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Abstract

In this paper, we determine the homotopy type of the coefficient body of Bell representations
of non-degenerate-connected planar domains with> 3. Also, by considering the isomorphism
classes of rational functions, we get the precise number of those corresponding to Bell representations
with same set of critical values. Further, tbase of those with the same set of critical points is
discussed.
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1. Introduction

In this paper, anon-degenerate-connected planar domaiis a subdomain2 of the
Riemann spher@ such thatC — £2 consists of exactly connected components each of
which contains more than one point. We also assumeitba®.

Then we know that every sucf2 has a canonical representation as in the following
theorem, which is called Bell representatiorof it.

* Corresponding author.
E-mail addresseanjeong@suwon.ac.kr (M. Jeong), tanig@kusm.kyoto-u.ac.jp (M. Taniguchi).
1 This work was supported by Grant R04-2003-000-10045-0 from the Korea Science and Engineering
Foundation.

0022-247X/$ — see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2004.03.043



M. Jeong, M. Taniguchi / J. Math. Anal. Appl. 295 (2004) 620-632 621

Theorem 1.1 [6]. Every non-degenerateconnected planar domain with> 2 is mapped
biholomorphically onto a domaiWa, p defined by

!ze@‘z+z }

with suitable complex vectoes= (a1, az, ...,a,—1) andb = (b1, ba, ..., by_1).

Z—bk

This theorem is considered as a natural galieation of the classical Riemann mapping
theorem for simply connected planar domains. Importance of such representations consists
in such a fact that every domaii, , has algebraic kernel functions. To be precise, the
function

fab(Z)—Z+Z —bk

is a proper holomorphic mapping froi, p, onto the unit dis&/ which is algebraic. Hence
Bell’s result in [1,2] implies the following

Proposition 1.2. Every non-degenerateconnected planar domain is biholomorphic to a
domain with algebraic Bergman kernel and algebraic Sdegyfel.

Here it is important to know the locus of the complex vect@d) which correspond
to non-degenerate-connected planar domains.

Definition 1.3. For everyn > 2, letB, in C2'~2 be the set of all complex vectors
(as b) = (alv a21 MR anflv bls b21 L] bl”l*l)

in C2'—2 such that the corresponding domains

z+2 <1}

are non-degenerateconnected planar domains.
We callB,, thecoefficient bodyor non-degenerate-connected canonical domains.

Wab—{ZE(C‘

Z—bk

In this paper, we will investigate the geometric structur&gpf

2. A modified representation

To clarify the structure of the coefficient body, it is more convenient to consider the
following modification. In the sequel, we assume that 2, sinceB, andB3 are explicitly
known (cf. [7]).
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Definition 2.1. We set
B = {(al, .. an_1,b) | (a%, . ..,aﬁ_l, b) € Bn},
and call it themodified coefficient body

Clearly,B} is contained in
(C*)"* x Fou1C,
where
Fon-1C={(z1,...,20-1) € C" | z; # 2 if j #k}.
Also it is invariant under the symmetry
Sri(at,....ak,...,an_1,b)—~ (a1, ..., —ak,...,ap_1,b)

of C2'~2 for everyk. And B,, can be identified with the quotient spaceBjfby the action
of the groupG = (1, ..., Sy—1) generated by these symmetries. TBijss 2'=1 sheeted
holomorphic covering oB,, with the covering transformation group.

Next, note thaB;: is circular in the following sense.

Proposition 2.2. For every(a, b) € B! and eveny € R, ¢! (a, b) € B}.

Proof. If (a, b) € B}, then letting

2

n—1
ai
Z)=z+ E )
ga,b(2) kzlz_bk

ab={z€Cl[gap@] <1}
is a non-degenerateconnected domain. Hence

n—1 (el ay)? _ '
Sraem =12 €C| [+ X | <1 = (2 € Cl | gan(e™2)] < 1)
k=1

_ iOygrx
=e Wa,b’

which is biholomorphic td¥ ), is a non-degenerateconnected planar domain 0
Another important property is “star-shapednessBpf
Proposition 2.3. For every(a, b) e B} and eveny0 <r < 1, r(a, b) € B}.

Proof. Let (a, b) € B}, andga h(z) be as in the previous proof. And for everxOr < 1,
set

Wiy ={|gab@]| <1/r}.

It containsW . And for every connected componenof the preimaggafé(Er) of E, =

s

fweC||w|>1/r}, gap(z) gives a homeomorphic map &éf onto E,. SinceE, contains
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more than a point, so does eagh HenceW, , is also a non-degenerateconnected
domain.

Sincer Wy, is biholomorphic toW, ,, r W, , is also non-degenerateconnected do-
main. Furthermore, since

(rax)?
z—rby

n—1
rga,b(Z/r)zZ‘f‘Z :gra,rb(z):
k=1

W’ b =7 W, is a non-degenerateconnected domain and therefor@, b) € By. O

ra,r

We now have the following property &' andB,.

Theorem 2.4. B} and hencéB,, are domains and have the same homotopy type as that of

(8Y)" ™ x Fon-1C.
Corollary 2.5. The modified coefficient bo@y; is a circular domain homeomorphic &),.

Remark 2.6. The fundamental group dfp ,—1C is called thepure braid group and its
structure is well-known. See, for instance, [3].

The above theorem follows from the following two lemmas.

Lemma 2.7. The coefficient bodB, is the set of alla, b) such that
fap@) =0

has2n — 2 solutionscy, . . ., ¢2,—2 counted with multiplicities such that
| fab(ep)| <1

for everyj. The seB’ is characterized in the same way. In particulBy, andB’ are open
subsets of 22,

Proof. fap(z) has exactly 2 — 2 finite critical pointsc, . .., c2,—2, i.e., zeros offé_b(z),
counted with multiplicities, anda, b) belongs tdB,,, i.e., '

[zeCl|fap(2)| <1}

is a non-degenerateconnected domain if and only if, for every connected compoient
of the preimage

fap(E)

of E ={w e C||w| > 1}, fan(z) gives a homeomorphic map #fonto E. Hence we have
the first assertion. The case®f is similar.

Next, sincec; varies continuously with respect {a, b), B, andB} are open subsets of
C>-2, g
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Next set

b) =min|b; — by|.
p(b) j#lk 1D kl
And for a sufficiently smalk > 0 with ¢ < 1/(6n), we set

B: ={(ab)eC* 2| p(hb) >0, || <1/2, 0<|al <ev/pb), 1<k<n—1}.
Note thato(b) < 1.

Lemma 2.8. B} has the same homotopy type as thaBHf

Proof. First we show that
B; C B;,.
Suppose thata, b) € BY. If we set
Cr={zeC|lbx -zl =ep(b)}
thenz € Cy implies that|z| < 2/3, and
lbj —zl = (L—e)p(b) > p(b)/2
for everyj # k, and hence
a | 2 b £2p(b)

<=z _2
3 o0 T 002

n—1
<
|gab(@)| < |z + ; p—

=§+(l+(2n—4))8<1.

On the other hand, if we set
Ci = {Ibx — 2zl = |ag|/2}

then|a?|/2 < ¢2p(b), andz € Cy implies that

Z— bj

e2p(b)
p(b)/2

la?|
|gab(2)| > B —kbk| -zl = Z
J#k

2
=2—§—(2n—4)82>1.

2
22—5—(”—2)

Thus
{z€Cl|gap(@)| =1}
has a componentin
{zeCllaf|/2 <1z bil <ep®)},

andWQ"b is disjoint from{|z — by| < |a,§|/2}, for everyk, which implies thatW(,;")b is non-
degenerate and-connected.



M. Jeong, M. Taniguchi / J. Math. Anal. Appl. 295 (2004) 620-632 625

Next for every(ag, bg) € B} with ag = (a1,0,...,as,0) andbg = (b1,0, ..., bs,0), let
Lag b € the ray
{(rao, rbp) |0<r < 1}.
Then by Proposition 2.3, b, C Bj;. Also sincep (rbg) = rp(bg), we conclude that

Irag,ol = rlak,ol = &'y p(rbo),

where

&' = /rlakol/v/ p(bo),

which in turn tends to 0 asdoes.
Now, fix ane > 0 withe < 1/(6n). Then,(rag, rbo) € B for every sufficiently smalt.
Hence we can construct a deformation retraction
re B — B,

by mapping the pointap, bg) to the nearest point iB, along{a, n,. This retraction is
clearly the identity orB?, and we conclude the assertiorna

Here we give typical examples of pointsBa. Consider the case that

442 442
= _ =—z4+—+
f(@) = fag2.842.p,—p(2) =2 b 10

with a, b € C — {0}. Then Lemma 2.7 implies the following theorem.

Theorem 2.9. The complex vectada?, 4a2, b, —b) belongs tdB3 if and only if
b2+ 4a? + 4a(a® + b?) 7| - |p? — 202 + 2a(a® + b?) 7 < |bI*
where the same value @2 + 2)1/2 is taken in each term.
Proof. Sincef’(z) has 4 roots
(b? + 4a® + 4a(a® + A2 Y2,
Lemma 2.7 implies tha®a?, 4a2, b, —b) belongs tdB3 if and only if

1202 + 4a(a® + b2 Y2 |?
4a2+4a(a2+b2)1/2
(Ba + (a? + bHV2)(—a + (a® + b?)1/?)
b2
b2 — 2a® + 2a(a® + b?)1/?)
b2

b2 + 4a® + 4a(a® + b?)?|

2
— b2 + 4a? + 4a(a® + b?)?|

2
<1 O

= b2 + 4a® + 4a(a® + b7 ?|

Example 2.10. Leta = 3/40 andb = 1/10. Sincex andb satisfy the inequality in Theo-
rem 2.9,(4a2, 4a2, b, —b) belongs taBs. In fact,
S

*t—, £—i
10 20
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is the set of critical points ofy,2 4,2 5 —, @Nd| f4,2 4425 —,| < 1 at each critical point.

3. Parametrization asthe Hurwitz space

Sometimes, holomorphic functions are parametrized by the set of critical points, or
that of the critical values, i.e., the imagefscatical points. Here we consider the parame-
trization using the critical values. Such a parametrization is usually considered for those
functions in general position. In the sequel, we assumenitka®.

Definition 3.1. Let I" be the set of all pointsga, b) of B, such that the corresponding
rational functionfa , has a non-simple critical point or @ pair of critical points whose
images are the same. We callthecollision locus

Then for every poinia, b) in B, — I, the rational functionfa, has 2 — 2 simple
critical values. We denote the set of simple critical valueg.qf by

Sab={a1,..., 02,2},

where, letting{c;}3";* be the set of the simple critical points gkp, @; = fab(c))
for every j. This set can be considered as a point in the unordered configuration space
Bo.2,—2C, i.e., the quotient space @ 2,—2C by the symmetric groupz,—_>. Moreover
by Lemma 2.7, we see that p, is actually a point of the unordered configuration space
Bo.2,—2U for the unit discU (cf. [3]).

Thus we can define the projection

ns:Bp — ' — Boan—2U
by setting
ws(@,b) = Sap.
We have the following theorem about the projectign

Theorem 3.2. The projectionrs is a (2n — 2)!n"~3-sheeted proper holomorphic covering
of Bo,2,—2U for everyn > 2.

Remark 3.3. The number
(2n —2)n" 3
n!
is called a Hurwitz number. See, for instance, [5].

First recall that, for every poir(g, b) € B, — I'", the critical points1, . .., c2,—2 Of fap
are the solutions of the algebraic equation

n—1 n—1
—bpH?[1= _ —=0.
/l:[l(z bi) ( Z (z— bk)2> 0

k=1
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Hencec; moves holomorphically with respect ta, b). Since so does the imagg of ¢;
foreachj =1,...,2n — 2, the maprgs is holomorphic.

Next we show by the following two lemmas that, for every point Bip,—2U, er’l(S)
consists of2n — 2)!n"~3 points.

Definition 3.4. Themarked Hurwitz space Mg, (1, ..., 1) of genus 0 and degreewith
type(l, ..., 1) and with the ordered poles is the set dfisbmorphism classes of rational
functions in general position (i.e., with simple critical values) of degrseach that poles
are simple and ordered. Here we say that two such rational funcfignareisomorphic
if there is a Mobius transformatiaa such that

f=go0A
andA maps poles of to those ofg keeping the order. (Cf. [8].)

Lemma 3.5. B, — I can be identified with the subset MH of marked Hurwitz space
MHo.» (1, ..., 1), consisting of all isomorphism classef rational functions whose critical
values are inU, by the mapping which mapsa, b) to the isomorphism class g¢f p,.

Proof. By Lemma 2.7, every = fa, with (a, b) € B, — I" determines a pointiMH, U .
Here we always assume that the order of polés js. ., b,_1, co.

Next suppose tha@', b’) is also inB, — I'. If g = fa 1 is in the isomorphism class
of f, then there is a Mobius transformatidnsuch that

f=go0A

and sincedA maps poles of to those ofg keeping the ordei fixesoo and hence is affine,
which we write asA(z) = pz +¢. Then

n—1 ax n—1 a
Z+Z—=pz+q+27k,.
k:lz_bk kzlA(Z)_bk
HenceA should be the identity map. This implies that
(a,by=(a,b),

and hence is injective.

Finally, for every point P inMH, U, take a representative (a rational functioh)n
this class. Then the poles gf are simple and ordered. By applying precomposition of a
suitable Mdbius transformation which sensisto a pole if necessary, we may assume that
f has the form

Ak

n—1
)=az+b+ .
ro=arory
k=1
Again by another precomposition of an affine transformation, we may assume=hat
b=0,i.e., f = fap with some(a,b) in B, — I'. Thus¢:B, — I — MH, U is surjec-
tive. O
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Now, fix a point S= {aj} 2in Bo.2»—2U. And fix a set of mutually disjoint cuts
(simple smooth arcd); froma; to a mutually distinct boundary poiat; of U for every;.
Here we assume that, ..., wz,—> are located with this order (with respect to the counter-
clockwise direction) on the boundasy/ of U.

Lemma 3.6. The number of points ins‘l(S) of Shyryg is always

(2n —2)n" 3,

Proof. For every pointa, b) in g l(S), fab gives a representative of the poiftita, b))
in MH,,U over S. In other wordsfa ,, gives am-sheeted branched holomorphic covering
of C by C with critical values S and ordered simple poles. . ., b,_1, 0o

Recall thatf = fa also gives the branched coveringldtby W, . This covering can
be reconstructed as follows: Sbt=U — UZ” ZE Then the preimagg¢ —1(D) consists
of n domalnsDk, the order of which is naturally defined as follows: Lgtbe the com-
ponent off, b(8U) surrounding the&th pole. ThenDy, is the component whose boundary
contains the part ofx which is projected byfa , onto the subarc adU from wp,—2 t0 w1
(which contains na;).

Let ¢ be the “slit” on Dy over¢; (i.e., the part of the boundary corresponding to the
preimagef ~1(¢;) on Dy) for everyk and;. Then eacht® is divided by some critical point
into two arcs, wh|ch can be considered as two sides of the ‘@litAnd for every;, there
is a pair, say{ Dy (), Dy(jy} such that sides of these “slits” are glued “crosswise” along

Zk(’) andﬁk ) . (Here two sides of every other “sllf" is glued trivially.) Hence we have a

transposmorvj (k(jHk'(j)) of orderedh sheets ai, when we move counter-clockwise
alongaU for eachj. SinceW, , has exactly: boundary components,

O02p-20-+-00]

should be the identical permutation. And apply all such gluings as above, we can recon-
struct the branched coveriry@ Wap — U.

Thus for everya, b) in 7y 1(s) and with fixed cutg¢;}, we have an ordered factoriza-
tion of the identical permutatlon intoi2- 2 transpositions. And sinc#3, p, iS connected,
such transpositions generate the full symmetric gr§up

Conversely, for every such an ordered @attation of the identical permutation, we
can construct an-sheeted branched covering @fby itself, and hence also @f by an
n-connected domaiW, having the set S as simple critical values. Th&masn boundary
components, and hence by the argument in the proof of the main theorem in [6], we can
find a point(a, b) in B, — I" such thatW, p is biholomorphic toW and f,, belongs to
the isomorphism class of the covering projection of the above covering. In other words,
(& b) e nfl(S) Also it is clear that different such famtzations give different branched
covering structures, and hence differéatb) in 7o) by Lemma 3.5.

On the other hand, it is known (cf. [5]) that the number of such (transitive minimal)
ordered factorizations of the identical permutation{én . ., n} into transpositions is

(2n —2)n" 3,

which shows the assertion.J
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Finally, we have

Lemma 3.7. &g is locally biholomorphic, and evenly coveréide., for every pointS €
Bo.2n—2U, there is a neighborhooW of S such that every componentm{l(V) is biholo-
morphic toV).

Proof. Fix a point S inBg2,—2U and a point(a, b) in ns‘l(S) arbitrarily. Then it is
classically well-known (or can be shown by a standard arguments in the quasiconformal
deformation theory) that we can find a neighborhdodf S and a holomorphic function

¢ of V into B, such that

¢S =(ab)

and for every@, b’) in ¢(V), fa 1 gives the same factorization of the identical permu-
tation asf, p, does. Here ifV is sufficiently small, we can coiger the natural bijection
between S and the set &f critical values offy 1y for every(a,b’) € (V). And we take
as the “slits”¢’; for S’ the image of; by a self-diffeomorphism o/ U 9U which is the
identity outside mutually disjoint simplyonnected, relativelyampact, neighborhoods of
eacha; in U and induces the above bijection between S @nd S

Then from the constructioms o ¢ is the identity. And since the number of points in
the preimagergl(S) is a finite constant by above lemma, we conclude thais locally
biholomorphic, and also evenly covereda

Thus 75 gives an unbranched2: — 2)!n"~3-sheeted, holomorphic covering of
Bo.2n—2U by B,, — I'. In particular, it is proper, which completes the proof of Theorem 3.2.

Example 3.8. In the case: = 3, such ordered factorizations are

{(p@). (pq). (pr). (pr)}.
{(pa). (pr). (pr). (pg)}.
{(pa). (pr), (rq), (pr)},
{(p@). (pr). (gp). (gr)},

where we can take any bijectionff, ¢, r} to {1, 2, 3}. Hence we have!4lifferent ordered
(transitive minimal) factorizations of the identical permutationgbr®, 3}.

4. Parametrization by thecritical points

We call the set of all points inc*)n—1 x Fo,»—1C such that the corresponding rational
function f3 b has a non-simple critical point thr®n-simple locusand we denote it by.
ThenA c I', and for every pointa, b) in (C*H"—1 % Fo,-1C — A, we denote the set of
simple critical points offa p by

Cab={c1,...,con-2}.
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This set can be considered again as a point in the unordered configuratiorBspacgeC.
And we can define a holomorphic map

C: ((C*)'“l x Fo-1C — A — Bo2,-2C
by setting
wc(@ b) = Cap.

Similarly as in the previous section, we can show the following

Theorem 4.1. For every pointC in Bg 2,—2C, there are at most
(2n —2)!
n!
preimages o by nc.

The number
(2n —2)!
nl(n —1)!

is called thenth Catalan numberAnd the theorem can be shown by noting the following
result.

Lemma 4.2 [4,9]. For every fixedC in Bg,2,—2C, there are
(2n —2)!
n!'(n —1)!
classes of rational functions of degreavhich haveC as the set of critical points.

Here two rational functiong andg are in the same class if there is a Mébius transfor-
mation A such that

f = A [¢] g.
But in this case, a class as above contains a rational function of the form
aj

n—1
f@=z+
Z Z ;Z—bj

only if the image ofco is different from all critical values. And the image-(B, — A)
seems to be mysterious.

Example 4.3. If we take
(£(V3/V2)1+ i)}

as the set of critical points (with= 3), we have 2= 4!/(3!2!) different classes determined
by

A= fa1-11-1(=f1-1-11)



M. Jeong, M. Taniguchi / J. Math. Anal. Appl. 295 (2004) 620-632 631

and
fo=fivi—i (= fuy-ii).

But since| f1((~/3/+/2)(1+i))| > 1 and| f2((v/3/+/2)(1 +i))| > 1, for instance, all of
(-1,-1,1,-1),(-1,-1,-1,1),(1,1,i,—i),and(1, 1, —i,i) do not belong tds.
On the other hand, if we take

7 2
{ilio, izioi}
as the set of critical points (with = 3), we have 2 different classes determined by
. 9 1
fi= faab—b (= faa—-bp) Witha = 200 b= 10

and

fa=1. (=1, ) witha' = —, 5/ = = |1

2= Ja',a'b,—b \= Ja’'a',—b',b _48’ —10 6»
We already mentioned thafi| < 1 at each critical point in Example 2.10. Al$fp| < 1
at each critical point and hence all &f, a, b, —b), (a,a, —b,b), (a’,a’,b’, —b"), and
(a@’,a’,—b',b") belong toBs.
Next, the rational function

6z—4
(z—1%
has{1, —1, 2+ +/3, 2 — +/3} as critical points. Here sincg(co) = f(1), the class off
can contain no rational functiofy p with (a, b) belonging even toC*)2 x Fo.oC.

f@=z+

Note that there is a natural smooth maBgfto the (reduced) moduli spadéy o , of a
non-degenerate-connected planar domain, which is a real-36 dimensional variety if
n > 2. (Recall that two pointé&a, b) and(a’, b’) are mapped to the same pointMh o , if
there is a biholomorphic map of W, p onto Wy 1y.)

Hence the preimages of a generic pointMi o ,, which we have called keaf of the
coefficient bodyB,, in [7], has a positive real dimension. And Theorems 3.2 and 4.1 imply
the following

Corollary 4.4. There is a non-trivial real parameter family of Bell representations in a
single leaf such that is disjoint fromI", and thatr¢c andng are injective orfF.
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