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1. INTRODUCTION

In 1940, Ulam [16] had raised the following question: Under what
conditions does there exist an additive mapping near an approximately
additive mapping?

In 1941, Hyers [4] proved that if f: 1V — X is a mapping satisfying

If(x +y) = f(x) —f(»)ll< 8
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for all x,y € V, where V and X are Banach spaces and & is a given
positive number, then there exists a unique additive mapping 7: V' — X
such that

If(x) = T(x)[ <8

for all x € V. Throughout the paper, we denote by X a Banach space.
In 1978, Rassias [11] showed a generalization of the result of Hyers in
the following theorem:

THEOREM 1.1. Let V be a normed space and let f: V — X be a mapping
such that f(tx) is continuous in t for each fixed x. Assume that there exist
0 >0 and p < 1 such that

FCx +y) = f(x) = F) I < o(lxll” +1Iyl17)

for all x,y € V \ {0}. Then there exists a unique linear mapping T: V — X
such that

I17Cx) = F(0) | < —lel

forall x € V \ {0}.

Gajda [1], following the same approach as in Rassias [11], got the result
for the case p > 1. However, it was verified that the result for the case
p = 1 does not hold (see [1, 15]). Recently, Gayruta [2] also obtained a
further generalization of the Hyers—Rassias theorem (see also [3, 8, 10,
12-14]).

The authors [9] obtained the Hyers—Ulam—Rassias stability of the
Jensen equation in the following theorem.

THEOREM 1.2. Let V be a normed space and let f: V — X be a mapping.
Assume that there exist § > 0 and p # 1 such that

‘Pdfgl)—ﬂx)—ﬂywsoﬂmw+ﬂﬂﬂ

forallx,y € V \ {0}. Then there exists a unique additive mapping T: V — X
such that
0(3 + 37)
— _ p
(o) = T(x) = £(O) | 5 =5 =5l
forall x € V \ {0}.

In this paper, using the ideas from the papers of Hyers [4], Rassias [11],
and Gévruta [2], we prove a generalization of the stability of the Pexider
equation.
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THEOREM 1.3. Let V be a normed space and let f,g,h: V — X be
mappings. Assume that there exist 6 > 0 and p # 1 such that

IFCx +y) —g(x) = h(y) I < o(ClIxl” + lIyll”)

forall x,y € V \ {0}. Then there exists a unique additive mapping T: V — X
such that
40(3 + 37)
— _ p
) = 7(x) = 50| = Szl

for all x € V \ {0}.

2. STABILITY IN THE CASE p <1

We denote by G an abelian group such that there does not exist x # 0
with 2x = 0 or 3x = 0. Let E be a subset of G such that nx € for any
integer n and for all x € E. We also denote by ¢: E \ {0} X E \ {0} —
[0,0) a mapping such that

o(x,y) = k¥037kg0(3kx,3ky) < o (1)

for all x,y € E \ {0}. Tue authors [9] obtained the following lemma.

LemMmA 2.1. Let f: E — X be a mapping such that

lr(552) - 10 5| = e

forall x,y € E \ {0} with (x + y)/2 € E. Then there exists a unique map-
ping T: E — X such that

T(x+y)=T(x)+T(y) forallx,y € Ewith x+y €L,
|£(x) = T(x) — FO) ] <37 (#(x, —x) + $(~x,3x))
forallx € E \ {0},
and

lim &) _ T(x) forx € E.

n—ow 3"

From Lemma 2.1, we can modify the results of [3] and [7] in the
following theorem.
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THEOREM 2.2. Let f, g, h: E — X be mappings such that
IF(x +y) —g(x) =y < ¢(x.y) (2)

forallx,y € E \ {0} with x + y € E. Then there exists a unique mapping T
2E — X such that

T(x+y)=T(x)+T(y) forallx,y € 2E withx +y € 2E, (3)
If(x) = T(x) = f(O)]l

17 _(x —x (=X x (x x 5 -x —x
—|ol=,—|+¢|l—,=| + + —
S3“’(2’2) q"(2’2) g"(2 2) q"(2 2)

e R

+o

t e

for x € 2E \ {0} and
fG"x) o g(3"x) . h(3"x)
= lim =1

m = = l1m
now 3" noe 3" now 30

=T(x) forx € 2E,

(5)
where 2E = {2x|x € E}.
Proof.  From (2), we get

2r(552) -5 -5
<l —elz) oG55 - ol5) ()]
el =a(3) =alz) | lror el 3) =4[]
<el33)+el3 3] rel53) - el53)

for all x,y € 2E \ {0} with (x + y)/2 € 2E. Let

X y y X X X y y
=ol=, 2 +olz, = | +o|lz. 2|+ o[,
(%) “’(2’2) ‘0(2’2) “’(2’2) ‘0(2’2)

forall x,y € 2E \ {0}.

From Lemma 2.1, there exists a unique mapping T: 2E — X satisfying (3),
(4), and

. f(3"x)
lim —

n—owo 3

=T(x) for x € 2F. (6)
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Let x € 2E \ {0}. Replacing x by 3"x and y by 3"x in (2), we get

‘f(3”x + 3"x) B g(3"x) + h(3"x)
3n

< ?90(3"x,3”x). (7)

Taking the limit in (7), we obtain

im SO RO o o 8)

n—o 3”

from (1), (3), and (6). Replacing x by 3"*'x and y by 3"x and dividing 3"
on both sides, the inequality (2) implies

‘ F(3" ' +3"x) (3" 'x) + h(3"x)
3" 3"

1
<3 @(3""'x,3"x). (9)

Replacing x by 3"x and y by 3"*!x and dividing 3 on both sides, the
inequality (2) implies

‘ f(3"x + 3" ') g(3"x) + h(3" %)
- |

| 1
< —¢(3"x,3""x). (10

From (9) and (10),

Hg(S”“x) —h(3""'x)  g(3"x) — h(3"x)|
3" - 3"

1 1
< Ego(S”“x,S”x) + ?¢(3”x,3”“x).
Let £ > 0 be given. Since
o 1 n+1 n n n+1 ~ ~
Z 3—(90(3 x,3"x) + ¢(3"x,3""'x)) = ¢(3x,x) + §(x,3x) < oo,
there exists M > 0 such that
1 ) . . .
§(¢(31+1x,31x) + ¢(3x,3/"'x)) <& forallj>M. (11)

On the other hand, there exists M’ > M such that

g(3Mx) — h(3Mx)
3 <eg

(12)
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From (11) and (12), we obtain

H g(3'x) - h(3’x)

3
Hg(3MX) — h(3"x)
< .
3i
j—-M—-1 g(3M+k+1x) _ h(3M+k+1x) g(3M+kx)h(3M+kx)|
+ kgo 3 k-M3M+k - 3i—k-M3M+k |
1 |lg(3Mx) —n(3Mx)|| ~M-1 1
< 5w 7 EO A=
1 1
—e+ —e<
< 38 28 &

for all j > M'. Hence we have

. g(3"x) 3—nh(3"x) o (13)

li

n—w

By (8) and (13), we conclude that

g3 (')

im im
n—owo 3" n—owo 3"

=T(x).

THEOREM 2.3. Let V be a vector space and let E be a subset of V
satisfying the following conditions:
(1) meEforallx €eEand|r|l =1,

(i) if x is a nonzero element of V, then there exists n, € N such that
n.x €k,

(iii) 0 € E.
Let f, g, h: E — X be mappings such that

f(x +y) —g(x) —h(¥) ] < ¢(x,y)

for all x,y € E \ {0} with x + y € E. Then there exists a unique additive
mapping T: V — X satisfying (4) and (5).

Proof. By the conditions (i) and (iii), we get a unique mapping T
2F — X satisfying (3), (4), and (5) in Theorem 2.2. If x € V, there exists
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an n, € N such that n,x € 2E by the condition (ii)). We can define a
mapping 7: V' — X by
- T'(x) for x € 2E,
(x) = n;'T'(n,x) for x & 2E.

If x,y € V, we can choose an n € N such that nx, ny, and n(x + y) € 2E
by the conditions (i) and (ii). From this, we get

IT(x +y) = T(x) = T(»)
=n YT (n(x +y)) = T(nx) = T(ny)| = 0.
This completes the proof. |
Applying Theorem 2.3, we obtain Corollary 2.4.

COROLLARY 2.4. Let V be a normed space and let E = {x € V: ||x|| > a}
U {0} for a fixed a = 0. Let f, g, h: E = X be mapping such that

f(x +y) —g(x) —h(¥) ] < ¢(x,y)

for all x,y € E \ {0} with x +y € E. Then there exists a unique additive
mapping T: V — X satisfying (4) and (5).

The following corollary is a generalization of [6, Theorem 1].

COROLLARY 2.5. Let V be a normed space. For a fixed a with 0 < a < 3,
let : (a,©) - R™ be a function such that

@ Pts) < @ip(s) forall t,s > a, and
) ¢3)/3 < 1.
Let f, g, h: V — X be mappings such that
IF(x +y) —g(x) = h() [l < gllxl) + ¢ (lyl)
forall x, y with || x||, lyll > a.
Then there exists a unique additive mapping T: V — X such that
129 (llx/2l) + 4 (I3x/21)
3-4(3)
forall x € Vwith ||x|| > 2a.

Proof. Let E={xe€V: |lx||>a} U{0} and let o(x,y) = ¢(|lx|) +
y(lylD) for all x,y € E \ {0}. Then we get

IF(x) = T(x) = f(O) ] <

@(x,y) = ) 37"%(3"x,3"y)
n=0
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IA

5 (6(3)/3)" (w(lIxl) + w(lyl))
n=0

bl + wsl)
()3

from (1) and (ii). Applying Corollary 2.4, there exists a unique additive
mapping T: V' — X such that

12¢(llx/20) + 4y (13x/21l)
3-9(3)

If(x) = T(x) = £(0) | <

for all x € V with ||x|]| > 2a. |}

COROLLARY 2.6. Let V be a normed space. Let p <1 and 0 <a < 3.
Let f, g, h: V — X be mappings such that

[F(x +y) —g(x) = h(y) | < llxl” +1Iyll?
forallx,y € Vwith |||, llyll > a.

Then there exists a unique additive mapping T: V — X such that

lF(x) = T(x) = (O < %nxnp forall x € V with || x|l > 2a.

Proof. Define i: (a,2) = R* by ¢(¢) = t? and apply Corollary 2.5. |

3. STABILITY IN THE CASE p > 1

Let ¢: E N\ {0} X E \ {0} - [0,) be a mapping such that

=]

d(x,y) = Y 3%(3 7 x,37Fy) <
k=0

for all x, y € E \ {0}. The authors [9] proved the following lemma.

LeEmMA 3.1.  Let V be a vector space and let E be a subset of V satisfying
the following conditions:

() meEforalxeEand|rl <1,

(i) if x is a nonzero element of V, there exists n € N such that
-1
n_x €E.
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Letf: E - Xbea mapping such that
252 1) = 10| = ()

for any x,y € E \ {0} with (x +y)/2 € E. Then there exists a unique
additive mapping T: V — X such that

IF(x) = T(x) = fO) | < (37 'x,37'(—x)) + &(37'(—x), x)
for all x € E \ {0} and
T(x) = lim 3'(f(37"x) = (0)).

THEOREM 3.2. Let V be a vector space and let E be a subset of V
satisfying the following conditions:

(1) meEforallx €sEandlr| <1,

(i) if x is a nonzero element of V, there exists n, € N such that
n;'x eE.

Let f, g, h: E — X be mappings such that
IF(x +y) = g(x) =h(y)[ < &(x,y) (14)

for all x,y € E \ {0} with x + y € E. Then there exists a unique additive
mapping T: V — X such that

IF(x) = T(x) = £(0) |
<32 o34 3l )
i3]z 7)ol ) (19
for all x € E \ {0} and
nli_1)113”(f(3‘”x) - f(0)) = T(x) forx € E. (16)

Proof From (14), we get

(55 - 0 - 50|

|57 -(5) —h(ﬁ)H+Hf (57 =+l3) )]

oo =slz) =4+l =+l3) G

|
<ol33)+ (x) ol33)+ol53)
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for all x,y € E \ {0} with (x + y)/2 € E. From Lemma 3.1, there exists a
unique mapping 7: V' — X such that f satisfies (15) and (16).

Remark. 1If ¢ is defined on E X E, then we can replace x by 0 and y
by 0 and the inequality (14) implies

13"(£(0) —g(0) = h(0)) | < 3"(0,0).
Taking the limit in the above, we obtain
lim 37 £(0) ~ g(0) — k()] = 0.
Hence,
£(0) =g(0) + A(0).
Replacing x by 37"x and y by 0, the inequality (14) implies
13"(£(37"x) = f(0)) = 3"(8(37"x) + h(0) = f(0))]|
< 3%%(37"x,0) (17)
for x € E. Taking the limit in (17), we obtain

’11i_r)r:c3”(g(3*”x) -g(0)) =T(x) for x € E.

Similarly, we obtain

lim 3"(h(37"x) — h(0)) = T(x) for x € E.

n—ow

COROLLARY 3.3. Let V be a normed space and let E = {x € V" ||x|| < a}
for a fixed a > 0. Let f, g, h: E — X be mappings such that

[F(x +y) —g(x) = h(¥) | < &(x,y)

for all x,y € E \ {0} with x + y € E. Then there exists a unique additive
mapping T: V — X such that

F(x) = T(x) = £(0) |
<d(5 <)+ o5 5) ol
~( =X X ~(X —X
R R s
for all x € E \ {0}.
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Proof. Apply Theorem 3.2.

COROLLARY 3.4. Let V be a normed space and let E = {x € V: ||x|| < a}
for a fixed a > 3. Let a function {: (0,a) — R™ satisfy

@ ¢ls) = P(DY(s) forall 0 <t,s < aand
() ¢(3)/3> 1.

Let f, g, h: V — X be mappings such that

IF(x +y) = g(x) = h(y)ll < w(llxl) + g (llylD)

forallx,y € E \ {0}. Then there exists a unique additive mapping T: V — X
such that

124 (llx/6l) + 4y (llx/2l)
1=3/¢(3)
forallx € E \ {0}.

IF(x) = T(x) = ()| <

Proof.  Let ¢(x,y) = ¢(llxID + ¢(lylD for all x,y € E \ {0}. We get

b(x,y) = X 3$(37"x,37"y)
n=0

i 3" (B "xll) + ¢ (I3~ "yl))
n=0

IA

¥ (3/83)" ((lel) + w(Iol))

g(llxll) + ¢ (liyl)
< ©
1=3/4(3)

from (i) and (ii). Applying Corollary 3.3, the proof is completed. |

COROLLARY 3.5. Let V be a normed space. Let p > 1 and a > 3. Let
f, g, h: V — X be mappings such that

[F(x +y) —g(x) = h(y)| < llxl” +1Iyll”
forallx,y with 0 <l|lx|,|lyll <a.
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Then there exists a unique additive mapping T: V — X such that

10.

11.

12.

13.

14.

15.

4(37 + 3)

lF(x) = T(x) = £(0)l < mllﬁdlp

forallx with 0 <l|lx|l <a.
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