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Abstract

We prove new extended forms of the Pólya–Szegö symmetrization principle. As a consequence new sharp
embedding theorems for generalized Sobolev and Besov spaces are proved.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Recently sharp forms of the Sobolev embedding theorem have been obtained using new sym-
metrization inequalities. In [1] it was shown that the oscillation of the decreasing rearrangement
of f given by the quantity f ∗∗(t) − f ∗(t) can be estimated by

f ∗∗(t) − f ∗(t) � cnt
1/n|∇f |∗∗(t), f ∈ C∞

0

(
R

n
)
, (1.1)

where f ∗∗(t) = 1
t

∫ t

0 f ∗(s) ds, and f ∗ is the nonincreasing rearrangement of f .
While variants of (1.1) had been known before (cf. [10,18]), the formulation of inequalities in

terms of the oscillation f ∗∗(t)−f ∗(t) leads to general forms of the Sobolev embedding theorem
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that are sharp up to the end points. Moreover, (1.1) has also been proven to be particularly useful
in the study of higher-order Sobolev inequalities (cf. [1,14,15]).

The fractional case was treated in [12] where the following estimate for moduli of continuity
was obtained: Let X(Rn) be an r.i. space, f ∈ X(Rn), then

f ∗∗(t) − f ∗(t) � c
ωX(t1/n, f )1

φX(t)
, (1.2)

where φX(t) is the fundamental function2 of X(Rn). Using (1.2), sharp embeddings for general-
ized Besov spaces of order s � 1 were derived in [12].

Higher-order derivatives pose a challenge for symmetrization methods since the Pólya–Szegö
symmetrization principle,∣∣∇f ◦∣∣∗∗

(t) � |∇f |∗∗(t), (1.3)

where f ◦(x) = f ∗(γn|x|n) (x ∈ R
n, γn = measure of the unit ball in R

n) denotes the spherical
decreasing rearrangement of f , which underlies the validity of (1.1) and (1.2), fails for higher-
order derivatives. Nevertheless, in [14] it was shown that starting from the embedding theorem
implied by (1.1) one could develop an iteration argument that leads to sharp higher-order Sobolev
estimates.

The method of [14] is indirect, based on certain inequalities and constructions for r.i. spaces.
For further analysis it is of interest to have a pointwise inequality of the type (1.1) for higher-
order derivatives. Observe that (1.1) readily implies the somewhat weaker pointwise estimate

f ∗∗(t) − f ∗(t) � Cnt
1/n

∞∫
t

|∇f |∗∗(s)ds

s
, f ∈ C1

0

(
R

n
)
, (1.4)

from which we can iterate (cf. Corollary 2) an estimate involving higher-order derivatives of all
orders

f ∗∗(t) − f ∗(t) � c(n, k)t1/n
∑
|α|=k

∞∫
t

s
k−1
n

(
Dαf

)∗∗
(s)

ds

s
, f ∈ Ck

0

(
R

n
)
. (1.5)

This simple formula leads efficiently to sharp higher-order Sobolev embeddings and clarifies the
role of the assumptions in the embedding theorems in [14]. We remark that using

− d

dt
f ∗∗(t) = f ∗∗(t) − f ∗(t)

t
and f ◦∗∗ = f ∗∗,

we can rewrite (1.1) as

d

dt

(−f ◦∗∗(t)
)
� cnt

1/n−1|∇f |∗∗(t). (1.6)

In comparing (1.6) with the classical Pólya–Szegö principle (1.3) we note that the expression
that appears on the left-hand side of (1.6) involves a derivative associated with the spherical
nonincreasing rearrangement of f , but the order in which we take the operations ∗∗ and d

dt
has been reversed. Nevertheless, one feels that (1.6), which is a consequence of (1.3), can be
considered as a form of the Pólya–Szegö principle from which it is a consequence. A similar

2 See Section 2.
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comment applies to (1.5), which could then be considered as a “higher-order inequality of Pólya–
Szegö type.”

For the higher-order fractional case we extend (1.2) as follows (cf. Section 6): for all
f ∈ Ck

0 (Rn) we have

f ∗∗(t) − f ∗(t) � ct1/n

∞∫
t

s
k−1
n

φX(s)

( s∫
0

ωX(f, z
1
n )k+1

z
k
n

dz

z

)
ds

s
, k � 2. (1.7)

Here ωX(f, t)r is the r-modulus of continuity of f ∈ X(Rn), defined by

ωX(f, t)r = sup
|h|�t

∥∥�r
hf

∥∥
X

(t > 0),

with �1
hf (x) = f (x + h) − f (x) and �r+1

h f (x) = �1
h(�

r
h)f (x), and φX is the fundamental

function of X (see Section 2).
Using (1.7) will allows us to extend the embedding results obtained in [12] to higher-order

generalized Besov spaces.
When working with functions defined on domains, the Pólya–Szegö principle (1.3), which

underlies the validity of (1.1)–(1.5), requires that the Sobolev functions vanish at the boundary
and therefore the extension by approximation requires strong conditions on the boundary of
the domains. In this direction we note that Rakotoson [16] obtained independently an inequality
closely connected to (1.1) on domains with boundary satisfying a Lipschitz condition and without
assuming that the Sobolev functions vanish at the boundary.

In this paper we prove versions of (1.1) and (1.5) for Maz’ya domains and without assuming
that the functions vanish at the boundary. For example, in Theorem 2 we show that if Ω is
bounded open domain in R

n (for the sake of definiteness we fix |Ω| = 1) which belongs to the
Maz’ya class Jα, 1 − 1

n
� α < 1, then for all f ∈ W 1,1(Ω) we have

f ∗∗(t) − f ∗(t) � ct1−α
(|∇f |)∗∗

(t), t ∈ (0,1/2), (1.8)

and (
f −

∫
Ω

f

)∗∗
(t) −

(
f −

∫
Ω

f

)∗
(t) � ct1−α

(|∇f |)∗∗
(t), t ∈ (0,1).

In particular, we see that for Maz’ya domains in the class Jα, 1 − 1
n

� α < 1, (1.8) holds for
all t ∈ (0,1), whenever

∫
Ω

f = 0. In fact, as we shall see in Theorem 3, the last inequality
characterizes the domains in Maz’ya’s class Jα. For higher-order derivatives (see Lemma 1) we
get that for all k � 1, for all f ∈ Wk,1(Ω), and for all 0 < t < 1/2, we have

f ∗∗(t) − f ∗(t)

� c(k,n)t1−α

( ∑
|β|=k

1∫
t

s(k−1)(1−α)
(
Dβf

)∗∗
(s)

ds

s
+

∑
1�|β|�k−1

∥∥Dβf
∥∥

L1

)
.

In particular, Lipschitz domains correspond to α = 1 − 1/n (cf. Example 1).
This leads to the following general form of the Sobolev embedding theorem (cf. Theo-

rem 6):
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Theorem 1. (See [14].) Let Y(Ω) be an r.i. space, the Sobolev space Wk,Y (Ω) is defined3 by

Wk,Y (Ω) = {
f : Dβf ∈ Y, for all β, |β| � k

}
,

‖f ‖Wk,Y (Ω) =
∑

0�|β|�k

∥∥Dβf
∥∥

Y(Ω)
.

Let Ω ∈ Jα , 1 − 1
n

� α < 1. Let k ∈ N, 1 � k < n, and let Y(Ω) be an r.i. space with Boyd
indices4 such that (k − 1)(1 − α) < αY � αY < 1. Then

Wk,Y (Ω) ⊂ Y(1−α)k(Ω),

where Y(1−α)k(Ω) denotes the rearrangement invariant set (which with a different notation was
introduced in [14]) defined by

Y(1−α)k(Ω) := {
f : t−k(1−α)

(
f ∗∗(t) − f ∗(t)

) ∈ Y(Ω)
}
,

‖f ‖Y(1−α)k
= ∥∥t−k(1−α)

(
f ∗∗(t) − f ∗(t)

)∥∥
Y
.

In particular, we obtain the following sharp version of the Sobolev embedding theorem for
Maz’ya’s domains Ω ∈ Jα , 1 − 1

n
� α < 1:

Wk,p(Ω) ⊂ Lp∗,p(Ω), (1.9)

where 1 < p � 1
k(1−α)

, 1
p∗ = 1

p
− (1 − α)k, with the convention that p∗ = ∞ when p = 1

k(1−α)
,

in which case

L∞,p(Ω) =
{

f : ‖f ‖p

L∞,p(Ω) =
1∫

0

(
f ∗∗(t) − f ∗(t)

)p dt

t
< ∞

}
.

Theorem 1 (and in particular (1.9)) extends the results of [14] to Sobolev spaces with rough
domains and without requiring the Sobolev functions to vanish at the boundary. We note that,
for Lipschitz domains and r.i. spaces, somewhat related results were recorded in [9] but with an
indirect formulation that only concerns with Banach spaces, while the sharp form of the Sobolev
embedding theorem (1.9) uses spaces that are not necessarily linear spaces. In this direction we
should also note the dissertation of Kalis [8] where results of this type are extended to Sobolev
spaces of vector fields through the use of a connection to Poincaré inequalities.

As usual, the symbol f 	 g will indicate the existence of a universal constant c > 0 (indepen-
dent of all parameters involved) so that (1/c)f � g � cf , while the symbol f � g means that
f � cg, and f � g means that f � cg.

2. Preliminaries

We rather briefly collect some definitions, notations and properties about functions and func-
tion spaces which are used in this paper.

In what follows, given a vector u ∈ R
m, we denote by |u| its Euclidean norm.

Let g be a locally integrable function having weak derivatives of all orders up to r ∈ N, we
denote by drg the vector (Dβg)|β|=r of all derivatives of order |β| = r . It is well know and easy

3 When Y = Lp we use the classical notation Wk,Y (Ω) = Wk,p(Ω).
4 See Section 2.



J. Martín, M. Milman / J. Math. Anal. Appl. 330 (2007) 91–113 95
to see that∣∣∇∣∣dk−1g
∣∣∣∣ �

∣∣dkg
∣∣, k = 1,2, . . . , r. (2.1)

A rearrangement invariant space (r.i. space), Y = Y(Ω), is a Banach function space of
Lebesgue measurable functions on Ω ⊂ R

n endowed with a norm ‖ · ‖Y that satisfies the Fa-
tou property and is such that, if f ∈ Y and g∗ = f ∗, then g ∈ Y and ‖g‖Y = ‖f ‖Y .

Every r.i. space Y has a representation as a function space on Y∧(0, |Ω|) such that

‖f ‖Y(Ω) = ‖f ∗‖Y ^(0,|Ω|).

Since the measure space will be always clear from the context it is convenient to “drop the hat”
and use the same letter Y to indicate the different versions of the space Y that we use.

The upper and lower Boyd indices associated with an r.i. space Y are defined by

αY = inf
s>1

lnhY (s)

ln s
and αY = sup

s<1

lnhY (s)

ln s
, (2.2)

where hY (s) denotes the norm on Y^(0, |Ω|) of the dilation operator Es, s > 0, defined by

Esf (t) =
{

f ∗( t
s
), 0 < t < s|Ω|,

0, s|Ω| < t < |Ω|.
It is also useful sometimes to consider a slightly different set of indices obtained by means of

replacing hY (s) in (2.2) by

MY (s) = sup
t∈(0,min(1, 1

s
)|Ω|)

φY (ts)

φY (t)
, s > 0,

where φY (s) is the fundamental function of X:

φY (s) = ‖χE‖Y ,

where E is any measurable subset of Ω with |E| = s.
The corresponding indices are denoted βY , βY , and will be referred to as the upper and lower

fundamental indices of Y . Actually, we have (cf. [2])

0 � αY � βY � βY � αY � 1.

We shall usually formulate conditions on r.i. spaces in terms of the Hardy operators defined
by

Pf (t) = 1

t

t∫
0

f (s) ds; Qaf (t) = 1

ta

∞∫
t

saf (s)
ds

s
, 0 � a < 1.

In particular, it is well known that if Y is an r.i. space, P (respectively Qa) is bounded on Y if
and only if αY < 1 (respectively a < αY ) (see, for example, [2, Chapter 3]). If a = 0, we shall
write Q instead of Q0.

3. Rearrangement inequality and isoperimetric inequality

In this section we show how to derive the basic rearrangement inequality (1.1), without requir-
ing the Sobolev functions to vanish at the boundary, on rough domains. For example, combining
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Theorem 2 and Example 1, it follows that for a bounded domain Ω ⊂ R
n with Lipschitz bound-

ary we have the following version of (1.1):

f ∗∗(t) − f ∗(t) � cnt
1/n|∇f |∗∗(t), t ∈ (

0, |Ω|/2
)
, f ∈ W 1,1(Ω). (3.1)

More generally, for domains Ω in Maz’ya’s class Jα (1 − 1/n � α < 1) (see Definition 1) we
need to replace t1/n by t1−α on the right-hand side of (3.1). Interestingly, as we shall soon see,
this leads to Sobolev embeddings that depend on α (see Example 2 bellow for domains with
cusps connected with the exponent α).

In what follows we consider bounded domains.

Definition 1. (See [13, p. 162].) A domain Ω belongs to the class Jα (1 − 1/n � α < 1) if there
exists a constant M ∈ (0, |Ω|) such that

Uα(M) = sup
|S|α

PΩ(S)
< ∞,

where the sup is taken over all S open bounded subsets of Ω such that Ω ∩ ∂S is a manifold of
class C∞ and |S| � M (in which case we will say that S is an admissible subset) and where for
a measurable set E ⊂ Ω, PΩ(E) is the De Giorgi perimeter of E in Ω defined by

PΩ(E) = sup

{∫
E

divϕ dx: ϕ ∈ [
C1

0(Ω)
]n

, ‖ϕ‖L∞(Ω) � 1

}
.

By an approximation process it follows that if Ω is a bounded domain in Jα, then for any
0 < M < |Ω|, there is a constant cM > 0 such that, for all measurable set E ⊂ Ω with |E| � M,

we have

PΩ(E) � cM |E|α. (3.2)

Indeed, this was already observed in [17, Lemma 1.12] and follows as a direct consequence of
[13, Corollary 3.2.4 and Theorem 6.1.3].5

Example 1. If Ω is a bounded domain, starshaped with respect to a ball, or a bounded domain
having the cone property, or a Lipschitz domain, then Ω belongs to the class J1−1/n (see [13]).

Example 2. If

Ω =
{

x ∈ R
n:

N−1∑
i=1

x2
i < x2β

n , 0 < xn < a, β � 1

}

then Ω ∈ Jα′ , α′ = β(n−1)
β(n−1)+1 and Ω /∈ Jα, for α < α′ (see [13, p. 176]).

Example 3. If Ω is a John domain then Ω ∈ J1−1/n (see [3]).

5 We include a proof for the sake of completeness. Let 0 < ε < |Ω|−M and let cM = sup{ |S|α
PΩ(S)

, S ⊂ Ω admissible,

|S| � M + ε}. From [13, Corollary 3.2.4], 0 < cM < ∞ and we can find an admissible sequence Em ⊂ Ω such that
|Em| → |E| and PΩ(Em) → PΩ(E). Then |Em| � |E| + ε � M + ε for m large. Since by the definition of cM,

|Em|α � cMPΩ(Em), and (3.2) follows.
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In what follows it will be convenient to normalize our domains so that |Ω| = 1.

Theorem 2. Let Ω be a domain in Jα. Then there exists a constant c > 0 such that for all
f ∈ W 1,1(Ω) we have

f ∗∗(t) − f ∗(t) � ct1−α|∇f |∗∗(t), t ∈ (0,1/2). (3.3)

If
∫
Ω

f = 0, then (3.3) holds up to t = 1, more precisely there exists a constant c > 0 such that
for all f ∈ W 1,1(Ω) we have(

f −
∫
Ω

f

)∗∗
(t) −

(
f −

∫
Ω

f

)∗
(t) � ct1−α|∇f |∗∗(t), t ∈ (0,1). (3.4)

Proof. We first establish (3.3) assuming that f ∈ W 1,1(Ω) ∩ C∞(Ω). Then, since f is smooth,
by Federer’s co-area formula (cf. [5]), we have that

I (t) =
∫

f ∗(t)<|f |�f ∗(t/2)

∣∣∇f (x)
∣∣dx =

f ∗(t/2)∫
f ∗(t)

Hn−1
({

x:
∣∣f (x)

∣∣ = r
})

dr, (3.5)

where Hn−1 denotes the (n − 1)-Hausdorff measure. Since for any measurable set E one has

PΩ(E) � Hn−1(∂E ∩ Ω),

it follows that if E = {x: |f (x)| � r}, we have ∂E ⊂ {x: |f (x)| = r} (in fact, by regularity of f

it follows from Sard’s lemma that ∂E = {x: |f (x)| = r} a.e. r). Consequently,

I (t) �
f ∗(t/2)∫
f ∗(t)

PΩ

({
x:

∣∣f (x)
∣∣ � r

})
dr.

Now since for r ∈ (f ∗(t), f ∗(t/2)) we have

∣∣{x:
∣∣f (x)

∣∣ � r
}∣∣ �

∣∣{x:
∣∣f (x)

∣∣ > f ∗(t)
}∣∣ � t <

1

2
,

it follows from (3.2) that

PΩ

({
x:

∣∣f (x)
∣∣ � r

})
� c1/2

∣∣{x:
∣∣f (x)

∣∣ � r
}∣∣α.

Therefore for all 0 < t < 1
2 we have

I (t) =
f ∗(t/2)∫
f ∗(t)

PΩ

({
x:

∣∣f (x)
∣∣ � r

})
dr � c1/2

f ∗(t/2)∫
f ∗(t)

∣∣{x:
∣∣f (x)

∣∣ � r
}∣∣α dr

�
∣∣{x:

∣∣f (x)
∣∣ � f ∗(t/2)

}∣∣α(
f ∗(t/2) − f ∗(t)

)
�

(
t

2

)α(
f ∗(t/2) − f ∗(t)

)
.
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On the other hand,

I (t) =
∫

f ∗(t)<|f |�f ∗(t/2)

∣∣∇f (x)
∣∣dx �

t∫
0

|∇f |∗(s) ds = t |∇f |∗∗(t).

So, all together we have obtained[
f ∗(t/2) − f ∗(t)

]
� t1−α|∇f |∗∗(t), t ∈ (0,1/2).

Consider now an arbitrary f ∈ W 1,1(Ω). Select fn ∈ W 1,1(Ω) ∩ C∞(Ω) such that f ∗
n → f ∗

a.e. and fn → f in W 1,1(Ω). Then, by the first part of the proof,[
f ∗

n (t/2) − f ∗
n (t)

]
� t1−α|∇fn|∗∗(t), t ∈ (0,1/2),

but

t |∇fn|∗∗(t) �
t∫

0

∣∣∇(fn − f )
∣∣∗(s) ds +

t∫
0

|∇f |∗(s) ds

�
∥∥∣∣∇(fn − f )

∣∣∥∥
L1(Ω)

+ t |∇f |∗∗(t),
therefore[

f ∗(t/2) − f ∗(t)
] = lim

n→∞
[
f ∗

n (t/2) − f ∗
n (t)

]
� lim

n→∞ t1−α|∇fn|∗∗(t)

� t1−α|∇f |∗∗(t), t ∈ (0,1/2).

Finally to prove (3.3), simply note that the previous inequality yields

f ∗∗(t) − f ∗(t) � 1

t

t∫
0

(
f ∗(s/2) − f ∗(s)

)
ds + (

f ∗(t/2) − f ∗(t)
)

�
(

1

t

t∫
0

s1−α|∇f |∗∗(s) ds + t1−α|∇f |∗∗(t)
)

�
(

|∇f |∗∗(t) 1

α

t∫
0

s1−α ds

s
+ t1−α|∇f |∗∗(t)

)

� t1−α|∇f |∗∗(t).
If

∫
Ω

f = 0, and 1/2 � t < 1, then

f ∗∗(t) − f ∗(t) � f ∗∗(1/2) � 2

1∫
0

f ∗(s) ds = 2‖f ‖L1(Ω).

Since Ω ∈ Jα, the following Sobolev–Poincaré inequality holds (see [13]):

‖f ‖L1(Ω) =
∥∥∥∥f −

∫
f

∥∥∥∥
L1(Ω)

�
∥∥|∇f |∥∥

L1(Ω)
.

Ω
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Finally, since 1/2 � t < 1,∥∥|∇f |∥∥
L1(Ω)

� t1−α
∥∥|∇f |∥∥

L1(Ω)
= t1−α|∇f |∗∗(1) � t1−α|∇f |∗∗(t). �

Remark 1. (See Talenti [18].) Let Ω ⊂ R
n be an arbitrary domain and let f ∈ C∞

0 (Ω). Then by
the isoperimetric inequality we have

Hn−1
({

x:
∣∣f (x)

∣∣ = r
})

� nβ
1/n
n

∣∣{x:
∣∣f (x)

∣∣ � r
}∣∣1−1/n

,

where βn is the measure of the unit ball. Inserting this in (3.5) we find

∫
f ∗(t)<|f |�f ∗(t/2)

∣∣∇f (x)
∣∣dx � nβ

1/n
n

f ∗(t/2)∫
f ∗(t)

∣∣{x:
∣∣f (x)

∣∣ � r
}∣∣1−1/n

dr

� nβ
1/n
n

∣∣{x:
∣∣f (x)

∣∣ � f ∗(t)
}∣∣1−1/n[

f ∗(t/2) − f ∗(t)
]

� nβ
1/n
n t1−1/n

[
f ∗(t/2) − f ∗(t)

]
.

Therefore by an easy argument, which actually is contained in the proof of the previous theorem,
we can recover the fundamental inequality

f ∗∗(t) − f ∗(t) � cnt
1/n|∇f |∗∗(t), f ∈ C∞

0 (Ω).

One could also note that this last inequality follows from Theorem 2 on a ball together with a
scaling argument.

We finish this section showing that the converse of Theorem 2 holds.

Theorem 3. Suppose that Ω ⊂ R
n is a bounded domain with |Ω| = 1. Assume that there exists

1 − 1/n � α < 1 such that for all f ∈ W 1,1(Ω) with
∫
Ω

f = 0 the rearrangement inequality

f ∗∗(t) − f ∗(t) � ct1−α|∇f |∗∗(t), t ∈ (0,1), (3.6)

holds. Then Ω ∈ Jα.

Proof. Let f ∈ W 1,1(Ω), set g = f − ∫
Ω

f . Then

‖g‖L1/α,∞(Ω) � sup
0<t<1

tαg∗∗(t) = sup
0<t<1

tα

( 1∫
t

(
g∗∗(s) − g∗(s)

)ds

s
+

1∫
0

g∗(s) ds

)

� sup
0<t<1

tα
(
g∗∗(t) − g∗(t)

) + ‖g‖L1(Ω)

� sup
0<t<1

t∫
0

|∇f |∗(s) ds + ‖g‖L1(Ω)

(
by (3.6)

)

�
∥∥|∇f |∥∥

L1(Ω)
+

∥∥∥∥f −
∫
Ω

f

∥∥∥∥
L1(Ω)

.

Therefore

inf
c∈R

‖f − c‖L1/α,∞(Ω) �
∥∥|∇f |∥∥

L1(Ω)
+

∥∥∥∥f −
∫

f

∥∥∥∥
L1(Ω)

. (3.7)
Ω
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Let us see now that (3.6) implies the Sobolev–Poincaré inequality∥∥∥∥f −
∫
Ω

f

∥∥∥∥
L1(Ω)

�
∥∥|∇f |∥∥

L1(Ω)
, ∀f ∈ W 1,1(Ω). (3.8)

By approximation it is enough to prove this claim assuming that f ∈ W 1,1(Ω) ∩ C∞(Ω). Then
g = f − ∫

Ω
f ∈ W 1,1(Ω) ∩ C∞(Ω). By (3.6),

(
g∗∗(t) − g∗(t)

)
� t−α

t∫
0

|∇f |∗(s) � t−α
∥∥|∇f |∥∥1, t ∈ (0,1).

Thus

t
(
g∗∗(t) − g∗(t)

)
� t1−α

∥∥|∇f |∥∥1 �
∥∥|∇f |∥∥1.

Since t (g∗∗(t)−g∗(t)) = ∫ ∞
g∗(t) |{x: |g(x)| > s}|ds, and the last function is obviously increasing,

we have

sup
0<t<1

t
(
g∗∗(t) − g∗(t)

) = lim
t→1− t

(
g∗∗(t) − g∗(t)

) =
1∫

0

g∗(s) ds − g∗(1−).

Now,

g∗(1−) = inf
x∈Ω

∣∣g(x)
∣∣,

and since |f − ∫
Ω

f | ∈ C(Ω),

inf
x∈Ω

∣∣∣∣f (x) −
∫
Ω

f

∣∣∣∣ = 0.

Combining these observations we see that for all f ∈ W 1,1(Ω) ∩ C∞(Ω),

1∫
0

g∗(s) ds =
∥∥∥∥f −

∫
Ω

f

∥∥∥∥
L1(Ω)

�
∥∥|∇f |∥∥

L1(Ω)
.

Therefore we can write (3.7) as

inf
c∈R

‖f − c‖L1/α,∞(Ω) �
∥∥|∇f |∥∥

L1(Ω)
.

By Maz’ya’s truncation principle (cf. [6, Theorem 4]), this inequality implies the strong type
inequality

inf
c∈R

‖f − c‖L1/α(Ω) �
∥∥|∇f |∥∥

L1(Ω)
.

We conclude using the fact that Sobolev–Poincaré type inequalities imply the validity of
Maz’ya’s Jα conditions (see [13, Lemma 2 and Corollary, p. 169]). �
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4. Inequalities for higher-order derivatives

In this section we shall obtain a higher-order version of (3.3). Throughout this section Ω will
be a bounded domain with |Ω| = 1.

Lemma 1. Let Ω ∈ Jα, k � 1. Then for all f ∈ Wk,1(Ω) and all t ∈ (0,1/2),

f ∗∗(t) − f ∗(t) � ct1−α

( 1∫
t

s(k−1)(1−α)
∣∣dkf

∣∣∗∗
(s)

ds

s
+

k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1(Ω)

)
, (4.1)

where c := c(n, k) > 0 is a constant independent of f.

Proof. (By induction.) If k = 1, then, by Theorem 2, we have that for all f ∈ W 1,1(Ω),

f ∗∗(t) − f ∗(t) � ct1−α|∇f |∗∗(t), t ∈ (0,1/2).

Thus, for all t ∈ (0,1/2),

tα−1(f ∗∗(t) − f ∗(t)
)
�

(|∇f |)∗∗
(t) = 1

t

t∫
0

|∇f |∗(z) dz � 2

1∫
t

ds

s2

t∫
0

|∇f |∗(z) dz

� 2

1∫
t

ds

s2

s∫
0

|∇f |∗(z) dz = 2

1∫
t

|∇f |∗∗(s) ds

s
.

Assume now that (4.1) holds for 1,2, . . . , k − 1, then, if f ∈ Wk,1(Ω) ⊂ Wk−1,1(Ω), we can
write

f ∗∗(t) − f ∗(t) � ct1−α

( 1∫
t

s(k−2)(1−α)
∣∣dk−1f

∣∣∗∗
(s)

ds

s
+

k−2∑
j=1

∥∥∣∣djf
∣∣∥∥

L1

)

� t1−α

( 1/2∫
t

s(k−2)(1−α)
∣∣dk−1f

∣∣∗∗
(s)

ds

s
+

k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1

)
. (4.2)

Since |dk−1f | ∈ W 1,1(Ω), we have that for t ∈ (0,1/2),∣∣dk−1f
∣∣∗∗

(t) − ∣∣dk−1f
∣∣∗(t) � ct1−α

∣∣∇∣∣dk−1f
∣∣∣∣∗∗

(t). (4.3)

But

∣∣dk−1f
∣∣∗∗

(s) =
1/2∫
s

(∣∣dk−1f
∣∣∗∗

(z) − ∣∣dk−1f
∣∣∗(z))dz

z
+ ∣∣dk−1f

∣∣∗∗
(1/2)

= I0(s) + ∣∣dk−1f
∣∣∗∗

(1/2) � I0(s) + ∥∥∣∣dk−1f
∣∣∥∥

L1 .

We estimate I0(s) using (4.3) and (2.1) to get

I0(s) � c

1∫
z1−α

∣∣∇∣∣dk−1f
∣∣∣∣∗∗

(z) � c

1∫
z1−α

∣∣dkf
∣∣∗∗

(z)
dz

z
.

s s
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Now, inserting this estimate in (4.2) and a short argument involving Fubini’s theorem
yields (4.1). �
Corollary 1. Let Ω ∈ Jα. Then for all f ∈ Wk,1(Ω) (k � 1), t ∈ (0,1), we have

f ∗∗(t) �
1∫

t

sk(1−α)
∣∣dkf

∣∣∗∗
(s)

ds

s
+

k−1∑
j=0

∥∥∣∣djf
∣∣∥∥

L1(Ω)
. (4.4)

Proof. We start with the familiar formula

f ∗∗(t) =
1/2∫
t

(
f ∗∗(s) − f ∗(s)

)ds

s
+ f ∗∗(1/2), t ∈ (0,1/2). (4.5)

Now, we estimate the integrand in (4.5) using Lemma 1 and find that for all t ∈ (0,1/2),

f ∗∗(t) �
1/2∫
t

s1−α

( 1∫
s

z(k−1)(1−α)
∣∣dkf

∣∣∗∗
(z)

dz

z

)
ds

s
+

k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1(Ω)
+ f ∗∗(1/2)

�
1∫

t

s1−α

( 1∫
s

z(k−1)(1−α)
∣∣dkf

∣∣∗∗
(z)

dz

z

)
ds

s
+

k−1∑
j=0

∥∥∣∣djf
∣∣∥∥

L1(Ω)

� I (t) +
k−1∑
j=0

∥∥∣∣djf
∣∣∥∥

L1(Ω)
.

Fubini’s theorem yields

I (t) =
1∫

t

z(k−1)(1−α)
∣∣dkf

∣∣∗∗
(z)

( z∫
t

s1−α ds

s

)
dz

z
�

1∫
t

sk(1−α)
∣∣dkf

∣∣∗∗
(s)

ds

s
.

Since for 1/2 < t < 1 we obviously have

f ∗∗(t) � f ∗∗
(

1

2

)
� 2‖f ‖1

we get that (4.4) holds for all t ∈ (0,1). �
Using the same method given in the proof of Lemma 1 we easily obtain the following result.

Corollary 2. If f ∈ Ck
0 (Rn) (or f ∈ Ck

0(Ω), where Ω an arbitrary domain in R
n) and k � 1,

then

f ∗∗(t) − f ∗(t) � ct1/n

∞∫
t

s
k−1
n

∣∣dkf
∣∣∗∗

(s)
ds

s
,

where c := c(n, k) > 0 is independent of f.
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5. Applications

In this section we extend and complement recent results in [4,9,12,14].

5.1. Symmetrization inequalities and Sobolev–Poincaré type inequalities

In this section we show some sharp Sobolev–Poincaré type inequalities that follow from (3.3)
and (3.4) in the context of Lp,q spaces.

Lemma 2. Let Ω ⊂ R
n be a bounded domain with |Ω| = 1. Assume that there exists 1 − 1/n �

α < 1 such that for all f ∈ W 1,1(Ω) inequalities (3.3) and (3.4) hold. Then,

(1) If p > 1, 1 − α < 1/p and r = p
p(α−1)+1 then W 1,p(Ω) ⊂ Lr,p(Ω). Moreover,

inf
c∈R

‖f − c‖Lr,p(Ω) �
∥∥|∇f |∥∥

Lp(Ω)
, ∀f ∈ W 1,p(Ω). (5.1)

(Notice that Lr,p(Ω) ⊂ Lr(Ω), since r > p.)
(2) If p > 1 and 1 −α = 1/p, then r = p

p(α−1)+1 = ∞, and we have W 1,p(Ω) ⊂ L∞,p(Ω) and

inf
c∈R

‖f − c‖L∞,p(Ω) �
∥∥|∇f |∥∥

Lp(Ω)
,

where L∞,p(Ω) = {f : ‖f ‖p

L∞,p(Ω) = ∫ 1
0 (f ∗∗(t) − f ∗(t))p dt

t
< ∞}.

Proof. (1) Let f ∈ W 1,p(Ω) ⊂ W 1,1(Ω), and let I = (
∫ 1

0 ((f ∗∗(t) − f ∗(t))t1/r )p dt
t
)1/p. Split-

ting the interval of integration (0,1) = (0, 1
2 ) ∪ [ 1

2 ,1) and using (3.3) we see that

I �
∥∥|∇f |∗∗∥∥

p
+ ‖f ‖1 � ‖f ‖W 1,p(Ω) (since p > 1).

By the fundamental theorem of Calculus we can write

f ∗∗(t) =
1∫

t

(
f ∗∗(s) − f ∗(s)

)ds

s
+

1∫
0

f ∗(s) ds,

therefore using that Q : Lr,p → Lr,p is bounded, and p > 1, we readily see that

‖f ‖Lr,p(Ω) � I + ‖f ‖1 �
∥∥|∇f |∥∥

Lp(Ω)
+ ‖f ‖1. (5.2)

Thus,

W 1,p(Ω) ⊂ Lr,p(Ω).

It follows from (5.2) that for any c ∈ R we have

‖f − c‖Lr,p(Ω) �
(‖f − c‖L1(Ω) + ∥∥|∇f |∥∥

Lp(Ω)

)
.

Therefore

inf
c∈R

‖f − c‖Lr,p(Ω) �
(

inf
c∈R

‖f − c‖L1(Ω) + ∥∥|∇f |∥∥
Lp(Ω)

)
�

∥∥|∇f |∥∥
L1(Ω)

+ ∥∥|∇f |∥∥
Lp(Ω)

(
by (3.8)

)
�

∥∥|∇f |∥∥
Lp(Ω)

,

and (5.1) follows.
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(2) If 1 − α = 1/p, then I = ‖f ‖L∞,p(Ω). We proceed as before, and we have

‖f ‖L∞,p(Ω) =
( 1∫

0

(
f ∗∗(t) − f ∗(t)

)p dt

t

)1/p

�
∥∥|∇f |∗∗∥∥

p
+ ‖f ‖1

and hence

inf
c∈R

‖f − c‖L∞,p(Ω) �
∥∥|∇f |∥∥

Lp(Ω)
. �

Remark 2. Consider the Brézis–Wainger spaces BWp(Ω) defined by

BWp(Ω) =
{

f : ‖f ‖BWp(Ω) =
{ 1∫

0

(
f ∗∗(s)
1 + ln 1

s

)p
ds

s

}1/p

< ∞
}

.

In the limiting case 1−α = 1
p
, the previous result implies a Poincaré–Sobolev inequality involv-

ing these spaces. Indeed, since L(∞,p)(Ω) ⊂ BWp(Ω), and in fact (cf. [1, Lemma 2]),

‖f ‖BWp(Ω) � ‖f ‖L∞,p(Ω) + ‖f ‖1,

the second part of Lemma 2 gives

inf
c∈R

‖f − c‖BWp(Ω) �
∥∥|∇f |∥∥

Lp(Ω)
, ∀f ∈ W 1,p(Ω).

Remark 3. In Lemma 2 we can also consider the case p = 1, which corresponds to r =
p

p(α−1)+1 = 1
α
. We obtain

inf
c∈R

‖f − c‖L1/α,∞(Ω) �
∥∥∥∥f −

∫
Ω

f

∥∥∥∥
L1/α,∞(Ω)

�
∥∥|∇f |∥∥

L1(Ω)
.

For the details see the proof of Theorem 3 above.

5.2. Sobolev embeddings for domains Ω ⊂ R
n of class Jα

We extend the results of the previous section to the setting of r.i. spaces.

Theorem 4. Let Ω be a bounded domain in Jα with |Ω| = 1. Let 1 � k < n. Let X(Ω) and
Y(Ω) be r.i. spaces. Assume that∥∥∥∥∥

1∫
t

sk(1−α)g∗∗(s)ds

s

∥∥∥∥∥
X∧(0,1)

� c‖g‖Y∧(0,1), ∀g ∈ M+(0,1). (5.3)

Then the following statements hold:

(1) For 1 � k < n we have

Wk,Y (Ω) ⊂ X(Ω).

(2) inf
Λ∈Pk−1

‖f − Λ‖X(Ω) �
∥∥∣∣dkf

∣∣∥∥
Y(Ω)

,

where Pk−1 is the set of polynomials of degree k − 1.
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Proof. (1) By Corollary 1, we can write

f ∗∗(t) �
1∫

t

sk(1−α)
∣∣dkf

∣∣∗∗
(s)

ds

s
+

k−1∑
j=0

∥∥∣∣djf
∣∣∥∥

L1(Ω)
, t ∈ (0,1).

Applying the X norm and then the triangle inequality we get

‖f ‖X �
∥∥∥∥∥

1∫
t

sk(1−α)
∣∣dkf

∣∣∗∗
(s)

ds

s

∥∥∥∥∥
X

+
k−1∑
j=0

∥∥∣∣djf
∣∣∥∥

L1(Ω)
.

The first term on the right-hand side can be estimated using (5.3). To estimate
∑k−1

j=1 ‖|djf |‖L1(Ω),

we simply use the fact that Y(Ω) ⊂ L1(Ω). It follows that

‖f ‖X(Ω) � ‖f ‖Wk,Y (Ω).

(2) For simplicity we only consider the case k = 2. Let f ∈ W 2,Y (Ω) and let

p(x) =
∫
Ω

f +
n∑

i=1

( ∫
Ω

∂f

∂xi

)
xi and Π(x) = p(x) +

∫
Ω

(f − p).

Let g = f − Π = (f − p) − ∫
Ω

(f − p). By Corollary 1,

g∗∗(t) �
1∫

t

s2(1−α)
∣∣d2f

∣∣∗∗
(s)

ds

s
+

1∑
j=0

∥∥∣∣djg
∣∣∥∥

L1(Ω)
.

Since W 2,Y (Ω) ⊂ X(Ω), we have

‖g‖X(Ω) �
∥∥∥∥∥

1∫
t

s2(1−α)
∣∣d2f

∣∣∗∗
(s)

ds

s
+

1∑
j=0

∥∥∣∣djg
∣∣∥∥

L1(Ω)

∥∥∥∥∥
X(Ω)

�
∥∥∣∣d2f

∣∣∥∥
Y(Ω)

+
1∑

j=0

∥∥∣∣djg
∣∣∥∥

L1(Ω)

(
by (5.3)

)
.

Since Ω ∈ Jα,

∥∥|∇g|∥∥
L1(Ω)

�
n∑

i=1

∥∥∥∥ ∂f

∂xi

−
∫
Ω

∂f

∂xi

∥∥∥∥
L1(Ω)

�
n∑

i=1

∥∥∥∥
∣∣∣∣∇ ∂f

∂xi

∣∣∣∣
∥∥∥∥

L1(Ω)

�
∥∥∣∣d2f

∣∣∥∥
Y(Ω)

and

‖g‖L1(Ω) =
∥∥∥∥(f − p) −

∫
Ω

(f − p)

∥∥∥∥
L1(Ω)

�
∥∥∣∣∇(f − p)

∣∣∥∥
L1(Ω)

�
n∑

i=1

∥∥∥∥ ∂f

∂xi

−
∫
Ω

∂f

∂xi

∥∥∥∥
L1(Ω)

�
n∑

i=1

∥∥∥∥
∣∣∣∣∇ ∂f

∂xi

∣∣∣∣
∥∥∥∥

L1(Ω)

�
∥∥∣∣d2f

∣∣∥∥
Y(Ω)

.

Summarizing we have

‖g‖X(Ω) �
∥∥∣∣d2f

∣∣∥∥ .

Y(Ω)
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This concludes the proof since

inf
Λ∈P1

‖f − Λ‖X(Ω) � ‖f − Π‖X(Ω) = ‖g‖X(Ω). �
5.3. Optimal Sobolev embeddings for domains Ω ⊂ R

n of class J1−1/n

In what follows Ω will be a bounded domain of class J1−1/n with |Ω| = 1. Let us also
recall (see Examples 1–3 above) that the class J1−1/n includes several important examples, like
domains with the cone property, domains with Lipschitz boundary or John domains. In fact, if
Ω ⊂ R

2 is a bounded simply connected domain with |Ω| = 1 then combining the results of [3]
and Theorem 2 we have that

f ∗∗(t) − f ∗(t) � ct1/2(|∇f |)∗∗
(t), t ∈ (0,1),

for all f ∈ W 11(Ω) such that
∫
Ω

f = 0, if and only if Ω is a John domain.

Theorem 5. Let X(Ω) and Y(Ω) be r.i. spaces such that 0 < αY , αY < 1. The embedding

W 1,Y (Ω) ⊂ X(Ω) (5.4)

holds for every Ω bounded domain of class J1−1/n, with |Ω| = 1, if and only if

∥∥∥∥∥
1∫

t

g∗∗(s)s
1
n
ds

s

∥∥∥∥∥
X∧(0,1)

� c‖g‖Y∧(0,1), ∀g ∈ Y∧(0,1). (5.5)

Moreover, if (5.4) holds,

X(Ω) ⊂ Y1/n(Ω). (5.6)

Proof. Assume that condition (5.5) holds, then (5.4) follows by Theorem 4 with α = 1 − 1/n

and k = 1.

Conversely, set

u(x) =
1∫

γn|x|n
f (s)s1/n−1 ds, x ∈ B, f ∈ M+(0,1).

(γn = measure of the unit ball in R
n and B is the ball about the origin with radius γ −n

n .)
Observe that for h ∈ Y^(0,1) we have that∣∣{x ∈ B: h

(
γn|x|n) > λ

}∣∣ = ∣∣{t ∈ (0,1): h(t) > λ
}∣∣.

Consequently

u∗(t) =
1∫

t

s1/nf (s)
ds

s
.

Moreover, an easy computation shows that∣∣∇u(x)
∣∣ = nγnf

(
γn|x|n).
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Therefore (5.4) applied to the ball B yields

∥∥∥∥∥
1∫

t

f (s)s1/n−1 ds

∥∥∥∥∥
X

= ‖u‖X � ‖∇u‖Y + ‖u‖Y � ‖f ‖Y + ‖u‖Y .

We conclude observing that

‖u‖Y =
∥∥∥∥∥

1∫
t

f (s)s1/n−1 ds

∥∥∥∥∥
Y

�
∥∥∥∥∥

1∫
t

∣∣f (s)
∣∣ds

s

∥∥∥∥∥
L1

� c‖f ‖Y .

The proof of (5.6) follows from [14, Theorem 3.6]. �
Remark 4. Under the assumptions of Theorem 5, and starting from (5.5) and using a suitable
modification of an argument in [4], it is possible to show a higher-order version of (5.5), namely
that if Wk,Y (Ω) ⊂ X(Ω) holds for every bounded domain of class J1−1/n then∥∥∥∥∥

1∫
t

g∗∗(s)s
k
n
ds

s

∥∥∥∥∥
X∧(0,1)

� c‖g‖Y∧(0,1).

We shall leave the details to the interested reader. Likewise, when dealing with necessary con-
ditions for the embedding W

1,Y
0 (Ω) ⊂ X(Ω), where Ω is a ball with |Ω| = 1, if we assume

the density of functions in L1(0,1) that vanish in a neighborhood of 1 in Y we can use the test
functions u(x) =

∫ 1
γn|x|n f ◦(s)s1/n−1 ds, to prove the validity of (5.5) in this case as well.

5.4. Extensions to the results of Milman–Pustylnik

Here we shall extend the results of [14] to Sobolev spaces on domains in the class Jα and
without boundary conditions.

First at all, notice that if that Ω is a bounded domain in Jα with |Ω| = 1 and Y(Ω) is an r.i.
space such that αY < 1, then it follows from (3.3) that

W 1,Y (Ω) ⊂ Y1−α(Ω).

For the case 2 � k < n we have

Theorem 6. 6 Let Ω be a bounded domain of class Jα with |Ω| = 1. Let k ∈ N, 2 � k < n, and
let Y(Ω) be an r.i. space such that (k − 1)(1 − α) < αY � αY < 1. Then

Wk,Y (Ω) ⊂ Y(1−α)k(Ω).

Proof. By Lemma 1, for all t ∈ (0,1/2),

f ∗∗(t) − f ∗(t) � ct1−α

( 1∫
t

s(k−1)(1−α)
∣∣dkf

∣∣∗∗
(s)

ds

s
+

k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1(Ω)

)
.

6 This theorem coincides with Theorem 1 of the Introduction.
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Thus,

t−k(1−α)f ∗∗(t) − f ∗(t)

� t (1−k)(1−α)

1∫
t

s(k−1)(1−α)
∣∣dkf

∣∣∗∗
(s)

ds

s
+ t (1−k)(1−α)

k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1

= I0(t) + I1(t).

By Fubini’s theorem,

I0(t) � 1

t

t∫
0

∣∣dkf
∣∣∗(s) ds + t (1−k)(1−α)

1∫
t

s(k−1)(1−α)
∣∣dkf

∣∣∗(s)ds

s

= ∣∣dkf
∣∣∗∗

(t) + Q(k−1)(1−α)

(∣∣dkf
∣∣∗)(t), t ∈ (0,1/2). (5.7)

Moreover, for 0 < t < 1/2,

I1(t) = t (1−k)(1−α)

k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1

�
(

t (1−k)(1−α)

1∫
t

s(k−1)(1−α) ds

s

)
k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1

= Q(k−1)(1−α)(1)(t)

(
k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1

)
. (5.8)

Likewise, if 1/2 � t < 1,

t−k(1−α)
(
f ∗∗(t) − f ∗(t)

)
� sup

1/2�t�1

(
t−k(1−α)

(
f ∗∗(t) − f ∗(t)

))
� f ∗∗(1/2) � f ∗∗(1) = ‖f ‖L1 . (5.9)

Thus by (5.7)–(5.9) we get that for t ∈ (0,1),

t−k(1−α)
(
f ∗∗(t) − f ∗(t)

)
�

∣∣dkf
∣∣∗∗

(t) + Q(k−1)(1−α)

(∣∣dkf
∣∣∗)(t)

+ Q(k−1)(1−α)(1)(t)

(
k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1

)
+ ‖f ‖L1 .

Therefore, by the conditions on indices, and the fact that Y(Ω) ⊂ L1, we get that
‖f ‖Y(1−α)k(Ω) can be estimated by∥∥∥∥∥

∣∣dkf
∣∣∗∗

(t) + Q(k−1)(1−α)

(∣∣dkf
∣∣∗)(t) + Q(k−1)(1−α)(1)(t)

(
k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1

)
+ ‖f ‖L1

∥∥∥∥∥
Y

�
(∥∥∣∣dkf

∣∣∥∥
Y

+
k−1∑
j=0

∥∥∣∣djf
∣∣∥∥

L1

)

�
k∑

j=0

∥∥∣∣dkf
∣∣∥∥

Y
. �
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Proposition 1. Let Ω ∈ Jα, let p > 1, and suppose that kp(1 − α) � 1. Then

Wk,p(Ω) ⊂ Lq∗,p(Ω), q∗ = p

1 − kp(1 − α)
.

Note that if kp(1 − α) = 1, then

Wk,p(Ω) ⊂ L∞,p(Ω) ⊂ BWp(Ω).

Remark 5. Using Corollary 2, we can obtain an easy proof of the following result (see [14,
Theorem 1.2]): Let Ω be an open domain in R

n, let k ∈ N, 2 � k < n, and let Y(Ω) be an r.i.
space such that k−1

n
< αY � αY < 1. Then

W
k,X
0 (Ω) ⊂ Yk/n(Ω). (5.10)

In fact, by Corollary 2,

f ∗∗(t) − f ∗(t) � ct1/n

∞∫
t

s
k−1
n

∣∣dkf
∣∣∗∗

(s)
ds

s
.

Thus

t
−k
n

(
f ∗∗(t) − f ∗(t)

)
� ct

1−k
n

∞∫
t

s
k−1
n

∣∣dkf
∣∣∗∗

(s)
ds

s
.

By Fubini,

t
1−k
n

∞∫
t

s
k−1
n g∗∗(s)ds

s
= n

n − k + 1

(
1

t

t∫
0

g∗(s) ds + t
1−k
n

∞∫
t

s
k−1
n g∗(s)ds

s

)

= n

n − k + 1

(
g∗∗(t) + Qk−1

n
(g∗)(t)

)
.

Therefore

‖f ‖Yk/n
�

∥∥∣∣dkf
∣∣∗∗∥∥

Y
+ ∥∥Qk−1

n

(∣∣dkf
∣∣∗)∥∥

Y
.

The conditions on the indices of the spaces imply that∥∥∣∣dkf
∣∣∗∗∥∥

Y
� c

∥∥∣∣dkf
∣∣∥∥

Y
and

∥∥Qk−1
n

(∣∣dkf
∣∣∗)∥∥

Y
� c

∥∥∣∣dkf
∣∣∥∥

Y
,

concluding the proof.
To compare this result with [14], recall that in [14, Theorem 1.2] the conditions imposed on

Y(Ω) are: αY < 1 and “Y satisfies the Q(k − 1) condition,” i.e.,
∞∫

1

s
k−1
n hY

(
1

s

)
ds

s
< ∞.

If Y ′ denotes the associate space of Y then (cf. [2, Chapter 3, Proposition 5.11]) hY ( 1
s
) = 1

s
hY ′(s)

and we have: Y(Ω) satisfies the Q(k − 1) condition iff
∞∫

s
k−1
n

−1hY ′(s)
ds

s
< ∞.
1
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In turn the last condition is equivalent to (cf. [2, Chapter 3, Lemma 5.9])

αY ′ < 1 − k − 1

n
.

Now, as is well known αY ′ = 1 − αY , and therefore we see that Y(Ω) satisfies the Q(k − 1)

condition if and only if k−1
n

< αY .

6. Sobolev embeddings on RRR
n: The fractional case

In this section we deal with the higher-order version of (1.2). (A detailed study of the fractional
case on general domains will be considered in [11].)

Lemma 3. If f ∈ C∞
0 (Rn) then, for every k � 2,

f ∗∗(t) − f ∗(t) � ct1/n

∞∫
t

s
k−1
n

φX(s)

( s∫
0

ωX(f, z
1
n )k+1

z
k
n

dz

z

)
ds

s
. (6.1)

Proof. By Corollary 2,

f ∗∗(t) − f ∗(t) � t1/n

∞∫
t

s
k−1
n

∣∣dkf
∣∣∗∗

(s)
ds

s
. (6.2)

On the other hand, by (1.2),

∣∣dkf
∣∣∗∗
1 (s) =

∞∫
s

(∣∣dkf
∣∣∗∗

(x) − ∣∣dkf
∣∣∗(x)

)dx

x
�

∞∫
s

(
ωX(|dkf |, x1/n)

φX(x)

)
dx

x
.

Inserting the last estimate in (6.2) and using Fubini we find

f ∗∗(t) − f ∗(t) � t1/n

∞∫
t

(
s

k−1
n

∞∫
s

(
ωX(|dkf |, x1/n)

φX(x)

)
dx

x

)
ds

s

� t1/n
∑
|α|=k

∞∫
t

s
k−1
n ωX(Dαf, s1/n)

φX(s)

ds

s
.

Finally, using the well-known estimate (see, for example, [7])

ωX

(
Dαf, s

)
�

s∫
0

ωX(f, z)k+1

zk

dz

z

(|α| = k
)

(6.1) follows readily. �
Let X = X(Rn) be an r.i. space, and let Y be an r.i. space over (0,∞) and let s > 0. Set

r = [s] + 1 ([s] = integral part of s).

The Besov space B̊s
X,Y (Rn) is defined (see [12]) as the closure of C∞

0 (Rn) under the seminorm

‖f ‖B̊
s

X,Y (Ω)
=

∥∥∥∥ t− s
n ωX(f, t1/n)r

φY (t)

∥∥∥∥
Y

.
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Example 4. Let X = Lp(Rn) and Y = Lq([0,∞)), then φY (t) = t1/q and

‖f ‖B̊
s

X,Y (Ω)
	

( ∞∫
0

(
t−sωp(f, t)r

)q dt

t

)1/q

.

Thus B̊s
Lp,Lq (R

n) coincides with the usual space B̊s
p,q(Rn).

Theorem 7. (See [12] if 0 < s � 1.) Let X = X(Rn), Y (0,∞) be r.i. spaces, and let s > 1.
Moreover, suppose that

s − 1

n
< αY − βY + βX and αY < βY + s − [s]

n
.

Then

B̊
s

X,Y

(
R

n
) ⊂ Y s

n
(X)

(
R

n
)
,

where Y s
n
(X) is the rearrangement invariant set introduced in [12], defined by7

Ys(X) =
{
f : ‖f ‖Y(∞,s,X) =

∥∥∥∥t−s φX(t)

φY (t)
f ∗

0 (t)

∥∥∥∥
Y

< ∞
}
.

Proof. By Lemma 3 (with k = [s]) we have that

f ∗∗(t) − f ∗(t) � t1/n

∞∫
t

s
k−1
n

φX(s)

( s∫
0

ωX(f, z
1
n )k+1

z
k
n

dz

z

)
ds

s
.

Thus

‖f ‖Y s
n
(X) �

∥∥∥∥∥t
1−s
n

φX(t)

φY (t)

∞∫
t

s
k−1
n

φX(s)

( s∫
0

ωX(f, z
1
n )k+1

z
k
n

dz

z

)
ds

s

∥∥∥∥∥
Y

= I.

The conditions on the indices (see [12, Lemma 1 and Remark 1]) ensure that∥∥∥∥t
1−s
n

φX(t)

φY (t)
Qh(t)

∥∥∥∥
Y

�
∥∥∥∥t

1−s
n

φX(t)

φY (t)
h(t)

∥∥∥∥
Y

.

Thus

I �
∥∥∥∥∥ t− s−k

n

φY (t)

( s∫
0

ωX(f, z
1
n )k+1

z
k
n

dz

z

)∥∥∥∥∥
Y

.

We claim that∥∥∥∥ t− s−k
n

+1

φY (t)
Ph(t)

∥∥∥∥
Y

�
∥∥∥∥ t− s−k

n
+1

φY (t)
h(t)

∥∥∥∥
Y

. (6.3)

7 If s
n < αY − βY + βX , then∥∥∥∥t−s/n φX(t)

φY (t)
f ∗

0 (t)

∥∥∥∥
Y

	
∥∥∥∥t−s/n φX(t)

φY (t)
f ∗∗(t)

∥∥∥∥
Y

thus, in this case Y s (X) is an r.i. space.

n
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This given we have

I �
∥∥∥∥∥ t− s−k

n
+1

φY (t)

(
1

s

s∫
0

ωX(f, z
1
n )k+1

z
k
n

dz

z

)∥∥∥∥∥
Y

�
∥∥∥∥ t− s

n ωX(f, s
1
n )k+1

φY (t)

∥∥∥∥
Y

= ‖f ‖B̊
s

X,Y (Ω)
.

It remains to prove (6.3). Let α = s−k
n

. Since P is a positive operator we may assume without
loss that h � 0. Now

t1−α

φY (t)
Ph(t) =

1∫
0

h(st)(st)

φY (st)

1−α

sα−1 φY (st)

φY (t)
ds �

1∫
0

h(st)(st)

φY (st)

1−α

sα−1MY (s) ds.

Thus ∥∥∥∥ t1−α

φY (t)
Ph(t)

∥∥∥∥
Y

�
1∫

0

sα−1 dY

(
1

s

)
MY (s) ds

∥∥∥∥ t1−α

φY (t)
h(t)

∥∥∥∥
Y

,

and by the definitions of indices we have

1∫
0

sα−1 dY

(
1

s

)
MY (s) ds < ∞ ⇔ αY < βY + α. �

Corollary 3. Let Y = Lq, and let X be an r.i. space such that s−1
n

< βX . Then for all f ∈
C∞

0 (Rn),

∞∫
0

(
t−

s
n φX(t)

(
f ∗∗(t) − f ∗(t)

))q dt

t
� c

∞∫
0

(
t−sωX(f, t)[s]+1

)q dt

t
.
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