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Abstract

In this paper, we determine the homotopy type of the coefficient body of Bell represent
of non-degeneraten-connected planar domains withn � 3. Also, by considering the isomorphis
classes of rational functions, we get the precise number of those corresponding to Bell represe
with same set of critical values. Further, thecase of those with the same set of critical points
discussed.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, anon-degeneraten-connected planar domainis a subdomainΩ of the
Riemann spherêC such thatĈ − Ω consists of exactlyn connected components each
which contains more than one point. We also assume thatn � 2.

Then we know that every suchΩ has a canonical representation as in the follow
theorem, which is called aBell representationof it.

* Corresponding author.
E-mail addresses:mjeong@suwon.ac.kr (M. Jeong), tanig@kusm.kyoto-u.ac.jp (M. Taniguchi).

1 This work was supported by Grant R04-2003-000-10045-0 from the Korea Science and Engin
Foundation.
0022-247X/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2004.03.043



M. Jeong, M. Taniguchi / J. Math. Anal. Appl. 295 (2004) 620–632 621

ng
onsists
the

e

a

r the
Theorem 1.1 [6]. Every non-degeneraten-connected planar domain withn � 2 is mapped
biholomorphically onto a domainWa,b defined by{

z ∈ C

∣∣∣
∣∣∣∣∣z +

n−1∑
k=1

ak

z − bk

∣∣∣∣∣ < 1

}

with suitable complex vectorsa = (a1, a2, . . . , an−1) andb = (b1, b2, . . . , bn−1).

This theorem is considered as a natural generalization of the classical Riemann mappi
theorem for simply connected planar domains. Importance of such representations c
in such a fact that every domainWa,b has algebraic kernel functions. To be precise,
function

fa,b(z) = z +
n−1∑
k=1

ak

z − bk

is a proper holomorphic mapping fromWa,b onto the unit discU which is algebraic. Henc
Bell’s result in [1,2] implies the following

Proposition 1.2. Every non-degeneraten-connected planar domain is biholomorphic to
domain with algebraic Bergman kernel and algebraic Szeg˝o kernel.

Here it is important to know the locus of the complex vectors(a,b) which correspond
to non-degeneraten-connected planar domains.

Definition 1.3. For everyn � 2, letBn in C2n−2 be the set of all complex vectors

(a,b) = (a1, a2, . . . , an−1, b1, b2, . . . , bn−1)

in C2n−2 such that the corresponding domains

Wa,b =
{

z ∈ C

∣∣∣
∣∣∣∣∣z +

n−1∑
k=1

ak

z − bk

∣∣∣∣∣ < 1

}

are non-degeneraten-connected planar domains.
We callBn thecoefficient bodyfor non-degeneraten-connected canonical domains.

In this paper, we will investigate the geometric structure ofBn.

2. A modified representation

To clarify the structure of the coefficient body, it is more convenient to conside
following modification. In the sequel, we assume thatn > 2, sinceB2 andB∗

2 are explicitly
known (cf. [7]).
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Definition 2.1. We set

B∗
n = {

(a1, . . . , an−1,b) | (a2
1, . . . , a2

n−1,b
) ∈ Bn

}
,

and call it themodified coefficient body.

Clearly,B∗
n is contained in(

C
∗)n−1 × F0,n−1C,

where

F0,n−1C = {
(z1, . . . , zn−1) ∈ C

n−1 | zj �= zk if j �= k
}
.

Also it is invariant under the symmetry

Sk : (a1, . . . , ak, . . . , an−1,b) �→ (a1, . . . ,−ak, . . . , an−1,b)

of C2n−2 for everyk. And Bn can be identified with the quotient space ofB∗
n by the action

of the groupG = 〈S1, . . . , Sn−1〉 generated by these symmetries. ThusB∗
n is 2n−1 sheeted

holomorphic covering ofBn with the covering transformation groupG.
Next, note thatB∗

n is circular in the following sense.

Proposition 2.2. For every(a,b) ∈ B∗
n and everyθ ∈ R, eiθ (a,b) ∈ B∗

n.

Proof. If (a,b) ∈ B∗
n, then letting

ga,b(z) = z +
n−1∑
k=1

a2
k

z − bk

,

W∗
a,b = {

z ∈ C | ∣∣ga,b(z)
∣∣ < 1

}
is a non-degeneraten-connected domain. Hence

W∗
eiθ a,eiθ b =

{
z ∈ C

∣∣∣
∣∣∣∣∣z +

n−1∑
k=1

(eiθak)
2

z − eiθbk

∣∣∣∣∣ < 1

}
= {

z ∈ C | ∣∣eiθga,b
(
e−iθ z

)∣∣ < 1
}

= eiθW∗
a,b,

which is biholomorphic toW∗
a,b, is a non-degeneraten-connected planar domain.�

Another important property is “star-shapedness” ofB∗
n.

Proposition 2.3. For every(a,b) ∈ B∗
n and every0 < r � 1, r(a,b) ∈ B∗

n.

Proof. Let (a,b) ∈ B∗
n, andga,b(z) be as in the previous proof. And for every 0< r < 1,

set

Wr
a,b = {∣∣ga,b(z)

∣∣ < 1/r
}
.

It containsW∗
a,b. And for every connected componentF of the preimageg−1

a,b(Er) of Er =
{w ∈ C | |w| � 1/r}, ga,b(z) gives a homeomorphic map ofF ontoEr . SinceEr contains
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more than a point, so does eachF . HenceWr
a,b is also a non-degeneraten-connected

domain.
SincerWr

a,b is biholomorphic toWr
a,b, rWr

a,b is also non-degeneraten-connected do
main. Furthermore, since

rga,b(z/r) = z +
n−1∑
k=1

(rak)
2

z − rbk

= gra,rb(z),

W∗
ra,rb = rWr

a,b is a non-degeneraten-connected domain and thereforer(a,b) ∈ B∗
n. �

We now have the following property ofB∗
n andBn.

Theorem 2.4. B∗
n and henceBn are domains and have the same homotopy type as tha(

S1)n−1 × F0,n−1C.

Corollary 2.5. The modified coefficient bodyB∗
n is a circular domain homeomorphic toBn.

Remark 2.6. The fundamental group ofF0,n−1C is called thepure braid group, and its
structure is well-known. See, for instance, [3].

The above theorem follows from the following two lemmas.

Lemma 2.7. The coefficient bodyBn is the set of all(a,b) such that

f ′
a,b(z) = 0

has2n − 2 solutionsc1, . . . , c2n−2 counted with multiplicities such that∣∣fa,b(cj )
∣∣ < 1

for everyj . The setB∗
n is characterized in the same way. In particular,Bn andB∗

n are open
subsets ofC2n−2.

Proof. fa,b(z) has exactly 2n − 2 finite critical pointsc1, . . . , c2n−2, i.e., zeros off ′
a,b(z),

counted with multiplicities, and(a,b) belongs toBn, i.e.,{
z ∈ C | ∣∣fa,b(z)

∣∣ < 1
}

is a non-degeneraten-connected domain if and only if, for every connected componeF

of the preimage

f −1
a,b (E)

of E = {w ∈ C | |w| � 1}, fa,b(z) gives a homeomorphic map ofF ontoE. Hence we have
the first assertion. The case ofB∗

n is similar.
Next, sincecj varies continuously with respect to(a,b), Bn andB∗

n are open subsets o
C2n−2. �
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Next set

ρ(b) = min
j �=k

|bj − bk|.

And for a sufficiently smallε > 0 with ε � 1/(6n), we set

Bε
n = {

(a,b) ∈ C
2n−2 | ρ(b) > 0, |bk| � 1/2, 0 < |ak| � ε

√
ρ(b), 1� k � n − 1

}
.

Note thatρ(b) � 1.

Lemma 2.8. B∗
n has the same homotopy type as that ofBε

n.

Proof. First we show that

Bε
n ⊂ B∗

n.

Suppose that(a,b) ∈ Bε
n. If we set

Ck = {
z ∈ C | |bk − z| = ερ(b)

}
thenz ∈ Ck implies that|z| � 2/3, and

|bj − z| � (1− ε)ρ(b) > ρ(b)/2

for everyj �= k, and hence

∣∣ga,b(z)
∣∣ � |z| +

n−1∑
j=1

∣∣∣∣ a2
j

z − bj

∣∣∣∣ � 2

3
+ ε2ρ(b)

ερ(b)
+ (n − 2)

ε2ρ(b)

ρ(b)/2

= 2

3
+ (

1+ (2n − 4)
)
ε < 1.

On the other hand, if we set

C̃k = {|bk − z| = ∣∣a2
k

∣∣/2
}

then|a2
k |/2 < ε2ρ(b), andz ∈ C̃k implies that

∣∣ga,b(z)
∣∣ �

|a2
k |

|z − bk| − |z| −
∑
j �=k

∣∣∣∣ a2
j

z − bj

∣∣∣∣ � 2− 2

3
− (n − 2)

ε2ρ(b)

ρ(b)/2

= 2− 2

3
− (2n − 4)ε2 > 1.

Thus{
z ∈ C | ∣∣ga,b(z)

∣∣ = 1
}

has a component in{
z ∈ C | ∣∣a2

k

∣∣/2 < |z − bk| < ερ(b)
}
,

andW∗
a,b is disjoint from{|z − bk| � |a2

k |/2}, for everyk, which implies thatW∗
a,b is non-

degenerate andn-connected.
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Next for every(a0,b0) ∈ B∗
n with a0 = (a1,0, . . . , an,0) andb0 = (b1,0, . . . , bn,0), let

�a0,b0 be the ray{
(ra0, rb0) | 0 < r � 1

}
.

Then by Proposition 2.3,�a0,b0 ⊂ B∗
n. Also sinceρ(rb0) = rρ(b0), we conclude that

|rak,0| = r|ak,0| = ε′√ρ(rb0),

where

ε′ = √
r |ak,0|/

√
ρ(b0),

which in turn tends to 0 asr does.
Now, fix anε > 0 with ε � 1/(6n). Then,(ra0, rb0) ∈ Bε

n for every sufficiently smallr.
Hence we can construct a deformation retraction

rε : B∗
n → Bε

n,

by mapping the point(a0,b0) to the nearest point inBε
n along�a0,b0. This retraction is

clearly the identity onBε
n, and we conclude the assertion.�

Here we give typical examples of points inB3. Consider the case that

f (z) = f4a2,4a2,b,−b(z) = z + 4a2

z − b
+ 4a2

z + b

with a, b ∈ C − {0}. Then Lemma 2.7 implies the following theorem.

Theorem 2.9. The complex vector(4a2,4a2, b,−b) belongs toB3 if and only if∣∣b2 + 4a2 + 4a
(
a2 + b2)1/2∣∣ · ∣∣b2 − 2a2 + 2a

(
a2 + b2)1/2∣∣2 < |b|4

where the same value of(a2 + b2)1/2 is taken in each term.

Proof. Sincef ′(z) has 4 roots(
b2 + 4a2 + 4a

(
a2 + b2)1/2)1/2

,

Lemma 2.7 implies that(4a2,4a2, b,−b) belongs toB3 if and only if

∣∣b2 + 4a2 + 4a
(
a2 + b2)1/2∣∣∣∣∣∣12a2 + 4a(a2 + b2)1/2

4a2 + 4a(a2 + b2)1/2

∣∣∣∣
2

= ∣∣b2 + 4a2 + 4a
(
a2 + b2)1/2∣∣∣∣∣∣ (3a + (a2 + b2)1/2)(−a + (a2 + b2)1/2)

b2

∣∣∣∣
2

= ∣∣b2 + 4a2 + 4a
(
a2 + b2)1/2∣∣∣∣∣∣b2 − 2a2 + 2a(a2 + b2)1/2)

b2

∣∣∣∣
2

< 1. �
Example 2.10. Let a = 3/40 andb = 1/10. Sincea andb satisfy the inequality in Theo
rem 2.9,(4a2,4a2, b,−b) belongs toB3. In fact,{

±
√

7
, ±

√
2
i

}

10 20
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is the set of critical points off4a2,4a2,b,−b and|f4a2,4a2,b,−b| < 1 at each critical point.

3. Parametrization as the Hurwitz space

Sometimes, holomorphic functions are parametrized by the set of critical poin
that of the critical values, i.e., the images of critical points. Here we consider the param
trization using the critical values. Such a parametrization is usually considered for
functions in general position. In the sequel, we assume thatn > 2.

Definition 3.1. Let Γ be the set of all points(a,b) of Bn such that the correspondin
rational functionfa,b has a non-simple critical point or has a pair of critical points whos
images are the same. We callΓ thecollision locus.

Then for every point(a,b) in Bn − Γ , the rational functionfa,b has 2n − 2 simple
critical values. We denote the set of simple critical values offa,b by

Sa,b = {α1, . . . , α2n−2},
where, letting{cj }2n−2

j=1 be the set of the simple critical points offa,b, αj = fa,b(cj )

for every j . This set can be considered as a point in the unordered configuration
B0,2n−2C, i.e., the quotient space ofF0,2n−2C by the symmetric groupS2n−2. Moreover
by Lemma 2.7, we see thatSa,b is actually a point of the unordered configuration sp
B0,2n−2U for the unit discU (cf. [3]).

Thus we can define the projection

πS : Bn − Γ → B0,2n−2U

by setting

πS(a,b) = Sa,b.

We have the following theorem about the projectionπS .

Theorem 3.2. The projectionπS is a (2n − 2)!nn−3-sheeted proper holomorphic coverin
of B0,2n−2U for everyn > 2.

Remark 3.3. The number

(2n − 2)!nn−3

n!
is called a Hurwitz number. See, for instance, [5].

First recall that, for every point(a,b) ∈ Bn −Γ , the critical pointsc1, . . . , c2n−2 of fa,b
are the solutions of the algebraic equation

n−1∏
(z − bj )

2

(
1−

n−1∑ ak

(z − bk)2

)
= 0.
j=1 k=1



M. Jeong, M. Taniguchi / J. Math. Anal. Appl. 295 (2004) 620–632 627

al

e
l

s

,

f a
hat
Hencecj moves holomorphically with respect to(a,b). Since so does the imageαj of cj

for eachj = 1, . . . ,2n − 2, the mapπS is holomorphic.
Next we show by the following two lemmas that, for every point S inB0,2n−2U , π−1

S (S)

consists of(2n − 2)!nn−3 points.

Definition 3.4. Themarked Hurwitz space MH0,n(1, . . . ,1) of genus 0 and degreen with
type(1, . . . ,1) and with the ordered poles is the set of all isomorphism classes of ration
functions in general position (i.e., with simple critical values) of degreen such that poles
are simple and ordered. Here we say that two such rational functionsf,g areisomorphic
if there is a Möbius transformationA such that

f = g ◦ A

andA maps poles off to those ofg keeping the order. (Cf. [8].)

Lemma 3.5. Bn − Γ can be identified with the subset MHnU of marked Hurwitz spac
MH0,n(1, . . . ,1), consisting of all isomorphism classes of rational functions whose critica
values are inU , by the mappingι which maps(a,b) to the isomorphism class offa,b.

Proof. By Lemma 2.7, everyf = fa,b with (a,b) ∈ Bn −Γ determines a point inMHnU .
Here we always assume that the order of poles isb1, . . . , bn−1,∞.

Next suppose that(a′,b′) is also inBn − Γ . If g = fa′,b′ is in the isomorphism clas
of f , then there is a Möbius transformationA such that

f = g ◦ A

and sinceA maps poles off to those ofg keeping the order,A fixes∞ and hence is affine
which we write asA(z) = pz + q . Then

z +
n−1∑
k=1

ak

z − bk

= pz + q +
n−1∑
k=1

a′
k

A(z) − b′
k

.

HenceA should be the identity map. This implies that

(a,b) = (
a′,b′),

and henceι is injective.
Finally, for every point P inMHnU , take a representative (a rational function)f in

this class. Then the poles off are simple and ordered. By applying precomposition o
suitable Möbius transformation which sends∞ to a pole if necessary, we may assume t
f has the form

f (z) = az + b +
n−1∑
k=1

ak

z − bk

.

Again by another precomposition of an affine transformation, we may assume thata = 1,
b = 0, i.e.,f = fa,b with some(a,b) in Bn − Γ . Thus ι : Bn − Γ → MHnU is surjec-
tive. �
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Now, fix a point S= {αj }2n−2
j=1 in B0,2n−2U . And fix a set of mutually disjoint cut

(simple smooth arcs)�j from αj to a mutually distinct boundary pointωj of U for everyj .
Here we assume thatω1, . . . ,ω2n−2 are located with this order (with respect to the coun
clockwise direction) on the boundary∂U of U .

Lemma 3.6. The number of points inπ−1
S (S) of S byπS is always

(2n − 2)!nn−3.

Proof. For every point(a,b) in π−1
S (S), fa,b gives a representative of the pointι((a,b))

in MHnU over S. In other words,fa,b gives ann-sheeted branched holomorphic cover
of Ĉ by Ĉ with critical values S and ordered simple polesb1, . . . , bn−1,∞.

Recall thatf = fa,b also gives the branched covering ofU by Wa,b. This covering can
be reconstructed as follows: SetD = U − ⋃2n−2

j=1 �j . Then the preimagef −1(D) consists
of n domainsDk , the order of which is naturally defined as follows: Letγk be the com-
ponent off −1

a,b (∂U) surrounding thekth pole. ThenDk is the component whose bounda
contains the part ofγk which is projected byfa,b onto the subarc of∂U from ω2n−2 to ω1
(which contains noωj ).

Let �k
j be the “slit” onDk over�j (i.e., the part of the boundary corresponding to

preimagef −1(�j ) onDk ) for everyk andj . Then each�k
j is divided by some critical poin

into two arcs, which can be considered as two sides of the “slit”�k
j . And for everyj , there

is a pair, say{Dk(j),Dk′(j)} such that sides of these “slits” are glued “crosswise” al

�
k(j)
j and�

k′(j)
j . (Here two sides of every other “slit”�k

j is glued trivially.) Hence we have
transpositionσj = (k(j)k′(j)) of orderedn sheets at�j when we move counter-clockwis
along∂U for eachj . SinceWa,b has exactlyn boundary components,

σ2n−2 ◦ · · · ◦ σ1

should be the identical permutation. And apply all such gluings as above, we can
struct the branched coveringf : Wa,b → U .

Thus for every(a,b) in π−1
S (S) and with fixed cuts{�j }, we have an ordered factoriz

tion of the identical permutation into 2n − 2 transpositions. And sinceWa,b is connected
such transpositions generate the full symmetric groupSn.

Conversely, for every such an ordered factorization of the identical permutation, w
can construct ann-sheeted branched covering ofĈ by itself, and hence also ofU by an
n-connected domainW , having the set S as simple critical values. ThenW hasn boundary
components, and hence by the argument in the proof of the main theorem in [6], w
find a point(a,b) in Bn − Γ such thatWa,b is biholomorphic toW andfa,b belongs to
the isomorphism class of the covering projection of the above covering. In other w
(a,b) ∈ π−1

S (S). Also it is clear that different such factorizations give different branche
covering structures, and hence different(a,b) in π−1

S (S) by Lemma 3.5.
On the other hand, it is known (cf. [5]) that the number of such (transitive mini

ordered factorizations of the identical permutation on{1, . . . , n} into transpositions is

(2n − 2)!nn−3,

which shows the assertion.�
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Finally, we have

Lemma 3.7. πS is locally biholomorphic, and evenly covered(i.e., for every pointS∈
B0,2n−2U , there is a neighborhoodV of Ssuch that every component ofπ−1

S (V ) is biholo-
morphic toV ).

Proof. Fix a point S inB0,2n−2U and a point(a,b) in π−1
S (S) arbitrarily. Then it is

classically well-known (or can be shown by a standard arguments in the quasicon
deformation theory) that we can find a neighborhoodV of S and a holomorphic functio
φ of V into Bn such that

φ(S) = (a,b)

and for every(a′,b′) in φ(V ), fa′,b′ gives the same factorization of the identical perm
tation asfa,b does. Here ifV is sufficiently small, we can consider the natural bijection
between S and the set S′ of critical values offa′,b′ for every(a′,b′) ∈ φ(V ). And we take
as the “slits”�′

j for S′ the image of�j by a self-diffeomorphism ofU ∪ ∂U which is the
identity outside mutually disjoint simply connected, relatively compact, neighborhoods o
eachαj in U and induces the above bijection between S and S′.

Then from the construction,πS ◦ φ is the identity. And since the number of points
the preimageπ−1

S (S) is a finite constant by above lemma, we conclude thatπS is locally
biholomorphic, and also evenly covered.�

Thus πS gives an unbranched(2n − 2)!nn−3-sheeted, holomorphic covering
B0,2n−2U by Bn −Γ . In particular, it is proper, which completes the proof of Theorem

Example 3.8. In the casen = 3, such ordered factorizations are{
(pq), (pq), (pr), (pr)

}
,{

(pq), (pr), (pr), (pq)
}
,{

(pq), (pr), (rq), (pr)
}
,{

(pq), (pr), (qp), (qr)
}
,

where we can take any bijection of{p,q, r} to {1,2,3}. Hence we have 4! different ordered
(transitive minimal) factorizations of the identical permutations on{1,2,3}.

4. Parametrization by the critical points

We call the set of all points in(C∗)n−1 × F0,n−1C such that the corresponding ration
functionfa,b has a non-simple critical point thenon-simple locus, and we denote it by∆.
Then∆ ⊂ Γ , and for every point(a,b) in (C∗)n−1 × F0,n−1C − ∆, we denote the set o
simple critical points offa,b by

Ca,b = {c1, . . . , c2n−2}.
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This set can be considered again as a point in the unordered configuration spaceB0,2n−2C.
And we can define a holomorphic map

πC :
(
C

∗)n−1 × F0,n−1C − ∆ → B0,2n−2C

by setting

πC(a,b) = Ca,b.

Similarly as in the previous section, we can show the following

Theorem 4.1. For every pointC in B0,2n−2C, there are at most

(2n − 2)!
n!

preimages ofC byπC .

The number
(2n − 2)!
n!(n − 1)!

is called thenth Catalan number. And the theorem can be shown by noting the follow
result.

Lemma 4.2 [4,9]. For every fixedC in B0,2n−2C, there are

(2n − 2)!
n!(n − 1)!

classes of rational functions of degreen which haveC as the set of critical points.

Here two rational functionsf andg are in the same class if there is a Möbius trans
mationA such that

f = A ◦ g.

But in this case, a class as above contains a rational function of the form

f (z) = z +
n−1∑
j=1

aj

z − bj

only if the image of∞ is different from all critical values. And the imageπC(Bn − ∆)

seems to be mysterious.

Example 4.3. If we take{±( 4
√

3/
√

2
)
(1± i)

}
as the set of critical points (withn = 3), we have 2= 4!/(3!2!) different classes determine
by

f1 = f−1,−1,1,−1 (= f−1,−1,−1,1)
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and

f2 = f1,1,i,−i (= f1,1,−i,i ).

But since|f1((
4
√

3/
√

2)(1 + i))| > 1 and|f2((
4
√

3/
√

2)(1 + i))| > 1, for instance, all of
(−1,−1,1,−1), (−1,−1,−1,1), (1,1, i,−i), and(1,1,−i, i) do not belong toB3.

On the other hand, if we take{
±

√
7

10
, ±

√
2

20
i

}
as the set of critical points (withn = 3), we have 2 different classes determined by

f1 = fa,a,b,−b (= fa,a,−b,b) with a = 9

400
, b = 1

10
and

f2 = fa′,a′,b′,−b′ (= fa′,a′,−b′,b′) with a′ = 1

48
, b′ = 1

10

√
7

6
.

We already mentioned that|f1| < 1 at each critical point in Example 2.10. Also|f2| < 1
at each critical point and hence all of(a, a, b,−b), (a, a,−b, b), (a′, a′, b′,−b′), and
(a′, a′,−b′, b′) belong toB3.

Next, the rational function

f (z) = z + 6z − 4

(z − 1)2
,

has{1,−1,2 + √
3,2 − √

3} as critical points. Here sincef (∞) = f (1), the class off
can contain no rational functionfa,b with (a,b) belonging even to(C∗)2 × F0,2C.

Note that there is a natural smooth map ofBn to the (reduced) moduli spaceM0,0,n of a
non-degeneraten-connected planar domain, which is a real 3n − 6 dimensional variety if
n > 2. (Recall that two points(a,b) and(a′,b′) are mapped to the same point ofM0,0,n if
there is a biholomorphic mapF of Wa,b ontoWa′,b′ .)

Hence the preimages of a generic point ofM0,0,n, which we have called aleaf of the
coefficient bodyBn in [7], has a positive real dimension. And Theorems 3.2 and 4.1 im
the following

Corollary 4.4. There is a non-trivial real parameter familyF of Bell representations in a
single leaf such thatF is disjoint fromΓ , and thatπC andπS are injective onF.
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