4.27)

Hence, by (4.25) we have

1
Qnc1

r ≤ |ξ| ≤ c1r and 1
Qnc1

s ≤ |η| ≤ c1s. (4.28)

Combining (4.26), (4.27), and (4.28) we have

s ≤ c3r, where c3 := Qn(c1)2c2.

Since Bρ(x, r) ∩Bρ(y, s) �= ∅, the triangle inequality of ρ, and the quasi-convex property of ρ, implies that

η ⊆ Bρ(y, s) ⊆ Bρ(x, κ(r + 2κc3r)) ⊆ Bρ(x, 3κ2c3r) ⊆ Q · ξ3κ2c3r
x .

By (4.28) we have

|Q · ξ3κ2c3r
x |
|ξ| = |Q|n|ξ3κ2c3r

x |
|ξ| ≤ c := Q2n(c1)23κ2c3.

Since ξ and Q · ξ3κ2c3r
x have the same center, Theorem 2.1 yields

η ⊆ Q · ξ3κ2c3r
x ⊆ |Q · ξ3κ2c3r

x |
|ξ| · ξ ⊆ c · ξ,

which completes the proof of Lemma 4.7. �
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Next we show that the inner property holds automatically for quasi-convex and 1-Ahlfors-regular quasi-
distances.

Theorem 4.8. Let ρ be a quasi-distance on Rn which is quasi-convex and 1-Ahlfors-regular. Then ρ satisfies 
the inner property.

Proof. First, we will show that there exists d = d(ρ) > 1 such that for every x ∈ Rn and r > 0,

d(Bρ(x, r) − x) ⊆ Bρ(x, 2κr) − x. (4.29)

Indeed, let x ∈ Rn and r > 0. Since ρ is Q-quasi-convex, there exists an ellipsoid ξrx ∈ Ξρ such that

ξrx − x ⊆ Bρ(x, r) − x ⊆ Q(ξrx − x),

and for any y ∈ Bρ(x, r) there exists an ellipsoid ξry ∈ Ξρ such that

ξry − y ⊆ Bρ(y, r) − y ⊆ Q(ξry − y).

By (4.28) we have

1
(c1)2Q

≤ |ξrx|
|ξry |

≤ (c1)2Q.

Since Bρ(x, r) ∩ξry �= ∅, by Lemma 4.7, there exists a positive constant c such that ξry ⊆ c ·ξrx. By Lemma 2.4
we have ξry − y ⊆ c(ξrx − x). Hence, by Theorem 2.1 we have

c(ξrx − x) ⊆ |cξrx|
|ξry |

(ξry − y) = cn(c1)2Q(ξry − y). (4.30)

Let d > 1 be such that (d − 1)cn−1(c1)2Q2 = 1. Take any z ∈ d(Bρ(x, r) − x) + x. Let y ∈ Bρ(x, r) be 
such that

z = d(y − x) + x = y + (d− 1)(y − x).

By (4.30) and our choice of d we have

(d− 1)Q(ξrx − x) ⊆ (d− 1)Qcn−1(c1)2Q(ξry − y) ⊆ Bρ(y, r) − y.

Since y − x ∈ Q(ξrx − x), we further deduce that

z = y + (d− 1)(y − x) ∈ y + (Bρ(y, r) − y) = Bρ(y, r).

By the triangle inequality

ρ(z, x) ≤ κ(ρ(x, y) + ρ(y, z)) ≤ 2κr.

This implies that z ∈ Bρ(x, 2κr) and hence (4.29) holds.
Now we can verify the inner property of ρ. Take ε > 0 such that d = (2κ)ε. Let λ ≥ 1. There exists 

� ∈ N0 and

(2κ)� ≤ λ < (2κ)�+1.
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Hence, by (4.29) it follows that

Bρ(x, λr) − x ⊇ Bρ(x, (2κ)�r) − x ⊇ d�(Bρ(x, r) − x) ⊇ d−1λε(Bρ(x, r) − x).

Therefore, the inner property (4.23) holds with a = d−1 and b = ε. �
The main result of the paper shows a 1-to-1 correspondence between equivalence classes of continuous 

ellipsoid covers and quasi-convex, 1-Ahlfors-regular quasi-distances on Rn.

Theorem 4.9. (i) For any continuous ellipsoid cover Θ, the induced quasi-distance ρΘ given by (3.16) is 
quasi-convex and 1-Ahlfors-regular.

(ii) Conversely, for any quasi-convex and 1-Ahlfors-regular quasi-distance ρ on Rn, the corresponding 
family Ξ = Ξρ, given by Definition 4.3, is a continuous ellipsoid cover. Moreover, its induced quasi-distance

ρΞ(x, y) := inf
ξ∈Ξ

{|ξ| : x, y ∈ ξ}, x, y ∈ Rn, (4.31)

is equivalent to the original quasi-distance ρ.

Proof. Part (i) follows by Proposition 3.8 and Lemma 4.4. Moreover, by Theorem 4.8 we can deduce that 
ρΘ has the inner property.

To prove (ii), we first verify that a family Ξρ induced by quasi-distance ρ is a continuous ellipsoid cover. 
By (4.28), there exists a constant c1 > 0 such that for any x ∈ Rn and r > 0,

1
Qnc1

r ≤ |ξrx| ≤ c1r. (4.32)

Therefore, by letting θx, t := ξrx with t = − log2 r, we obtain (3.7) for a1 := 1
Qnc1

and a2 := c1.
To show that Ξρ satisfies the shape condition (3.8), by Lemma 3.3 it suffices to verify (3.10). Consider 

two ellipsoids ξ = ξrx, η = ξsy in Ξρ, where x, y ∈ Rn, r, s > 0, such that ξ ∩ η �= ∅ and |η| ≤ |ξ|. By 
Lemma 4.7, there exists a constant c > 1 such that η ⊆ c · ξ. Hence, by Lemma 2.4, we have

η − y ⊆ c · ξ − x = c(ξ − x). (4.33)

Applying Theorem 2.1 yields

c(ξ − x) ⊆ |cξ|
|η| (η − y) = cn

|ξ|
|η| (η − y).

Thus,

c1−n |η|
|ξ| (ξ − x) ⊆ η − y.

This shows the left-hand side inclusion of (3.10) with a′3 := c1−n and a′4 := 1.
Next we show the right-hand side inclusion of (3.10). By Theorem 4.8 quasi-distance ρ satisfies the inner 

property. Hence, by Lemma 4.6 there exist positive constants a1 and b1 such that (4.24) holds. Note that 
we necessarily have a1 ≤ 1 by letting λ = 1. Assume first that

r

s
> a1

−1/b1 ≥ 1. (4.34)

Then the inner property (4.24) for λ = r/s, implies
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ξsy ⊆ a1λ
b1 · ξsy ⊆ ξλsy = ξry . (4.35)

Hence, ξrx ∩ ξry �= ∅. Moreover, by (4.32)

|ξry | ≤ c1r ≤ (c1)2Qn|ξrx|.

Hence, by Lemma 4.7 applied for c2 = (c1)2Qn, there exists a constant c′ such that that ξry ⊆ c′ · ξrx. 
Combining this with (4.35) and Lemma 2.4 we have

a1

(
r

s

)b1

(ξsy − y) ⊆ c′(ξrx − x). (4.36)

On other hand, by (4.32) we have

|ξrx|
|ξsy|

≤ (c1)2Qn r

s
. (4.37)

Therefore, remembering that ξ = ξrx and η = ξsy, (4.36) and (4.37) imply that

η − y ⊆ ((c1)2Qn)b1 c′

a1

(
|η|
|ξ|

)b1

(ξ − x).

This shows the left-hand side inclusion of (3.10) with a′5 := ((c1)2Qn)b1 c′

a1
and a6 := b1 under the assumption 

(4.34).
Next assume that r/s ≤ a1

−1/b1 . Then, by (4.37)

(
|η|
|ξ|

)b1

≥ a1((c1)2Qn)−b1 .

Combining this with (4.33) implies

η − y ⊆ ((c1)2Qn)b1 c

a1

(
|η|
|ξ|

)b1

(ξ − x).

Again we have deduced the left-hand side inclusion of (3.10) albeit with a′5 := ((c1)2Qn)b1 c
a1

. By Lemma 3.3
we conclude that Ξρ is a continuous ellipsoid cover.

Finally we prove the equivalence of ρ and ρΞ. For every x ∈ Rn and t ∈ R we set θ̃x,t = ξrx, where r = 2−t. 
We have just shown that

Ξρ = {θ̃x,t : x ∈ Rn, t ∈ R}

is a continuous ellipsoid cover.
Take any x �= y ∈ Rn. Let r = 2ρ(x, y) and t = − log2 r. By the quasi-convex property of ρ, there exists 

a constant Q ≥ 1 such that

θ̃x, t = ξrx ⊆ Bρ(x, r) ⊆ Q · ξrx = Q · θ̃x, t.

By Lemma 3.5, there exists a constant c > 0 such that

x, y ∈ Bρ(x, r) ⊆ Q · θ̃x, t ⊆ θ̃x, t−cQ.
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By (3.7), (4.31), and 2−t = r = 2ρ(x, y), it follows that

ρΞ(x, y) ≤ |θ̃x, t−cQ| ≤ a22cQr = a22cQ+1ρ(x, y). (4.38)

On the other hand, by the definition of ρΞ, there exists an ellipsoid ξr̃z ∈ Ξρ, z ∈ Rn, r̃ > 0, such that 
x, y ∈ ξr̃z and |ξr̃z | ≤ 2ρΞ(x, y). Moreover, by the quasi-convexity of ρ,

ξr̃z ⊆ Bρ(z, r̃) ⊆ Q · ξr̃z .

Since x, y ∈ Bρ(z, r̃) and r̃ ≤ c1|Bρ(z, r̃)| (ρ is 1-Ahlfors-regular) we have

ρ(x, y) ≤ κ[ρ(x, z) + ρ(z, y)] ≤ 2c1κ|Bρ(z, r̃)| ≤ 2c1κ|Q · ξr̃z | ≤ 4c1κQnρΞ(x, y). (4.39)

Combining (4.38) with (4.39) yields equivalence of quasi-distances ρ and ρΞ. �
5. Applications and examples

In this section we give applications and examples of quasi-distances illustrating our main result, Theo-
rem 4.9. As a consequence of results about Hardy Hp(Θ) spaces with variable anisotropy associated with 
continuous ellipsoid cover Θ, which were introduced by Dekel, Petrushev, and Weissblat in [12], we deduce 
the following result.

Theorem 5.1. Suppose that ρ is a quasi-convex and 1-Ahlfors-regular quasi-distance on Rn. Then, Rn

equipped with ρ and the Lebesgue measure is a space of homogeneous type for which Hardy Hp(Rn, ρ)
spaces exist for the entire range 0 < p ≤ 1. These spaces admit grand maximal function characterization, 
atomic decomposition, molecular decomposition, and their duals are Campanato spaces. Moreover, there 
exists a class of Calderón-Zygmund singular integral operators which are bounded on Hp(Rn, ρ) spaces for 
0 < p ≤ 1.

To wit Theorem 5.1 we define Hp(Rn, ρ) as the anisotropic Hardy space Hp(Ξρ), where Ξρ is a continuous 
ellipsoid cover corresponding to quasi-distance ρ as in Theorem 4.9. Consequently, Hp(Rn, ρ) = Hp(Ξρ)
enjoys all properties of Hardy spaces with variable anisotropy shown in [1,4,12,13].

Our first example involves a family of ellipses Θ0 := {θx, t : x ∈ R2, t ∈ R} with

θx, t :=
{
z = (z1, z2) ∈ R2 : (z1 − x1)2

σ2
1

+ (z2 − x2)2

σ2
2

≤ 1
}

where semi-axes σ1 and σ2 are given by the following table:

t x2 σ1 σ2

t ≤ 0 R 2− t
2 2− t

2

t > 0 |x2| > 2− t
3 2− t

2 2− t
2

t > 0 2− t
2 < |x2| ≤ 2− t

3 2− 5t
6 1

|x2| 2− t
6 |x2|

t > 0 |x2| ≤ 2− t
2 2− t

3 2− 2t
3

We will show that Θ0 is a continuous ellipsoid cover and give the formula of quasi-norm ρΘ0 induced by 
Θ0. For this we need an elementary lemma.
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Lemma 5.2. Let ai, βi > 0, i = 1, 2, . . . , d, where d ≥ 2. Then the root x > 0 of the equation 
∑d

i=1 aix
βi = 1, 

satisfies x ∼ b := min1≤i≤d a
−1/βi

i . More precisely,

min
1≤i≤d

d−1/βib < x < b.

Proof. For y > 0 define f(y) =
∑

1≤i≤d aiy
βi . It is easy to see that f is strictly increasing and f(x) = 1 <

f(b), which implies that x < b. Since

f

(
min

1≤j≤d
d−1/βj b

)
≤ 1

d

d∑
i=1

ai min
1≤j≤d

1
aj

< 1 = f(x),

we deduce that min1≤i≤d d
−1/βib < x. �

Proposition 5.3. Θ0 is a continuous ellipsoid cover in the sense of Definition 3.1.

Proof. It is obvious that Θ0 satisfies Definition 3.1(i). We only need to show that any two intersecting 
ellipsoids θx, t, θy, t+s ∈ Θ0 satisfy Definition 3.1(ii), where t ∈ R and s ≥ 0. We shall verify two typical 
cases while other cases are similar or trivial. Denote by σ2 the vertical semi-axis of θx, t and by σ′

2 the 
vertical semi-axis of θy, t+s.

Case 1. Suppose that 2−t/2 < |x2| ≤ 2−t/3 and |y2| ≤ 2−(t+s)/2, where t > 0 and s ≥ 0. Then, we have

Mx, t = diag(2−5t/6/|x2|, 2−t/6|x2|), My, t+s = diag(2−(t+s)/3, 2−2(t+s)/3).

By θx, t ∩ θy, t+s �= ∅, |y2| ≤ 2−(t+s)/2, σ2 = 2−t/6|x2|, σ′
2 = 2−2(t+s)/3, |x2| ≤ 2−t/3, t > 0 and s ≥ 0, we 

know that

|x2| ≤ |y2| + σ2 + σ′
2 ≤ 2−(t+s)/2 + 2−t/2 + 2−2(t+s)/3 ≤ 3 · 2−t/2.

From this and |x2| > 2−t/2, it follows that

‖(Mx, t)−1My, t+s‖ = ‖diag(2t/2−s/3|x2|, 2−t/2−2s/3/|x2|)‖ ≤ ‖diag(3 · 2−s/3, 2−2s/3)‖ ≤ 3 · 2−s/3

and

‖(My, t+s)−1Mx, t‖ = ‖diag(2−t/2+s/3/|x2|, 2t/2+2s/3|x2|)‖ ≤ ‖diag(2s/3, 3 · 22s/3‖ ≤ 3 · 22s/3.

Case 2. Suppose that |x2| ≤ 2−t/2 and 2−(t+s)/2 < |y2| ≤ 2−(t+s)/3, where t > 0 and s ≥ 0. Then, we 
have

Mx, t = diag(2−t/3, 2−2t/3), My, t+s = diag(2−5(t+s)/6/|y2|, 2−(t+s)/6|y2|).

By θx, t ∩ θy, t+s �= ∅, |x2| ≤ 2−t/2, σ2 = 2−2t/3, σ′
2 = 2−(t+s)/6|y2|, |y2| ≤ 2−(t+s)/3, t > 0 and s ≥ 0, we 

know that

|y2| ≤ |x2| + σ2 + σ′
2 ≤ 2−t/2 + 2−2t/3 + 2−(t+s)/2 ≤ 3 · 2−t/2.

From this and |y2| > 2−(t+s)/2, it follows that

‖(Mx, t)−1My, t+s‖ = ‖diag(2−t/2−5s/6/|y2|, 2t/2−s/6|y2|)‖ ≤ ‖diag(2−s/3, 3 · 2−s/6)‖ ≤ 3 · 2−s/6
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and

‖(My, t+s)−1Mx, t‖ = ‖diag(2t/2+5s/6|y2|, 2−t/2+s/6/|y2|)‖ ≤ ‖diag(3 · 25s/6, 22s/3)‖ ≤ 3 · 25s/6. �
Proposition 5.4. The quasi-distance ρΘ0 induced by the ellipsoid cover Θ0 satisfies

ρΘ0(x, y) ∼

⎧⎪⎪⎨⎪⎪⎩
|x− y|2 |x− y| ≥ 1 or |x− y| 23 < |x2|,[
(y1 − x1)2 +

√
(y1 − x1)4 + 4(y2 − x2)2

] 3
4 |x− y| < 1 & |x2| ≤ ϕ(x, y),

max{(x1 − y1)
6
5 |x2|

6
5 , (x2 − y2)6|x2|−6} |x− y| < 1 & ϕ(x, y) < |x2| ≤ |x− y|2/3,

where ϕ(x, y) := 2− 3
4

[
(y1 − x1)2 +

√
(y1 − x1)4 + 4(y2 − x2)2

] 3
4 .

Proof. By Proposition 3.10, it suffices to find the formula for

ρ1(x, y) := inf
y∈θx, t∈Θ

|θx, t|.

It is not hard to verify that ellipses in Θ0 are nested, i.e., θx, t1 � θx, t2 for any x ∈ R2 and t1, t2 ∈ R with 
t1 > t2. Using this and the fact that ellipses in Θ0 are closed, we know that ρ1(x, y) equals to the area of 
an ellipse θx, t for some t ∈ R such that y belongs to the boundary of θx, t, i.e., y ∈ ∂θx, t. Equivalently,

(y1 − x1)2

σ2
1

+ (y2 − x2)2

σ2
2

= 1. (5.40)

We shall consider three cases.
Case 1. Suppose that t ∈ R and θx, t is a ball. Since y ∈ ∂θx, t we have

(y1 − x1)2

2−t
+ (y2 − x2)2

2−t
= 1 ⇐⇒ |x− y| = 2− t

2 . (5.41)

By the definition of Θ0, we know this happens if x, y satisfy (5.41) for some t ≤ 0 or for some t > 0 and 
|x2| > 2−t/3. Equivalently, we have either |x − y| ≥ 1 or |x − y| < 1 and |x2| > |x − y| 23 . In either of two 
subcases,

ρ1(x, y) = |θx, t| = π|x− y|2.

Case 2. Suppose that t > 0, σ1 = 2−t/3, and σ2 = 2−2t/3. Since y ∈ ∂θx, t we have

(y1 − x1)2

2− 2t
3

+ (y2 − x2)2

2− 4t
3

= 1. (5.42)

This is equivalent to |x − y| < 1 and |x2| ≤ 2− t
2 , where

2− t
2 = 2− 3

4

[
(y1 − x1)2 +

√
(y1 − x1)4 + 4(y2 − x2)2

] 3
4 =: ϕ(x, y).

Therefore, in this case,

ρ1(x, y) = |θx, t| = π2−t = π[ϕ(x, y)]2.
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Case 3. Suppose that t > 0, σ1 = 2−5t/6/|x2|, and σ2 = 2−t/6|x2|. Since y ∈ ∂θx, t we have

(y1 − x1)2

[2− 5t
6 |x2|−1]2

+ (y2 − x2)2

[2− t
6 |x2|]2

= 1.

Let a = (y1 − x1)2|x2|2, b = (y2 − x2)2/|x2|2, and z = 2t/3. Since Case 3 is complementary to Cases 1 and 
2, we necessarily have |x − y| < 1, ϕ(x, y) < |x2| ≤ |x − y|2/3, and az5 + bz = 1.

Since a, b > 0 and z > 1, by Lemma 5.2, we have

z = 2 t
3 ∼ min{(x1 − y1)−

2
5 |x2|−

2
5 , (x2 − y2)−2|x2|2}.

Thus, we have

ρ1(x, y) = |θx, t| = π2−t ∼ max{(x1 − y1)
6
5 |x2|

6
5 , (x2 − y2)6|x2|−6}.

Combining Cases 1–3 with (3.19) shows Proposition 5.4. �
By Theorems 4.8 and 4.9 we deduce that ρΘ0 is quasi-convex and 1-Ahlfors-regular quasi-distance which 

satisfies the inner property. However, these properties are far from obvious from the formula for ρΘ0 in 
Proposition 5.4

Next we will give an example of a quasi-convex quasi-distance ρ, which is not 1-Ahlfors-regular, but 
which nevertheless generates a continuous ellipsoid cover. It will be convenient to relax the assumption of 
symmetry of quasi-distance in Definition 3.7 by the condition ρ(x, y) ≤ Cρ(y, x) for any x, y ∈ Rn, see 
[18, Section I.2.4]. This formally weaker condition implies that ρ(x, y) ∼ ρ(y, x). Hence, its symmetrization 
[ρ(x, y) + ρ(y, x)]/2 is a quasi-distance in the sense of Definition 3.7, albeit for (possibly) increased triangle 
constant κ.

The following example can be found in the monograph of Stein [18, Section I.2.6]. It is merely the 
simplest example of general class of balls and metrics studied by Nagel, Stein, and Wainger [17]. Let k be 
a non-negative integer and, for any x ∈ R2 and δ > 0, let

Bk(x, δ) := {y ∈ R2 : |x1 − y1| < δ, |x2 − y2| < max{δk+1, |x1|kδ}}. (5.43)

Then balls {Bk(x, δ) : x ∈ R2, δ ∈ (0, ∞)} are a natural family of balls associated with the vector fields 
X1 := ∂/∂x1 and X2 := xk

1∂/∂x2. That is, y ∈ Bk(x, δ) if one can join x to y along a path whose velocity 
vector at any point is of the form a1X1 + a2X2, with |a1| ≤ 1 and |a2| ≤ 1, in elapsed time � δ. The balls 
Bk(x, δ) can be equivalently defined as Bρk

(x, δ) := {y ∈ R2 : ρk(y, x) < δ}, where

ρk(y, x) =
{

max{|y1 − x1|, min{|y2 − x2|1/(k+1), |y2 − x2|/|x1|k}} if x1 �= 0,
max{|y1 − x1|, |y2 − x2|1/(k+1)} if x1 = 0.

(5.44)

Proposition 5.5. Let k be a non-negative integer and let ρk be as in (5.44). Then ρk is a quasi-distance which 
is quasi-convex and satisfies the inner property, but ρk is not 1-Ahlfors-regular.

Proof. It is not difficult to check that ρk is equivalent to the metric associated with vector fields X1 and 
X2, see [17, Definition 1.1]. That is, the distance between x and y is the infimum of travel times between x
and y along paths whose velocity vector at any point is of the form a1X1 +a2X2, with |a1| ≤ 1 and |a2| ≤ 1. 
By (5.43) any ball Bρk

(x, δ) is actually a rectangle. Hence, ρk is quasi-convex with Q =
√

2. Moreover, for 
any λ ≥ 1, δ > 0 and x ∈ R2, we have
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λ (Bρk
(x, δ) − x) =

{
(y1, y2) : |y1| < λδ, |y2| < λmax{δk+1, δ|x1|k}

}
(5.45)

⊆
{
(y1, y2) : |y1| < λδ, |y2| < max{(λδ)k+1, λδ|x1|k}

}
= Bρk

(x, λδ) − x.

Hence, ρk satisfies the inner property as in Definition 4.5 with a = 1 and b = 1. By (5.43) we have

|Bρk
(x, δ)| = 4δ2 max{δk, |x1|k}. (5.46)

Hence, the Lebesgue measure is not 1-Ahlfors-regular with respect to ρk. �
In spite of Proposition 5.5, one can associate with ρk a continuous ellipsoid cover. By the quasi-convexity 

of ρk we can consider family of ellipsoids Ξρk
= {ξrx : x ∈ Rn, r > 0} as in Definition 4.3

ξrx ⊆ Bρk
(x, r) ⊆ Q · ξrx.

For any x ∈ Rn and t ∈ R define

θx, t = ξr(t)x , where r(t) = sup{r > 0 : |ξrx| ≤ 2−t}. (5.47)

It follows from (5.43) and (5.47) that Θ = {θx, t : x ∈ Rn, t ∈ R} satisfies property (i) in Definition 3.1. It 
takes considerably more effort to show that Θ satisfies the shape condition (ii) using Lemma 3.3. Conse-
quently, the Hardy space Hp(Rn, ρk), which corresponds to ellipsoid cover Ξρk

, satisfies the conclusions of 
Theorem 5.1. We leave details to an interested reader.
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