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Abstract

Traditional proofs of the Pontryagin Maximum Principle (PMP) require the continuous differentiability
of the dynamics with respect to the state variable on a neighborhood of the minimizing state trajectory,
when arbitrary values of control variable are inserted into the dynamic equations. Sussmann has drawn at-
tention to the fact that the PMP remains valid when the dynamics are differentiable with respect to the state
variable, merely when the minimizing control is inserted into the dynamic equations. This weakening of
earlier hypotheses has been referred to as the Lojasiewicz refinement. Arutyunov and Vinter showed that
these extensions of early versions of the PMP can be simply proved by finite-dimensional approximations,
application of a Lagrange multiplier rule in finite dimensions and passage to the limit. This paper general-
izes the finite-dimensional approximation technique to a problem with state constraints, where the use of
needle variations of the optimal control had not been successful. Moreover, the cost function and endpoint
constraints are not assumed to be differentiable, but merely locally Lipschitz continuous. The Maximum
Principle is expressed in terms of Michel–Penot subdifferential.
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1. Introduction

The main goal of this paper is to obtain necessary optimality conditions for the following
problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize ψ0(x(T )) + ∫ T

S
L(t, x(t), u(t)) dt,

subject to dynamic, endpoint and state constraints:
ẋ(t) = f (t, x(t), u(t)), t ∈ [S,T ],
x(S) = x0 ∈ R

n, u(t) ∈ U ⊂ R
m,

ψj (x(T )) � 0, j = 1, . . . , r1,

ϕj (x(T )) = 0, j = 1, . . . , r2,

gj (t, x(t)) � 0, j = 1, . . . , l, for all t ∈ [S,T ].

(P)

Define

Hλ(t, x,u,p) = pTf (t, x,u) − λL(t, x,u).

Let (x̄, ū) be an optimal process to (P). The classical “smooth” Pontryagin Maximum Principle
asserts the existence of numbers λ0 � 0, . . . , λr1 � 0 and γ1, . . . , γr2 , such that, for j = 1, . . . , r1,
λjψj (x̄(T )) = 0, the existence of regular non-negative Borel measures μj supported on the sets
{t ∈ [S,T ]: gj (t, x̄(t)) = 0}, j = 1, . . . , l, and a vector function p(·), such that

p(t) = −
r1∑

j=1

λjDxψj

(
x̄(T )

) −
r2∑

j=1

γjDxϕj

(
x̄(T )

) +
T∫

t

(
Dxf

T(
s, x̄(s), ū(s)

)
p(s)

− λ0DxL
(
s, x̄(s), ū(s)

))
ds −

l∑
j=1

∫
[t,T ]

Dxgj

(
s, x̄(s)

)
dμj (s),

and the maximum condition

Hλ0

(
t, x̄(t), ū(t),p(t)

) = max
u∈U

Hλ0

(
t, x̄(t), u,p(t)

)
a.e.

(see, e.g., [7, Theorem 1, p. 134 and Theorem 1, p. 234]).
Early proofs of the PMP (see, e.g., [4,7,13]) invoked hypotheses that included the condition

x → (
f (t, x,u),L(t, x,u)

)
is continuously differentiable, for all (t, u) ∈ [S,T ] × R

m.

In a series of recent publications, including [14–16], Sussmann has proved and elaborated on the
validity of the PMP when the above condition is relaxed to

x → (
f

(
t, x, ū(t)

)
,L

(
t, x, ū(t)

))
is differentiable at x̄(t), a.e. t ∈ [S,T ]. (1.1)

This formulation contains two modifications. Relation (1.1) requires merely that, for a.e.
t ∈ [S,T ],

(a) f (t, · , u) is differentiable when we “plug in” u = ū(t), and
(b) f (t, · , ū(t)) is differentiable at the one point x̄(t).

(Notice that the statement of the PMP involves x-derivatives of f (t, · , u) only when u = ū(t).)
Many other variants of the PMP have been proved, notably those that give meaning to the above
set of conditions, when the data is not differentiable w.r.t. the x variable (versions of the “non-
smooth PMP”). See, for example, [5,10,16–18].
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The recent work of Arutyunov and Vinter [2] provided a simple, self-contained proof of the
PMP, covering problems with functional equality endpoint constraints and invoking merely hy-
potheses including (a) and (b). Although the results of [2] were not new, their work introduced a
new methodology, based on finite-dimensional approximations, application of a Lagrange multi-
plier rule and passage to the limit.

This paper contains a generalization of the results of Arutyunov and Vinter in two aspects.
Firstly, the obtained results cover problems with state constraints; secondly, they provide a new
version of the “nonsmooth PMP,” since the integrand and the endpoint constraints are not as-
sumed to be differentiable in x.

In this work we assume that the left endpoint of the trajectory is fixed and that the control
constraint set U does not depend on t . However, the obtained results can be carried over to a
more general framework.

An advantage of this new methodology is that it uses inner approximations in a sense that
the trajectories of the approximation problems satisfy the constraints of the original problem
exactly. In this respect it differs from other many other perturbational or finite approximation
schemes (involving constraint relaxation or time discretization [3,6,12,17]), where consideration
is given to trajectories that only approximately satisfy the conditions of the original problem
(outer approximation) and which, to our knowledge, all fail to capture the PMP under hypotheses
including (a) and (b) above, and which allow endpoint equality constraints. Another advantage of
the inner approximations in handling nonsmooth problems is that the robustness of the involved
tools of nonsmooth analysis is not required. This makes possible the use of the “small” non-
robust Michel–Penot subdifferential, which shrinks to a singleton if a function is merely Fréchet
differentiable at the reference point.

Necessary optimality conditions in optimal control problems with nonsmooth functional in-
equality endpoint constraints, where the transversality condition is expressed in terms of a sub-
differential obtained as a dual construction to an upper convex approximation of the directional
derivative (“Pschenichnyi subdifferential”; Michel–Penot subdifferential is its special case), are
discussed in [11].

Let us recall the definitions of local minimizers to (P).

Definition 1.1. Take a feasible process (x̄, ū). We say:

(a) (x̄, ū) is a strong local minimizer for (P) if there exists ε > 0 such that (x̄, ū) minimizes the
cost function over all admissible processes (x,u) satisfying

‖x − x̄‖C � ε,

(b) (x̄, ū) is a weak local minimizer for (P) if there exists ε > 0 such that (x̄, ū) minimizes the
cost function over all admissible processes (x,u) satisfying

‖x − x̄‖C + ‖u − ū‖L∞ � ε,

(c) (x̄, ū) is a Pontryagin local minimizer for (P) if there exists ε > 0 such that (x̄, ū) minimizes
the cost function over all admissible processes (x,u) satisfying

‖x − x̄‖C + meas
{
t ∈ [S,T ]: u(t) �= ū(t)

}
� ε.

The concepts of “Pontryagin local minimizer” and “weak local minimizer” are both less re-
strictive than those of “strong local minimizer.” In [1] an example is given of a Pontryagin local
minimizer which is not a weak local minimizer.
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In this paper we establish necessary optimality conditions for a Pontryagin local minimizer
and a strong local minimizer.

The following notion of differentiability will be employed in this paper.

Definition 1.2. Take a function G : Rm → R
k , a convex set A ∈ R

m and a point ȳ ∈ A. We say
that G is Fréchet differentiable at ȳ relative to A if there exists a k × m matrix DG(ȳ) such that
for every η ∈ A − ȳ

lim
ε↓0, η′A−ȳ→ η

ε−1[G(ȳ + εη′) − G(ȳ)
] = DG(ȳ)η.

If A = R
m, we say that G is Fréchet differentiable at ȳ, consistent with standard usage.

The crucial role in our analysis is played by Lagrange multiplier rule (Theorem 2.10) for
Michel–Penot subdifferential proved by Ioffe in [8] under the assumption that the functions of
interest are defined and Lipschitz continuous in a neighborhood of the reference point. In our
constructions, however, the functions of interest are not defined on a neighborhood and may be
non-Lipschitz. In Section 2 we prove that a function defined on a non-negative orthant in R

n,
differentiable in the origin relative to the non-negative orthant, can be extended to the whole
space with preservation of continuity and differentiability. Furthermore, a careful analysis of
the proof of the Lagrange multiplier rule in [8] shows that the result can also be applied to
compositions of Lipschitz continuous and Fréchet differentiable functions, which may not be, in
general, Lipschitz continuous.

For problem (P) we shall invoke the following hypotheses in which ε is some positive number
and (x̄, ū) is the admissible process of interest:

(H1) f (· , x,u) is measurable for each (x,u) ∈ R
n × R

m and f (t, ·,·) is continuous for each
t ∈ [S,T ].

(H2) There exists k1(·) ∈ L1 such that, for a.e. t ∈ [S,T ],∣∣f (
t, x, ū(t)

) − f
(
t, x̄(t), ū(t)

)∣∣ � k1(t)
∣∣x − x̄(t)

∣∣ for all x ∈ x̄(t) + εB

and f (t, · , ū(t)) is Fréchet differentiable at x̄(t).
(H3) L(· , x,u) is measurable for each (x,u) ∈ R

n × R
m and L(t, · ,·) is continuous for each

t ∈ [S,T ]. L is Lipschitz continuous in x around x̄(t) in the following sense: there exists
k2(·) ∈ L1 such that, for a.e. t ∈ [S,T ],∣∣L(

t, x′, ū(t)
) − L

(
t, x′′, ū(t)

)∣∣ � k2(t)|x′ − x′′| for all x′, x′′ ∈ x̄(t) + εB.

(H4) ψ0, . . . ,ψr1 and ϕ1, . . . , ϕr2 are Lipschitz continuous around x̄(T ).
(H5) For any admissible control u(·) such that meas{t ∈ [S,T ]: u(t) �= ū(t)} � ε there is a

unique corresponding trajectory x(·).
(H6) For each j = 1, . . . l, gj (·,·) and ∇xgj (·,·) are jointly continuous. Furthermore,

gj (T , x̄(T )) < 0 for all j = 1, . . . , l.

Assume, furthermore that either

(i) (x̄, ū) is a strong local minimizer, or
(ii) (x̄, ū) is a Pontryagin local minimizer and (H7) below is additionally satisfied:
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(H7) There exists cf ∈ L1 such that∣∣L(t, x,u)
∣∣, ∣∣f (t, x,u)

∣∣ � cf (t) for all x ∈ x̄(t) + εB, u ∈ U a.e. t ∈ [S,T ].

The main result of the paper is the following theorem; ∂◦ stands for Michel–Penot subdifferential
defined in Section 2.

Theorem 1.3. Assume that the hypotheses above are satisfied. Then there exist:

(a) numbers λ0 � 0, . . . , λr1 � 0 and γ1, . . . , γr2 , such that λjψj (x̄(T )) = 0, j = 1, . . . , r1,
(b) elements x∗

j ∈ ∂◦ψj(x̄(T )), j = 0, . . . , r1, y∗
j ∈ ∂◦ϕj (x̄(T )), j = 1, . . . , r2,

(c) a measurable selection ξ∗(t) ∈ ∂◦
xL(t, x̄(t), ū(t)), t ∈ [S,T ],

(d) regular non-negative Borel measures μj supported on the sets {t ∈ [S,T ]: gj (t, x̄(t)) = 0},
j = 1, . . . , l, and

(λ0, . . . , λr1, γ1, . . . , γr2,μ1, . . . ,μl) �= 0,

(e) a function p(·) satisfying the adjoint equation

pT(t) = −
r1∑

j=0

λjx
∗
j −

r2∑
j=1

μjy
∗
j +

T∫
t

(
pT(s)Dxf

(
s, x̄(s), ū(s)

) − λ0ξ
∗(s)

)
ds

−
l∑

j=1

∫
[t,T ]

Dxg
T
j

(
s, x̄(s)

)
dμj (s), t ∈ [S,T ],

such that there holds the maximum condition

Hλ0

(
t, x̄(t), ū(t),p(t)

) = max
u∈U

Hλ0

(
t, x̄(t), u,p(t)

)
a.e.

For convenience we shall break down problem (P) into three problems:

(P1) with endpoint cost function and endpoint constraints,
(P2) with integral cost function without endpoint constraints,
(P3) with integral cost function, state constraints and without endpoint constraints.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Minimize ψ0(x(T )),

ẋ(t) = f (t, x,u), t ∈ [S,T ],
x(S) = x0, u(t) ∈ U,
ψj (x(T )) � 0, j = 1, . . . , r1,

ϕj (x(T )) = 0, j = 1, . . . , r2;
(P1)

⎧⎨
⎩

Minimize
∫ T

S
L(t, x,u) dt,

ẋ(t) = f (t, x,u), t ∈ [S,T ],
x(S) = x0, u(t) ∈ U ;

(P2)

⎧⎪⎪⎨
⎪⎪⎩

Minimize
∫ T

S
L(t, x,u) dt,

ẋ(t) = f (t, x,u), t ∈ [S,T ],
x(S) = x0, u(t) ∈ U,

g (t, x(t)) � 0, j = 1, . . . , l, for all t ∈ [S,T ].
(P3)
j
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The structure of the paper is as follows. Section 2 is devoted to auxiliary results: properties
of Michel–Penot subdifferential and extension of functions. Section 3 provides formulas for
derivatives of functions arising in the finite-dimensional approximations of the optimal control
problems. In Sections 4.1, 4.3, 4.4 we consider problems (P1), (P2), (P3); Section 4.2 describes
the limiting procedure, which up to insignificant details applies to all these three problems.

2. Michel–Penot subdifferential and extension of functions

Throughout this section X denotes a Banach space. We consider a function f :X → R. The
Michel–Penot (M–P) subdifferential f at x̄ is defined in the following way. First, we define the
Michel–Penot directional derivative:

d◦f (x̄, h) := sup
e∈X

lim sup
t↓0

f (x̄ + t (h + e)) − f (x̄ + te)

t
,

then we define the subdifferential as a dual construction:

∂◦f (x̄) = {
x∗: 〈x∗, h〉 � d◦f (x̄, h) for all h ∈ X

}
. (2.1)

A useful property of Michel–Penot subdifferential is that it shrinks to {∇f (x̄)} if f is merely
Fréchet differentiable at x̄ as opposed to many other subdifferentials that shrink to a singleton
only under strict differentiability. Properties of Michel–Penot subdifferential proved in Propo-
sitions 2.1–2.6 are known (see [8,9]), but they are given here for the interest of self-contained
presentation.

Proposition 2.1. Let f :X → R be Fréchet differentiable at x̄. Then ∂◦f (x̄) = {∇f (x̄)}.

Proof. Let us show that d◦f (x̄, h) = ∇f (x̄)h ∀h ∈ X. Indeed, for any e ∈ X

t−1[f (
x̄ + t (h + e)

) − f (x̄ + te)
] = t−1[t∇f (x̄)(h + e) − t∇f (x̄)e + o(t)

] → ∇f (x̄)h

as t ↓ 0,

where o(t)
t

→ 0 as t ↓ 0 and the equality ∂◦f (x̄) = {∇f (x̄)} follows. �
Proposition 2.2. Let f :X → R be locally Lipschitz around x̄ with Lipschitz constant k. Then
d◦f (x̄, h) � k‖h‖ ∀h ∈ X.

The proof is trivial and is, therefore, omitted.

Proposition 2.3. Let g : Rn → X be Fréchet differentiable at x̄ and f :X → R be locally Lip-
schitz continuous around g(x̄) with Lipschitz constant k. Then

d◦(f ◦ g)(x̄, h) � k
∥∥∇g(x̄)

∥∥‖h‖ ∀h ∈ X.

Proof.

t−1
∣∣(f ◦ g)

(
x̄ + t (h + e)

) − (f ◦ g)(x̄ + te)
∣∣ = t−1

∣∣f (
g
(
x̄ + t (h + e)

)) − f
(
g(x̄ + te)

)∣∣
� t−1k

∥∥g
(
x̄ + t (h + e)

) − g(x̄ + te)
∥∥ = t−1k

∥∥t∇g(x̄)h + o(t)
∥∥

� k
∥∥∇g(x̄)

∥∥‖h‖ + t−1o(t),

where o(t) → 0 as t ↓ 0, and the assertion of the proposition follows. �

t
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In view of Propositions 2.2, 2.3, if f is either Lipschitz continuous or is a composition of a
Lipschitz and a Fréchet differentiable functions, then |d◦f (x,h)| < ∞ ∀h ∈ X.

Proposition 2.4. Let f :X → R be such that d◦f (x,h) > −∞ ∀h ∈ X. Then h → d◦f (x,h) is
a convex positively homogeneous function.

Proof. The proof of d◦f (x,λh) = λd◦f (x,h) for λ > 0 is elementary. Further,

d◦f (x,h′ + h′′) = sup
e

lim sup
t↓0

t−1[f (
x + t (h′ + h′′ + e)

) − f (x + te)
]

� sup
e

{
lim sup

t↓0
t−1[f (

x + t (h′ + h′′ + e)
) − f

(
x + t (h′′ + e)

)]
+ lim sup

t↓0
t−1[f (

x + t (h′′ + e)
) − f (x + te)

]}
� d◦f (x,h′) + d◦f (x,h′′). �

Proposition 2.5. Let f :X → R be such that |d◦f (x,h)| < ∞ ∀h ∈ X. Then

(a) ∂◦f (x) �= ∅.
(b) ∂◦(γf )(x) = γ ∂◦f (x) for all γ ∈ R.

If, in addition, f is convex, then the M–P subdifferential coincides with the classical subdiffer-
ential of convex analysis.

Proof. Assertion (a) follows from the representation

d◦f (x,h) = sup
{〈x∗, h〉: x∗ ∈ ∂◦f (x)

}
,

which can be derived from (2.1). We refer the reader to [6] for the proof of (b), where the same
relation is proved for the Clarke’s subdifferential ∂clf .

Let us prove that the M–P subdifferential coincides with the classical subdifferential of convex
analysis ∂f for convex f . Convex and Clarke’s subdifferentials are defined as dual constructions
to the corresponding directional derivatives:

df (x̄, h) := lim sup
t↓0

f (x̄ + th) − f (x̄)

t
, dclf (x̄, h) := lim sup

t↓0, x→x̄

f (x + th) − f (x)

t
.

Clearly, df (x̄, h) � d◦f (x,h) � dclf (x,h), and therefore ∂f (x̄) ⊂ ∂◦f (x̄) ⊂ ∂clf (x̄). It is
proved in [6] that ∂f (x̄) = ∂clf (x̄) for convex f , whence the claim. �
Proposition 2.6. Let f :X → R and g :X → R be such that |d◦f (x,h)| < ∞ ∀h ∈ X and
|d◦g(x,h)| < ∞ ∀h ∈ X. Then

(a) d◦(f + g)(x,h) � d◦f (x,h) + d◦g(x,h) ∀h ∈ X,
(b) ∂◦(f + g)(x) ⊂ ∂◦f (x) + ∂◦g(x).

Proof. Assertion (a) is trivial. To prove (b) let us recall the fact that if ϕ,ψ are convex functions
defined on a linear vector space Y that satisfy ϕ(y) � ψ(y) ∀y ∈ Y and ϕ(ȳ) = ψ(ȳ) for some ȳ,
then ∂ϕ(ȳ) ⊂ ∂ψ(ȳ). (Here “∂” denotes the convex subdifferential.)
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Denote ϕ(h) := d◦(f + g)(x,h), ψ(h) := d◦f (x,h) + d◦g(x,h) and notice that ϕ(0) =
ψ(0) = 0, ϕ(h) � ψ(h) ∀h due to assertion (a). Therefore

∂
(
d◦(f + g)(x, ·))∣∣

h=0 ⊂ ∂
(
d◦f (x, ·) + d◦g(x, ·))∣∣

h=0

= ∂
(
d◦f (x, ·))∣∣

h=0 + ∂
(
d◦g(x, ·))∣∣

h=0, (2.2)

where the last equality is due to Moreau–Rockafellar theorem. One can easily check that
∂(d◦f (x, ·))|h=0 = ∂◦f (x). Indeed,

x∗ ∈ ∂
(
d◦f (x, ·))∣∣

h=0 ⇐⇒ 〈x∗, h − 0〉 � d◦f (x,h) − d◦f (x,0) ∀h

⇐⇒ 〈x∗, h〉 � d◦f (x,h) ∀h ⇐⇒ x∗ ∈ ∂◦f (x).

Hence (2.2) implies (b). �
The next proposition is the chain rule for the M–P subdifferential.

Proposition 2.7. Let g : Rn → X be Fréchet differentiable at x̄ and f :X → R be Lipschitz
continuous around g(x̄). Then

∂◦(f ◦ g)(x̄) ⊂ ∇g(x̄)∗ ◦ ∂◦f
(
g(x̄)

)
. (2.3)

Proof.

d◦(f ◦ g)(x̄, h)

= sup
e

lim sup
t↓0

t−1[f (
g(x̄) + t∇g(x̄)e + t∇g(x̄)h + o(t)

) − f
(
g(x̄) + t∇g(x̄)e + o(t)

)]
� sup

e
lim sup

t↓0
t−1[f (

g(x̄) + t∇g(x̄)e + t∇g(x̄)h + o(t)
)

− f
(
g(x̄) + t∇g(x̄)e + t∇g(x̄)h

)]
+ sup

e
lim sup

t↓0
t−1[−f

(
g(x̄) + t∇g(x̄)e + o(t)

) + f
(
g(x̄) + t∇g(x̄)e

)]
+ sup

e
lim sup

t↓0
t−1[f (

g(x̄) + t∇g(x̄)e + t∇g(x̄)h
) − f

(
g(x̄) + t∇g(x̄)e

)]
,

where o(t)
t

→ 0 as t ↓ 0. Obviously, the first two terms vanish, since f is Lipschitz, while the
third term is bounded by d◦f (g(x̄),∇g(x̄)h). Therefore,

d◦(f ◦ g)(x̄, h) � d◦f
(
g(x̄),∇g(x̄)h

)
. (2.4)

Denote ϕ(h) := d◦(f ◦ g)(x̄, h), ψ(h) := d◦f (g(x̄),∇g(x̄)h). ϕ,ψ are convex functions that
satisfy ϕ(0) = ψ(0) = 0 and ϕ(h) � ψ(h) for all h. Therefore, ∂ϕ(0) ⊂ ∂ψ(0).

It was shown in the proof of the previous proposition that ∂ϕ(0) = ∂◦(f ◦ g)(x̄). Since ψ is
a composition of a linear operator ∇g(x̄) and a convex function d◦f (g(x̄), ·), we get from the
chain rule for compositions of convex and linear functions (see, e.g., [7, p. 201])

∂ψ(0) = ∇g(x̄)∗ ◦ ∂◦f
(
g(x̄)

)
.

Thus ∂ϕ(0) ⊂ ∂ψ(0) implies ∂◦(f ◦ g)(x̄) ⊂ ∇g(x̄)∗ ◦ ∂◦f (g(x̄)). �
When we consider problem (P2) with integral cost, we shall need the rule: “subdifferential of

an integral is included into the integral of the subdifferential,” which we prove below.
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Proposition 2.8. Let Ω ⊂ R
N be an open set containing x̄, ϕ : [a, b] × Ω → R and d◦ϕt (x̄, h),

∂◦
xϕ(t, x̄) denote the M–P directional derivative of ϕ at (t, x̄) in the x-variable and the partial

M–P subdifferential in the x-variable, respectively. Assume that

(a) the function t → ϕ(t, x), t ∈ [a, b] is measurable ∀x ∈ Ω ;
(b) |d◦ϕt (x̄, h)| < ∞ for all h ∈ R

N and a.e. t ∈ [a, b].

Then the following inclusion holds:

∂◦
b∫

a

ϕ(t, x) dt |x=x̄ ⊂
b∫

a

∂◦
xϕ(t, x̄) dt. (2.5)

If, in addition, the function x → ϕ(t, x) is convex for a.e. t ∈ [a, b], then (2.5) holds as equality.

Proof. Denote F(x) := ∫ b

a
ϕ(t, x) dt , x ∈ Ω . Assume that ∂◦F(x̄) �= ∅ and take x∗ ∈ ∂◦F(x̄).

For any h ∈ R
N we have

〈x∗, h〉 � d◦F(x̄, h) = sup
e

lim sup
s↓0

s−1[F (
x̄ + s(e + h)

) − F(x̄ + se)
]

= sup
e

lim sup
s↓0

s−1

b∫
a

(
ϕ
(
t, x̄ + s(e + h)

) − ϕ(t, x̄ + se)
)
dt

�
b∫

a

sup
e

lim sup
s↓0

s−1(ϕ(
t, x̄ + s(e + h)

) − ϕ(t, x̄ + se)
)
dt =

b∫
a

d◦ϕt (x̄, h) dt.

Thus

〈x∗, h〉 �
b∫

a

d◦ϕt (x̄, h) dt ∀h ∈ X. (2.6)

Sx̄ := ∫ b

a
∂◦
xϕ(t, x̄) dt is an integral of a non-empty, bounded, close-valued multifunction t →

∂◦
xϕ(t, x̄).

Claim. Sx̄ is a non-empty, closed, bounded and convex set.

The proof of this claim can be found in Appendix A.
Arguing by the contradiction, assume that the statement of the proposition does not hold and

x∗ /∈ ∫ b

a
∂◦
xϕ(t, x̄) dt . Due to the convex separation theorem, there exists a vector v such that for

any measurable selection ξ∗(t) ∈ ∂◦
xϕ(t, x̄), a.e. one has

〈x∗, v〉 >

b∫
a

〈
ξ∗(t), v

〉
dt.

(It is essential that the underlying space is finite-dimensional, because otherwise we would need
to ensure that the interior of

∫ b
∂◦
xϕ(t, x̄) dt is non-empty to be able to apply the separation
a
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theorem.) Let us select a measurable function t → ξ∗(t) ∈ ∂◦
xϕ(t, x̄), a.e., in such way that

〈ξ∗(t), v〉 = d◦ϕt (x̄, v) for all t ∈ [a, b]. Such selection is possible due the boundedness of the
set Sx̄ and the relation

d◦ϕt (x̄, v) = max
{〈x∗, v〉: x∗ ∈ ∂◦

xϕ(t, x̄)
}
,

which follows from (2.1). Then

〈x∗, v〉 >

b∫
a

d◦ϕt (x̄, v) dt,

which contradicts (2.6) and proves (2.5).
Finally, let us assume that the function x → ϕ(t, x) is convex for all t ∈ [a, b]. We shall show

the inclusion “⊃” in (2.5). Let x∗ ∈ ∫ b

a
∂xϕ(t, x̄) dt , where ∂x is the partial convex subdifferential.

This implies that there exists a measurable selection ξ∗(t) ∈ ∂xϕ(t, x̄), t ∈ [a, b], such that x∗ =∫ b

a
ξ∗(t) dt . For all x ∈ Ω we have

〈x∗, x − x̄〉 =
b∫

a

〈
ξ∗(t), x − x̄

〉
dt �

b∫
a

(
ϕ(t, x) − ϕ(t, x̄)

)
dt

=
b∫

a

ϕ(t, x) dt −
b∫

a

ϕ(t, x̄) dt. (2.7)

It is easy to see that the function x → ∫ b

a
ϕ(t, x) dt is convex and therefore (2.7) implies x∗ ∈

∂
∫ b

a
ϕ(t, x̄) dt . �

In general case there is no equality in (2.7). For example, let F(x) = ∫ 1
−1 t |x|dt (the integrand

is concave in x when t < 0). Then F(x) ≡ 0 and hence ∂◦F(0) = {0}. On the other hand,

1∫
−1

∂◦
x

(
t |x|)∣∣

x=0 dt =
1∫

−1

[−t, t]dt =
[
−1

2
,

1

2

]
.

As a corollary of Propositions 2.7 and 2.8, we get the following result.

Lemma 2.9. Let L(·,·) and g(·) satisfy the following properties:

(a) L : [a, b] × R
n → R is measurable in t for all x ∈ R

n and Lipschitz in x for all t ∈ [a, b];
(b) g : RN → Cn[a, b] is a map continuous on a neighborhood of the origin and differentiable

at y = 0.

Denote x̄(·) := (g(0))(·). Then

∂y

b∫
L

(
t,

(
g(y)

)
(t)

)
dt

∣∣
y=0 ⊂

b∫ (∇g(0)
)∗

(t) ◦ ∂xL
(
t, x̄(t)

)
dt,
a a



984 I.A. Shvartsman / J. Math. Anal. Appl. 326 (2007) 974–1000
which is equivalent to: ∀σ ∈ R
N and ∀y∗ ∈ ∂y

∫ b

a
L(t, (g(y))(t)) dt |y=0 there exists a measur-

able selection ξ∗(t) ∈ ∂xL(t, x̄(t)) such that

y∗ =
b∫

a

〈
ξ∗(t),

(∇g(0)
)∗

(t) · σ 〉
dt.

The following Lagrange multiplier rule in terms of the Michel–Penot subdifferential has a
crucial role in the sequel.

Consider a nonlinear program:⎧⎨
⎩

Minimize f0(x), subject to
fi(x) � 0, i = 1, . . . ,m,

fi(x) = 0, i = m + 1, . . . , n, x ∈ Ω.
(Q)

For some x̄ of interest we assume that

(G1) Ω is a closed convex set containing x̄;
(G2) Functions fi :X → R, i = 0, . . . , n, are “calm,” i.e., there exists K > 0 such that∣∣fi(x̄ + Δ) − fi(x̄)

∣∣ � K‖Δ‖ for all sufficiently small Δ

and |d◦fi(x̄, h)| < ∞ ∀h ∈ X.

Theorem 2.10. Let x̄ be a solution to (Q) and assume (G1), (G2). Then there exist numbers
λ0 � 0, . . . , λm � 0, λm+1, . . . , λn, not all equal to a zero, such that

λifi(x̄) = 0, i = 1, . . . ,m, and 0 ∈ ∂◦
(

n∑
i=0

λifi

)
(x̄) + N(x̄,Ω), (2.8)

where N(x̄,Ω) denotes the normal cone of convex analysis.

This theorem is proved in [8] under the assumption of Lipschitz continuity of {f0, . . . , fn}.
However, the analysis of the proof shows that Theorem 2.10 remains valid when we assume (G2)
in place of Lipschitz continuity. This enables us to apply this theorem to compositions of Lip-
schitz and Fréchet differentiable functions.

In our constructions in the sections below, functions fi are naturally defined only for x from
the positive orthant R

N+ with the reference point x̄ = 0 (the length of a “needle” in the variation
of the optimal control is non-negative). We need to extend these functions to a neighborhood of
a zero in R

N to be able to apply Theorem 2.10.
Let function f be defined on a positive neighborhood of the origin, that is for x such that

x ∈ R
N+ , |x| < r for some r > 0 and take values in R. For simplicity we shall assume further on

that r = ∞.
Assume that f is continuous on R

N+ and Fréchet differentiable at x̄ = 0 relative to R
N+ (see

Definition 1.2), i.e., ∀η ∈ R
N+

lim
t↓0, η′→η,η′∈R

N+
t−1[f (tη′) − f (0)

] = Df (0)η. (2.9)

Lemma 2.11. Such function can be extended to the whole space R
N as a continuous function

Fréchet differentiable at x̄ = 0.
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Proof. Let g(x) = |x|−1(f (x) − f (0) − Df (0)x). Then g is continuous on R
N+ \ {0}, and can

be extended by continuity to R
N+ , setting g(0) = 0. We can extend g to a continuous function g̃

on all R
N due to Tietze’s extension theorem. Define a function f̃ by

f̃ (x) = f (0) + Df (0)x + |x|g̃(x), x ∈ R
N.

It is easy to see that f̃ is the desired extension: it is continuous on R
N and Df̃ (0) = Df (0). �

3. Calculation of derivatives

This section provides formulas for derivatives of functions arising in the finite-dimensional
approximations of the optimal control problems formulated in the introduction.

Lemma 3.1. Let (x̄, ū) be a process of interest satisfying the dynamics of (P), i.e., ˙̄x(t) =
f (t, x̄(t), ū(t)), t ∈ [S,T ]. Take uj ∈ U, j = 1, . . . ,N , and a partition {t0 = S < t1 < · · · <

tN < tN+1 = T }. Assume that hypotheses (H1), (H2), (H5), (H7) are satisfied. Assume, further-
more, that for k = 1, . . . ,N , tk is a Lebesgue point of

t −→ f
(
t, x̄(t), uk

) − f
(
t, x̄(t), ū(t)

)
.

Take ε̄ > 0 satisfying the condition

tk + ε̄ < tk+1, for k = 1, . . . ,N,

and define

A := [0, ε̄]N.

For any e = (ε1, . . . , εN) ∈ A define

ue(t) =
{

uk if t ∈ [tk, tk + εk] for k ∈ {1, . . . ,N},
ū(t) otherwise,

and let xe(t) be the solution (unique due to (H5)) of the equation

ẋe(t) = f
(
t, xe(t), ue(t)

)
a.e. t ∈ [S,T ], xe(S) = x0.

Then the mapping e → xe(T ), is Fréchet differentiable at e = 0 relative to A and, for any σ ∈
A − 0, the action of the derivative on σ is given by formula

Dex
e(T )

∣∣
e=0(σ ) =

N∑
k=1

σkΦ(T , tk)
[
f

(
tk, x̄(tk), uk

) − f
(
tk, x̄(tk), ū(tk)

)]
, (3.1)

where Φ(t, s) is the transition matrix of the linear differential equation ṙ = Dxf (t, x̄(t), ū(t))r .
Set m(t) ∈ {0, . . . ,N} to be the largest index such that tm(t) < t . The mapping e → xe(t) is

Fréchet differentiable at e = 0 relative to A for all t ∈ [S,T ]\{t1, . . . , tN } and, for any σ ∈ A−0,

Dex
e(t)

∣∣
e=0(σ ) =

m(t)∑
k=1

σkΦ(t, tk)
[
f

(
tk, x̄(tk), uk

) − f
(
tk, x̄(tk), ū(tk)

)]
, if t > t1, (3.2)

and Dxe(t)|e=0(σ ) = 0 if t < t1.

Proof. Take σ = (σ1, . . . , σN) ∈ A, arbitrary sequence εi ↓ 0 and let(
σ i = (

σ i
1, . . . , σ

i
N

)) A−→ (σ1, . . . , σN).
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We shall find the directional derivative of xe(T ) at e = 0 in direction σ and show that it given by
the RHS of (3.1). Define

σ i
0 = 0, σ i

N+1 = 0, for i = 1,2, . . . , and σ0 = 0, σN+1 = 0. (3.3)

For i = 1,2, . . . and k = 1, . . . ,N , write

xi = xεiσ
i

, Δfk(t) = f
(
t, x̄(t), uk

) − f
(
t, x̄(t), ū(t)

)
,

ηi
k = ε−1

i

[
xi

(
tk + εiσ

i
k

) − x̄
(
tk + εiσ

i
k

)]
.

Notice that ηi
N+1 = ε−1

i [xi(T ) − x̄(T )] and hence, Dxe(t)|e=0(σ ) = limi→∞ ηi
N+1.

Claim. Suppose for some k ∈ {0,1, . . . ,N} we have ηi
k → ηk . Then

ηi
k+1 −→ σk+1Δfk+1(tk+1) + Φ(tk+1, tk)ηk, (3.4)

as i → ∞, where Φ(t, s) is the transition matrix of the linear differential equation

ṙ(t) = Dxf
(
t, x̄(t), ū(t)

)
r(t).

Let us assume validity of the claim. Then it is easy to complete the proof. Indeed, since ηi
0 = 0

is fixed, it follows, by induction, that the ηi
k’s all converge as i → ∞, with limits η1, . . . , ηN+1.

From (3.4) then

ηk+1 = σk+1Δf (tk+1) + Φ(tk+1, tk)ηk for k = 0, . . . ,N.

Making use of the semigroup properties of the transition matrix, we deduce that

ε−1
i

[
xi(T ) − x̄(T )

] −→ ηN+1
(= Dex

e(T )
∣∣
e=0(σ )

) =
N∑

k=1

σkΦ(T , tk)Δfk(tk),

proving (3.1). The proof of (3.2) is exactly the same, if we treat t ∈ [S,T ] \ {t1, . . . , tN } as the
terminal time.

It remains then to verify the claim. Fix an index value k ∈ {0, . . . ,N} and suppose that

ηi
k

(= ε−1
i

(
xi − x̄

)(
tk + εiσ

i
k

)) −→ ηk. (3.5)

We have for all t ∈ [tk+εiσ
i
k
, tk+1]

xi(t) − x̄(t) = (
xi − x̄

)(
tk + εiσ

i
k

) +
t∫

tk+εiσ
i
k

(
f

(
s, xi(s), ū(s)

) − f
(
s, x̄(s), ū(s)

))
ds.

(3.6)

Define the absolutely continuous functions yi : [tk, tk+1] → R
n, i = 1,2, . . . , to be

yi(t) =
{

ε−1
i (xi − x̄)(t) if tk + εiσ

i
k � t � tk+1,

ε−1
i (xi − x̄)(tk + εiσ

i
k) otherwise.

It can be deduced from (3.6), Gronwall’s lemma and the assumed Lipschitz continuity properties
of f (t, · , u) that the yi ’s are uniformly bounded and equicontinuous. By the Arcela theorem
then,

yi −→ y uniformly
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.

for some absolutely continuous function y : [tk, tk+1] → R
n. But the functions

s −→ ∣∣ε−1
i

[
f

(
s, xi(s), ū(s)

) − f
(
s, x̄(s), ū(s)

)]∣∣,
i = 1,2, . . . , are majorized by a common integrable function. Under the assumed differentiabil-
ity hypotheses, the sequence of functions {s → ε−1

i [f (s, xi(s), ū(s)) − f (s, x̄(s), ū(s))]} has a
pointwise limit

Dxf
(
s, x̄(s), ū(s)

)
y(s) for all s ∈ [tk, tk+1].

Dividing across (3.6) by εi , noting (3.5) and invoking the Dominated Convergence Theorem, we
deduce from (3.6) that

y(t) = ηk +
t∫

tk

Dxf
(
s, x̄(s), ū(s)

)
y(s) ds.

It follows that y satisfies the differential equation{
ẏ(t) = Dxf (s, x̄(s), ū(s))y(t) a.e. t ∈ [tk, tk+1],
y(tk) = ηk.

Hence y(tk+1) = Φ(tk+1, tk)ηk . But, for each i,

ε−1
i

(
xi − x̄

)(
tk+1 + εiσ

i
k+1

)

= yi(tk+1) + ε−1
i

tk+1+εiσ
i
k+1∫

tk+1

[
f

(
s, xi(s), uk+1(s)

) − f
(
s, x̄(s), ū(s)

)]
ds.

(To make sense of this formula when k = N , recall that σ i
N = 0.)

In view of (H7) we have the estimate

∣∣xi(s) − x̄(s)
∣∣ � εiyi(tk+1) + 2

tk+1+εiσ
i
k+1∫

tk+1

cf (t) dt, s ∈ [
tk+1, tk+1 + εiσ

i
k+1

]
. (3.7)

Since (for k < N ) tk+1 is a Lebesgue point of Δfk+1(t), and in view of the Lipschitz continuity
properties of f (t, · , u), we can pass to the limit as i → ∞ in (3.7), and obtain

ηk+1 := lim
i→∞ ε−1

i

(
xi − x̄

)(
tk+1 + εiσ

i
k+1

) = Φ(tk+1, tk)ηk + σk+1Δfk+1(tk+1).

The claim is confirmed and the proof is complete. �
4. The proof of the Maximum Principle for problems (P1)–(P3)

Before proceeding to the proof of Theorem 1.3, we prove the following lemma, which is a
simple corollary of Luzin’s theorem.

Lemma 4.1. Take a subset T ⊂ [S,T ], of full measure, and a measurable function g : [S,T ] → R
n

Then there exists a countable subset A of T and a subset M ⊂ T , of full measure, with the fol-
lowing properties: for any t ∈ M there exists a sequence ti

A→ t such that

g(ti) −→ g(t) as i → ∞.
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Proof. Take εj ↓ 0. According to Luzin’s theorem, we can choose a sequence of measurable
subsets {M′

j } of T such that, for each j ,

(a) the restriction of g to {M′
j } is continuous,

(b) meas{M′
j } > |T − S| − εj .

For each j choose a countable dense subset A′
j ⊂ M′

j . Define

M =
⋃
j

M′
j and A =

⋃
j

A′
j .

We show that M and A have the required properties. M has full measure, by property (b).
A is countable since the A′

j ’s are countable. Take any t ∈ M. Then t ∈ M′
j for some j . Since

A′
j is dense in M′

j , there exits a sequence {ti} in A′
j converging to t . But then, by property (a),

g(ti) −→ g(t).

Since A′
j is a subset of A, the lemma is proved. �

Let {uj }∞j=1 be dense in U . Define the subset T of (S,T ), of full measure,

T := {
t ∈ (S,T ): t is a Lebesgue point of t → Δfj (t) for j = 1,2, . . .

}
.

Here, as before,

Δfj (t) = f
(
t, x̄(t), uj

) − f
(
t, x̄(t), ū(t)

)
.

In view of Lemma 4.1 we can construct subsets {Aj }∞j=1 and {Mj }∞j=1, with the following
properties:

• Set j = 1. A1 is a countable dense subset of T and M1 is a subset of T , of full measure,
with the property:

given any t ∈M1, there exists si
A1−→ t such that Δf1(si) → Δf1(t).

For j = 2,3, . . . , Aj is a countable dense subset of T \ (
⋃j−1

j ′=1 Aj ′) and Mj is a set of full
measure such that condition

given any t ∈Mj , there exists si
Aj−→ t such that Δfj (si) → Δfj (t).

is satisfied. Write

A :=
∞⋃

j=1

Aj and M :=
∞⋂

j=1

Mj .

Clearly, A is a countable dense set of T and M is a subset of T with full measure. Now define
the function J :A → {1,2,3, . . .}

J (t) = j, where t ∈Aj .

Notice that, since the Aj ’s are disjoint and since their union is A, J (t) is well defined.
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Let {ti} be an ordering of the elements of A. Fix N and let {t1, . . . , tN } be the first elements
from this ordering. Take ε̄N > 0 such that, for all i, j ∈ {1, . . . ,N}, i �= j ,

ti + ε̄N < T and [ti , ti + ε̄N ] ∩ [tj , tj + ε̄N ] = ∅.

Denote

A = [0, ε̄N ]N
and take e = (ε1, . . . , εN) ∈ A. By reducing ε̄N , if necessary, we can ensure, due to (H5), that the
control function

ue(t) =
{

uJ(tk)(t) if t ∈ [tk, tk + εk] for k ∈ {1, . . . ,N},
ū(t) otherwise

(4.1)

has a unique state trajectory xe corresponding to it.

4.1. Problem (P1)

Theorem 4.2. Assume that hypotheses (H1), (H2), (H4), (H5) are satisfied. Assume, furthermore
that either (x̄, ū) is a strong local minimizer, or (x̄, ū) is a Pontryagin local minimizer and (H7) is
additionally satisfied. Then there exist numbers λ1 � 0, . . . , λr1 � 0 and γ1, . . . , γr2 , not all zero,
such that, for j = 1, . . . , r1, λjψj (x̄(S), x̄(T )) = 0, and there exist elements x∗

j ∈ ∂◦ψj (x̄(T )),
j = 0, . . . , r1, y∗

j ∈ ∂◦ϕj (x̄(T )), j = 1, . . . , r2, such that

pT(t)f
(
t, x̄(t), ū(t)

) = max
u∈U

pT(t)f
(
t, x̄(t), u

)
a.e.,

where p(t) is a solution of

−ṗT(t) = pT(t)Dxf
(
t, x̄(t), ū(t)

)
a.e.,

with the boundary condition

−pT(T ) =
r1∑

j=0

λjx
∗
j +

r2∑
j=1

γjy
∗
j .

Proof. Let us first suppose that the additional hypothesis (H7) is satisfied and that (x̄, ū) is a
Pontryagin local minimizer (the case when (x̄, ū) is a strong local minimizer will be considered
in the end of Section 4.2). Then there exists some ε′ > 0 such that (x̄, ū) is a minimizer with
respect to all admissible processes (x,u) such that

‖x − x̄‖C + meas
{
t : u(t) �= ū(t)

}
� ε′.

We can assume ε̄N to be small enough to ensure that ‖xe − x̄‖C + meas{t : ue(t) �= ū(t)} � ε′.
The fact that the process (xe, ue), if it satisfies the constraints of (P1), cannot have cost less

than that of (x̄, ū) can be expressed as: e = 0 is a local minimizer for the finite-dimensional
nonlinear program:⎧⎨

⎩
Minimize ψ0(x

e(T )) over e ∈ A = [0, ε̄N ]N, subject to constraints:
ψj (x

e(T )) � 0, j = 1, . . . , r1,

ϕj (x
e(T )) = 0, j = 1, . . . , r2.

It is proved in Lemma 3.1 that the assumptions made ensure the differentiability relative to A of
the function e → xe(T ) at e = 0 under variation (4.1) of the optimal control.

Due to Lemma 2.11 we may assume that the domain of the function e → xe(T ) is extended
from A to a neighborhood of e = 0 in R

N with preservation of continuity and differentiability.
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Note that the functions e → ϕj (x
e(T )), e → ψj(x

e(T )) are compositions of a Lipschitz con-
tinuous and a Fréchet differentiable function, and therefore the Lagrange multiplier rule (2.8) is
valid. Together with Proposition 2.5 part (b) and Proposition 2.6 part (b) it gives

0 ∈
r1∑

i=0

λN
i ∂◦

e ψi

(
xe(T )

)∣∣
e=0 +

r2∑
i=1

γ N
i ∂◦

e ϕi

(
xe(T )

)∣∣
e=0 + N(0,A), (4.2)

where (λN
0 , . . . , λN

r1
, γ N

1 , . . . , γ N
r2

) is a nonzero vector with λ-part satisfying the standard non-
negativity and complementary slackness conditions.

Employing chain rule (2.3), we get

∂◦
e ψi

(
xe(T )

)∣∣
e=0 ⊂ (

Dex
e(T )

∣∣
e=0

)∗ ◦ ∂◦
xψi

(
x̄(T )

)
,

∂◦
e ϕi

(
xe(T )

)∣∣
e=0 ⊂ (

Dex
e(T )

∣∣
e=0

)∗ ◦ ∂◦
xϕi

(
x̄(T )

)
.

Take arbitrary σ = (σ1, . . . , σN) ∈ A. From (3.1), (4.1) we get

Dex
e(T )

∣∣
e=0(σ ) =

N∑
k=1

σkΦ(T , tk)ΔfJ(tk)(tk),

where Φ(t, s) is the transition matrix of the linear differential equation ṙ(t) = Dxf (t, x̄(t),

ū(t))r(t). Since 〈ξ∗, σ 〉 � 0 ∀ξ∗ ∈ N(0,A), we obtain from (4.2)

r1∑
i=0

λN
i x∗

iN

N∑
k=1

σkΦ(T , tk)ΔfJ(tk)(tk) +
r2∑

i=1

γ N
i y∗

iN

N∑
k=1

σkΦ(T , tk)ΔfJ(tk)(tk)

=
(

r1∑
i=0

λN
i x∗

iN +
r2∑

i=1

γ N
i y∗

iN

)
N∑

k=1

σkΦ(T , tk)ΔfJ(tk)(tk) � 0, (4.3)

for some x∗
iN ∈ ∂◦ψi(x̄(T )), y∗

iN ∈ ∂◦ϕi(x̄(T )). It is essential that x∗
iN , y∗

iN do not depend on the
choice of σ , because they are “hidden” in inclusion (4.2) with no σ .

Denote

pT
N(t) := −

r1∑
i=0

λN
i x∗

iNΦ(T , t) −
r2∑

i=1

γ N
i y∗

iNΦ(T , t), (4.4)

and obtain from (4.3), (4.4) that
N∑

k=1

σkp
T
N(tk)ΔfJ(tk)(tk) � 0,

which implies

pT
N(t)ΔfJ(t)(t) � 0, t ∈ {t1, . . . , tN }, (4.5)

since we can put all σk’s, except one, equal to a zero and pN(t) does not depend on σ . It follows
from (4.4) that pT

N(t) satisfies the adjoint equation

ṗT
N(t) = −pT

N(t)Dxf
(
t, x̄(t), ū(t)

)
with the boundary condition

−pT
N(T ) =

r1∑
i=0

λN
i x∗

iN +
r2∑

i=1

γ N
i y∗

iN ∈
r1∑

i=0

λN
i ∂◦ψi

(
x̄(T )

) +
r2∑

i=1

γ N
i ∂◦ϕi

(
x̄(T )

)
. (4.6)
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4.2. Limiting procedure

Consider now the relationships (4.5) for N = 1,2, . . . . By restricting attention to a subse-
quence (we do not relabel) we can arrange that(

λN
0 , . . . , λN

r1
, γ N

1 , . . . , γ N
r2

) → (λ0, . . . , λr1, γ1, . . . , γr2)

for some numbers λ0 � 0, . . . , λr1 � 0, and γ1, . . . , γr2 satisfying

r1∑
i=0

λi +
r2∑

i=1

|γi | = 1.

The pN ’s are uniformly bounded and the ṗN ’s are uniformly integrally bounded. Simple argu-
ments, appealing to the boundedness and closedness of M–P subdifferentials and the Dunford–
Pettis criterion for compactness in L1 then, permits us to conclude that, along a further subse-
quence

x∗
iN −→ x∗

i ∈ ∂◦ϕi

(
x̄(T )

)
, y∗

iN −→ y∗
i ∈ ∂◦ψi

(
x̄(T )

)
, and pN −→ p uniformly,

for some p ∈ W 1,1 satisfying

−ṗT(t) = pT(t)Dxf
(
t, x̄(t), ū(t)

)
a.e., −pT(T ) =

r1∑
i=0

λix
∗
i +

r2∑
i=1

γiy
∗
i .

Furthermore

pT(t)ΔfJ(t)(t) � 0 for all t ∈A. (4.7)

Take any t ∈ M. Then, for arbitrary j , t ∈Mj . Consequently there exists si
Aj→ t such that

Δfj (si) −→ Δfj (t).

Recalling the definition of Δfj and noting the continuity of p, we deduce from (4.7) that

pT(t)
[
f

(
t, x̄(t), uj

) − f
(
t, x̄(t), ū(t)

)]
� 0 (4.8)

is satisfied for all j ’s and at all points t in the set of full measure M. Since f (t, x, ·) is continuous
and in view of the density of the uj ’s, the relationship

pT(t)
[
f

(
t, x̄(t), u

) − f
(
t, x̄(t), ū(t)

)]
� 0 (4.9)

is satisfied for all points u ∈ U , on a set of full measure. This completes the proof of Theorem 4.2
in the case if (x̄, ū) is a Pontryagin local minimizer and (H7) is satisfied.

Finally, let us suppose that (H7) is possibly not valid and that (x̄, ū) is a strong local minimizer.
For j = 1,2, . . . , consider the modification (P1j ) of (P1), in which U is replaced by

Uj =
{
u ∈ U : sup

x∈x̄(t)+εB

∣∣f (t, x,u)
∣∣ � k1(t)ε + ∣∣ ˙̄x(t)

∣∣ + j
}

for t ∈ [S,T ],

where k1(·) is from (H2). For each Uj hypothesis (H7) is satisfied. Notice, in particular, that Uj

is non-empty for each j and U = ⋃∞
j=1 Uj . The Maximum Principle is verified in this case, by

applying the earlier case for each j and passage to the limit as j → ∞. Details are to be found,
for example, in [17, p. 212].
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4.3. Problem (P2)

Theorem 4.3. Assume that hypotheses (H1)–(H3) and (H5) are satisfied. Assume, furthermore
that either (x̄, ū) is a strong local minimizer, or (x̄, ū) is a Pontryagin local minimizer and
(H7) is additionally satisfied. Then there exists a measurable selection ξ∗(t) ∈ ∂◦

xL(t, x̄(t), ū(t)),

t ∈ [S,T ] and a vector-function p(·) such that

−ṗT(t) = pT(t)Dxf
(
t, x̄(t), ū(t)

) − ξ∗(t) a.e., p(T ) = 0 (4.10)

and there holds the maximum condition

pT(t)f
(
t, x̄(t), ū(t)

) − L
(
t, x̄(t), ū(t)

) = max
u∈U

{
pT(t)f

(
t, x̄(t), u

) − L
(
t, x̄(t), u

)}
a.e.

Proof. The fact that the process (xe, ue), if it satisfies the constraints of (P2), cannot have cost
less than that of (x̄, ū) can be expressed as: e = 0 is a local minimizer for the finite-dimensional
nonlinear program:

minimize

T∫
S

L
(
t, xe(t), ue(t)

)
dt over e ∈ A := [0, ε̄N ]N,

where ue is given by (4.1) and xe is the corresponding trajectory. Due to Lemma 2.11 we may
assume that the domain of the function e → xe(t) is extended to a neighborhood of e = 0 for all
t ∈ [a, b] with preservation of differentiability at e = 0.

Assume for now that the integrand L does not depend on u; the general case will be considered
later. From the Lagrange multiplier rule (2.8) we have

0 ∈ ∂◦
e

T∫
S

L
(
t, xe(t)

)
dt

∣∣
e=0 + N(0,A). (4.11)

Due to Lemma 2.9 we can take ∂◦
e inside the integral and deduce that there exists a measurable

selection ξ∗
N(t) ∈ ∂◦

xL(t, x̄(t)), such that for all σ ∈ A

0 �
T∫

S

ξ∗
N(t)Dex

e(t)
∣∣
e=0(σ ) dt, (4.12)

and Dex
e(t)|e=0(σ ) is given by (3.2). Thus

T∫
S

ξ∗
N(t)Dex

e(t)
∣∣
e=0(σ ) dt =

T∫
S

ξ∗
N(t)

m(t)∑
k=1

σkΦ(t, tk)ΔfJ(tk)(tk) dt

=
N∑

k=1

T∫
tk

ξ∗
N(t)σkΦ(t, tk)ΔfJ(tk)(tk) dt. (4.13)

Define

pT
N(t) := −

T∫
ξ∗
N(s)Φ(s, t) ds. (4.14)
t
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pT
N satisfies the differential equation

ṗT
N(t) = −pT

N(t)Dxf
(
t, x̄(t), ū(t)

) + ξ∗
N(t) ∈ −pT

N(t)Dxf
(
t, x̄(t), ū(t)

) + ∂◦
xL

(
t, x̄(t)

)
.

(4.15)

From (4.12)–(4.14) we deduce that

N∑
k=1

σkp
T
N(tk)ΔfJ(tk)(tk) � 0,

which implies

pT
N(t)ΔfJ(t)(t) � 0, t ∈ {t1, . . . , tN },

due to the fact that pN(t) does not depend on σ .
The limiting procedure can be furnished as in Section 4.2 taking into account the additional

fact that ‖ξ∗
N(·)‖L1 � ‖k2(·)‖L1 < ∞ (k2(·) is from (H3)), which implies uniform boundedness

of pN and uniform integral boundedness of ṗN .
Now let us consider the general case and assume that the integrand L depends on u. Assume

for now that we take only one needle variation of length ε at time τ by control v ∈ U .
Let us evaluate the expression ∂◦

ε

∫ T

S
L(t, xε(t), uε(t)) dt |ε=0. (This is a one-dimensional case

and there is no need to deal with the action of this expression on σ .) We have

T∫
S

(
L

(
t, xε(t), uε(t)

) − L
(
t, x̄(t), ū(t)

))
dt

=
T∫

τ

(
L

(
t, xε, uε

) − L(t, x̄, ū)
)
dt

=
T∫

τ

(
L

(
t, xε, uε

) − L
(
t, x̄, uε

))
dt +

T∫
τ

(
L

(
t, x̄, uε

) − L(t, x̄, ū)
)
dt

=
τ+ε∫
τ

(
L

(
t, xε, v

) − L(t, x̄, v)
)
dt +

T∫
τ+ε

(
L

(
t, xε, ū

) − L(t, x̄, ū)
)
dt

+
τ+ε∫
τ

(
L(t, x̄, v) − L(t, x̄, ū)

)
dt

=
τ+ε∫
τ

(
L

(
t, xε, v

) − L(t, x̄, v)
)
dt +

T∫
τ

(
L

(
t, xε, ū

) − L(t, x̄, ū)
)
dt

−
τ+ε∫
τ

(
L

(
t, xε, ū

) − L(t, x̄, ū)
)
dt +

τ+ε∫
τ

(
L(t, x̄, v) − L(t, x̄, ū)

)
dt. (4.16)

Consider the second integral after the last equality sign. The control ū is fixed, and its M–P
subdifferential can be evaluated as above.
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For the fourth integral, there exists a limit

lim
ε→0

1

ε

τ+ε∫
τ

(
L

(
t, x̄(t), v

) − L
(
t, x̄(t), ū(t)

))
dt

= L
(
τ, x̄(τ ), v

) − L
(
τ, x̄(τ ), ū(τ )

) := ΔuL(τ),

provided that τ is the Lebesgue point of the difference. Therefore,

∂◦
ε

T∫
S

(
L

(
t, x̄(t), v

) − L
(
t, x̄(t), ū(t)

))
dt

∣∣
ε=0 = ΔuL(τ)

because M–P subdifferential coincides with the derivative if the latter exists. It is not difficult to
show that there also exists a limit when the first and the third integrals in (4.16) after the last
equality sign are divided by ε and ε tends to 0, and this limit is equal to a zero. Thus, from (4.16)
one gets

∂◦
ε

T∫
S

(
L

(
t, xε(t), uε(t)

) − L
(
t, x̄(t), ū(t)

))
dt

∣∣
ε=0

= ∂◦
ε

T∫
S

L
(
t, xε(t), ū(t)

)
dt

∣∣
ε=0 − ΔuL(τ).

In the case if a multi-needle variation of the optimal control is applied at t1, . . . , tN by
uJ(t1), . . . , uJ (tN ), respectively, slightly modifying the procedure above, we get

∂◦
e

T∫
S

L
(
t, xe(t), ue(t)

)
dt

∣∣
e=0(σ )

= ∂◦
e

T∫
S

(
L

(
t, xe(t), ue(t)

) − L
(
t, x̄(t), ū(t)

))
dt

∣∣
e=0(σ )

= ∂◦
e

T∫
S

L
(
t, xe(t), ū(t)

)
dt

∣∣
e=0(σ ) −

N∑
k=1

σk

(
L

(
tk, x̄(tk), uk

) − L
(
tk, x̄(tk), ū(tk)

))
.

(4.17)

Now from

0 ∈ ∂◦
e

T∫
S

L
(
t, xe(t), ue(t)

)
dt

∣∣
e=0 + N(0,A)

and taking into account (4.17), (4.13)–(4.15), we get

pT
NΔfJ(t)(t) − (

L
(
t, x̄(t), uJ (t)

) − L
(
t, x̄(t), ū(t)

))
� 0, t ∈ {t1, . . . , tN },

and derive the assertion of Theorem 4.3 after the limiting procedure described in Section 4.2. �
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4.4. Problem with state constraints (P3)

Theorem 4.4. Assume that hypotheses (H1)–(H3), (H5), (H6) are satisfied. Assume, further-
more that either (x̄, ū) is a strong local minimizer, or (x̄, ū) is a Pontryagin local minimizer
and (H7) is additionally satisfied. Then there exist a number λ0 ∈ {0,1}, regular non-negative
Borel measures μj supported on the sets {t ∈ [S,T ]: gj (t, x̄(t)) = 0}, j = 1, . . . , l, such that
(λ0,μ1, . . . ,μl) �= 0, a measurable selection ξ∗(t) ∈ ∂◦

xL(t, x̄(t), ū(t)), t ∈ [S,T ], and a func-
tion p(·) satisfying the adjoint equation

pT(t) =
T∫

t

(
pT(s)Dxf

(
s, x̄(s), ū(s)

) − λ0ξ
∗(s)

)
ds −

l∑
j=1

∫
[t,T ]

Dxg
T
j

(
s, x̄(s)

)
dμj (s),

t ∈ [S,T ], (4.18)

such that there holds the maximum condition

Hλ0

(
t, x̄(t), ū(t),p(t)

) = max
u∈U

Hλ0

(
t, x̄(t), u,p(t)

)
a.e. (4.19)

Proof. The fact that the process (xe, ue), if it satisfies the constraints of (P3), cannot have cost
less than that of (x̄, ū) can be expressed as: e = 0 is a local minimizer for the finite-dimensional
nonlinear program:{

Minimize
∫ T

S
L(t, xe(t), ue(t)) dt over e ∈ A = [0, ε̄N ]N, subject to constraints

gj (t, x
e(t)) � 0, t ∈ [S,T ], j = 1, . . . , l,

where ue is given by (4.1) and xe is the corresponding trajectory. Let us denote

Gj(e) := max
t∈[S,T ]gj

(
t, xe(t)

)
, j = 1, . . . , l,

and replace the pointwise state constraints gj (t, x
e(t)) � 0, t ∈ [S,T ], by equivalent constraints

Gj(e) � 0, j = 1, . . . , l.

From the Lagrange multiplier rule (2.8), Proposition 2.5 part (b) and Proposition 2.6 part (b) we
get

0 ∈ λN
0 ∂◦

e

T∫
S

L
(
t, xe(t), ue(t)

)
dt

∣∣
e=0 +

l∑
j=1

λN
j ∂◦Gj(0) + N(0,A) (4.20)

with λN
j � 0 for j = 0, . . . , l, λN

j Gj (0) = 0 for j = 1, . . . , l and
∑l

j=0 |λN
j | = 1. The first term

in (4.20) was evaluated in Section 4.3 (formula (4.17)). It remains to evaluate the expression
∂◦Gj(0) = ∂◦

e (maxt∈[S,T ] gj (t, x
e(t)))|e=0.

Fix j . The function e → Gj(e) is a composition of two functions: Gj(e) = (ϕj ◦ ψ)(e) with

ψ : RN −→ Cn[S,T ], ψ(e) = xe(·) and

ϕj :Cn[S,T ] −→ R, ϕj

(
x(·)) = max gj

(
t, x(t)

)
.

t∈[S,T ]
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The function ψ is differentiable at e = 0 with Fréchet derivative given by formula (3.2). Under
hypothesis (H6) the function ϕj (x(·)) is known to be locally convex, and the action of an element
x∗
j ∈ ∂ϕj (x̄) from its subdifferential on z(·) ∈ Cn[S,T ] can be represented in the form

〈
x∗
j , z

〉 = ∫
[S,T ]

Dxg
T
j

(
t, x̄(t)

)
z(t) dμ̃j (t),

where μ̃j is a regular non-negative Borel measure with norm 1, supported on the set {t ∈ [S,T ]:
gj (t, x(t)) = ϕj (x(·))} (see [7, p. 220]).

Consider the function e → Gj(e) = (ϕj ◦ ψ)(e). Take arbitrary σ ∈ A, e∗
j ∈ ∂◦Gj(0) and

let “∂” denote the subdifferential of convex analysis. Due to chain rule (2.3) there exists x∗
j ∈

∂ϕj (x̄(·)) such that〈
e∗
j , σ

〉 = 〈
x∗
j ,Dψ(0)(σ )

〉
and Dψ(0)(σ ) is evaluated in (3.2). Therefore,

〈
e∗
j , σ

〉 = ∫
[S,T ]

Dxg
T
j

(
s, x̄(s)

)m(t)∑
k=1

σkΦ(s, tk)ΔfJ(tk)(tk) dμ̃N
j (s)

=
N∑

k=1

∫
[tk,T ]

Dxg
T
j

(
s, x̄(s)

)
σkΦ(s, tk)ΔfJ(tk)(tk) dμ̃N

j (s), (4.21)

where the properties of μ̃N
j (s) are stated above. From (4.20), (4.21) and derivations of Section 4.3

we get

0 � λN
0

N∑
k=1

T∫
tk

ξ∗
N(t)σkΦ(t, tk)ΔfJ(tk)(tk) dt

−
N∑

k=1

σk

(
L

(
tk, x̄(tk), uJ (tk)

) − L
(
tk, x̄(tk), ū(tk)

))

+
l∑

j=1

λN
j

N∑
k=1

∫
[tk,T ]

Dxg
T
j

(
t, x̄(t)

)
σkΦ(t, tk)ΔfJ(tk)(tk) dμ̃N

j (t), (4.22)

where ξ∗
N(·) ∈ ∂◦

xL(·, x̄(·), ū(·)) is a measurable selection, μN
j do not depend on the choice of

σ ∈ A. Denote λN
j dμ̃N

j := dμN
j and set

pT
N(t) := −

T∫
t

λN
0 ξ∗

N(s)Φ(s, t) ds −
l∑

j=1

∫
[t,T ]

Dxg
T
j

(
s, x̄(s)

)
Φ(s, t) dμN

j (s), t ∈ [S,T ].

(4.23)

Inequality (4.22) in terms of pN can be rewritten as

N∑
σk

[
pT

N(tk)ΔfJ(tk)(tk) − (
L

(
tk, x̄(tk), uJ (tk)

) − L
(
tk, x̄(tk), ū(tk)

))]
� 0,
k=1
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which implies

pT
N(t)ΔfJ(t)(t) − (

L
(
t, x̄(t), uJ (t)

) − L
(
t, x̄(t), ū(t)

))
� 0 for all t ∈ {t1, . . . , tN } (4.24)

because we can set all σk’s, except one, equal to a zero, and pN, N = 1,2, . . . , do not depend
on σk .

We would like to pass to the limit as N → ∞ in (4.23) and (4.24). The first term on the
RHS of (4.23) has been dealt with in Section 4.3. Let us consider the second term. Since
‖μN

j ‖(Cn)∗[S,T ] = λN
j � 1, we conclude via weak* compactness of a unit ball in a dual space

that there exists a subsequence of μN
j (we do not relabel) weakly* converging to some non-

negative regular Borel measure μj . Moreover, if λN
j are bounded away from zero for large N ,

then μj �= 0 since the measures μN
j are nonnegative and

∫
[S,T ] μ

N
j (s) ds → ∫

[S,T ] μj (s) ds as

N → ∞, which implies non-degeneracy of (λ0,μ1, . . . ,μl). Also, since μN
j are supported on

the set {t ∈ [S,T ]: gj (t, x(t)) = ϕj (x(·))}, it is not difficult to show that μj is supported on the
same set (see similar analysis in [17, Chapter 9]). Denote

pT(t) := −
T∫

t

λ0ξ
∗(s)Φ(s, t) ds −

l∑
j=1

∫
[t,T ]

Dxg
T
j

(
s, x̄(s)

)
Φ(s, t) dμj (s), t ∈ [S,T ],

(4.25)

where λ0 is a limit of a subsequence of λN
0 , N = 1,2, . . . , and ξ∗(·) ∈ ∂◦

xL(· , x̄(·), ū(·)) is a
measurable selection obtained as a pointwise a.e. limit along a subsequence of ξ∗

N(·). It is well
known that∫

[t,T ]
μN

j (s) ds −→
∫

[t,T ]
μj (s) ds

for all t ∈ [S,T ] except, possibly, a countable set of points where μj has atoms. Since the mea-
sures μN

j and μj are non-negative and finite, it is true that for any ε > 0∣∣∣∣
∫

[t,T ]
μN

j (s) ds −
∫

[t,T ]
μj (s) ds

∣∣∣∣ � ε

for sufficiently large N for all t ∈ [S,T ] except, possibly, a finite set of points. Therefore we
derive from (4.23) and (4.25) that there exists M1 > 0 such that for any ε > 0∣∣pN(t) − p(t)

∣∣ � M1ε

for sufficiently large N for all t ∈ [S,T ] except, possibly, a finite subset. By passing to the
limit in (4.24) we obtain, via arguments similar to those in Section 4.2, that there exists M2 > 0
(independent of t ∈ [S,T ] and ε) such that

pT(t)
[
f

(
t, x̄(t), ui

) − f
(
t, x̄(t), ū(t)

)] − (
L

(
t, x̄(t), ui

) − L
(
t, x̄(t), ū(t)

))
� M2ε

is satisfied for all i’s on a dense subset of [S,T ]. Therefore, in the points of continuity of p,
which have a full measure, the relationship

pT(t)
[
f

(
t, x̄(t), u

) − f
(
t, x̄(t), ū(t)

)] − (
L

(
t, x̄(t), u

) − L
(
t, x̄(t), ū(t)

))
� M2ε (4.26)

is satisfied for all u ∈ U . Since ε > 0 in (4.26) is arbitrary, this implies the maximum principle

pT(t)
[
f

(
t, x̄(t), u

) − f
(
t, x̄(t), ū(t)

)] − (
L

(
t, x̄(t), u

) − L
(
t, x̄(t), ū(t)

))
� 0 (4.27)

for all points u ∈ U , on a set of full measure. Note that (4.27) is equivalent to (4.19).
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It remains to show that p(·) defined in (4.25) satisfies (4.18). Consider first the special case
when the measures μj are absolutely continuous and dμj (s) = μ̇j (s) ds. Then from (4.23) we
derive

pT(t) = −
T∫

t

(
λ0ξ

∗(s)Φ(s, t) +
l∑

j=1

Dxg
T
j

(
s, x̄(s)

)
Φ(s, t)μ̇j (s)

)
ds

and, therefore

ṗT(t) = λ0ξ
∗(t) +

l∑
j=1

Dxg
T
j

(
t, x̄(t)

)
μ̇j (t) − pT(t)Dxf

(
t, x̄(t), ū(t)

)
.

After integrating this equality and taking into account that p(T ) = 0 due the assumption
gj (T , x̄(T )) < 0 for all j (see (H6)), we obtain (4.18).

Now let us lift the assumption on absolute continuity of μj . It is known that μj can be ap-
proximated by a sequence of absolutely continuous measures: μj,i −→

(Cn)∗[S,T ]μj as i → ∞. Let

us approximate μj by μj,i on the RHS of (4.25) and set

pT
i (t) := −

T∫
t

λ0ξ
∗(s)Φ(s, t) ds −

l∑
j=1

∫
[t,T ]

Dxg
T
j

(
s, x̄(s)

)
Φ(s, t) dμj,i(s), t ∈ [S,T ].

(4.28)

Since μj,i −→
(Cn)∗[S,T ]μj as i → ∞, the RHS of (4.28) converges to the RHS of (4.25) for all

t ∈ [S,T ] and therefore pi → p pointwise on [S,T ]. Moreover, due to absolute continuity
of μj,i , pi satisfy

pT
i (t) =

T∫
t

(
pT

i (s)Dxf
(
s, x̄(s), ū(s)

) − λ0ξ
∗(s)

)
ds −

l∑
j=1

∫
[t,T ]

Dxg
T
j

(
s, x̄(s)

)
dμj,i(s),

t ∈ [S,T ],
as proved above. Passing to the limit as i → ∞ involving the Dominated Convergence Theorem
in the first term, we obtain (4.18). �

Uniting the results of Sections 4.1–4.4 we obtain the assertions of Theorem 1.3.
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Appendix A

In Appendix A we prove the claim from Proposition 2.8.

Lemma A.1. Let Ω ⊂ R
N be an open set containing x̄, ϕ : [a, b] × Ω → R and d◦ϕt (x̄, h),

∂◦
xϕ(t, x̄) denote the M–P directional derivative of ϕ at (t, x̄) in the x-variable and the partial

M–P subdifferential in the x-variable, respectively. Assume that
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(a) the function t → ϕ(t, x), t ∈ [a, b], is measurable ∀x ∈ Ω ;
(b) |d◦ϕt (x̄, h)| < ∞ for all h ∈ R

N and a.e. t ∈ [a, b].

Then the set Sx̄ := ∫ b

a
∂◦
xϕ(t, x̄) dt is non-empty, bounded, closed and convex.

Recall that for a multimap t → Γ (t), t ∈ [a, b], the integral
∫ b

a
Γ (t) dt is defined as

b∫
a

Γ (t) dt =
{

y: y =
b∫

a

γ (t) dt, γ (·) measurable and γ (t) ∈ Γ (t) for a.e. t ∈ [a, b]
}

.

Following [7] we say that a multimap t → Γ (t), t ∈ [a, b], is measurable if it can be approxi-
mated by a countable set of measurable selections, i.e., ∃{γn(·)}∞n=1 such that γn, n = 1,2, . . . ,
are measurable and

⋃∞
n=1 γn(t) is dense in Γ (t) for a.e. t ∈ [a, b].

Proof. As a first step we shall prove that the multimap t → ∂◦
xϕ(t, x̄), t ∈ [a, b], is measurable.

Due to Proposition 2.4, the function h → d◦
t ϕ(x̄, h) is convex. The function t → d◦

t ϕ(x̄, h) is
measurable in t , since, by definition, the M–P directional derivative is equal to a pointwise limit
of measurable functions.

Recall a definition of a Fenchel conjugate function to a convex function f :Y → R, where Y

is a linear vector space:

f ∗(y∗) = sup
y∈Y

{〈y∗, y〉 − f (y)
}

and let d◦∗
t ϕ(x̄, x∗) = suph∈RN {〈x∗, h〉 − d◦

t ϕ(x̄, h)} be the Fenchel conjugate of d◦
t ϕ(x̄, ·). The

function d◦∗
t ϕ(x̄, x∗) is convex in x∗ and measurable in t , as a pointwise limit of measurable

functions along the maximizing sequence.
We can see that the M–P subdifferential of ϕ with respect to x has the following representation

∂◦
xϕ(t, x̄) = {

x∗: d◦∗
t ϕ(x̄, x∗) = 0

}
.

Indeed,

x∗ ∈ ∂◦
xϕ(t, x̄) ⇐⇒ 〈x∗, h〉 − d◦

t ϕ(x̄, h) � 0 ∀h ∈ R
N

⇐⇒ sup
h∈RN

{〈x∗, h〉 − d◦
t ϕ(x̄, h)

}
� 0 ⇐⇒ sup

h∈RN

{〈x∗, h〉 − d◦
t ϕ(x̄, h)

} = 0,

because zero is reached when h = 0. Now the measurability of the multimap t → ∂◦
xϕ(t, x̄),

t ∈ [a, b], follows from [7, Corollary 2, p. 332]. The convexity of Sx̄ = ∫ b

a
∂◦
xϕ(t, x̄) dt follows

from Lyapunov’s theorem [7, Theorem 2, p. 335] for measurable multimaps. Its boundedness is
obvious; the non-emptiness follows from Proposition 2.5 and Fillipov’s lemma on the existence
of a measurable selection (see, e.g., [17]). It remains to prove the closedness of Sx̄ .

Let {yk}∞k=1 be such that yk ∈ Sx̄, k = 1,2, . . . , and yk → y. We shall show that y ∈ Sx̄ .
Let γk(t) ∈ ∂◦

xϕ(t, x̄), t ∈ [a, b], k = 1,2, . . . , be a sequence of measurable selections such

that yk = ∫ b

a
γk(t) dt . Since the sequence {γk}∞k=1 is uniformly bounded, it contains a weakly

convergent in Lp[a, b], 1 � p < ∞, subsequence (we do not relabel). Denote its weak limit

by γ and it is clear that y = ∫ b

a
γ (t) dt . Due to the Mazur theorem, there exists a sequence of

convex combinations {zn = ∑n
k=1 α

(n)
k γk, α

(n)
k � 0,

∑n
k=1 α

(n)
k = 1, n = 1,2, . . .} such that zn

converges strongly in Lp[a, b], 1 � p < ∞, to γ and hence a subsequence converges pointwise



1000 I.A. Shvartsman / J. Math. Anal. Appl. 326 (2007) 974–1000
to γ a.e. Since the multimap t → ∂◦
xϕ(t, x̄), t ∈ [a, b], is convex and close-valued, it follows

from zn → γ a.e. that γ (t) ∈ ∂◦
xϕ(t, x̄) a.e. and, therefore y ∈ Sx̄ , which proves the lemma. �
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