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Abstract

This paper is devoted to the study of some g-harmonic analysis related to the third g-Bessel function of order zero. We establish a
product formula leading to a g-translation with some positive kernel. As an application, we provide a g-analogue of the continuous
wavelet transform related to this harmonic analysis.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In literature, harmonic analysis related to the classical Bessel function is well developed (see [13] and references
therein). The generalized translation associated with the Bessel operator introduced by J. Delsarte in 1938 is related
to the product formula for the normalized Bessel function. It plays together with its positivity a central role in the
development of the classical harmonic analysis.

However, there exist only few papers devoted to the harmonic analysis related to the basic Bessel functions (see
[1,2,10]). None of these papers treated a product formula for the g-Bessel functions or the positivity of the associated
g-generalized translation. Some of them defined the g-generalized translation using a g-transmutation operator.

In this paper, we are concerned with Jy(.; qz), the third Jackson g-Bessel function of order zero. We construct
a product formula for this function leading to a positive g-translation which is necessary and constructive for some
applications, such as the g-wavelet transform which is the aim of Section 5.

This paper is organized as follows: In Section 2, we present some preliminary results and notations that will be
useful in the sequel. In Section 3, we define and study the g-generalized translation associated with the g-Bessel
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operator. In particular we prove that it is positive and by using a g-analogue of Graf’s addition formula, we prove that
it is related to a product formula for the zero order g-Bessel function. Section 4, is devoted to the study of the g-Bessel
transform of order zero and its related convolution product. Finally, as an application, we provide a g-analogue of the
continuous wavelet transform related to this harmonic analysis, we prove for this g-wavelet transform a Plancherel
theorem and we give an inversion formula.

2. Notations and preliminaries

We recall some usual notions and notations used in the g-theory (see [3] and [5]). We refer to the book by G. Gasper
and M. Rahman [3] for the definitions, notations and properties of the g-shifted factorials and the g-hypergeometric
functions. Throughout this paper, we assume ¢ € ]0, 1[ and we write

1—g*
Ry ={£q": neZ},Ry + ={q": neZ}and ]IN%q,Jr =R, 4+ U{0}.

The g-derivatives Dy f and D; f of a function f are given by

x €C,

@) = flgx) N _f@T'o-fo)

D N0 = =g = (DFN)m =g ifx 20, (1)

(Dy f)(0) = f'(0) and (D;“f)(O) =g~ f/(0) provided f’(0) exists.
Using these two g-derivatives, we put
1— 2

A, =" x") D,[xD]]. )
The g-Jackson integrals from O to a and from 0 to co are defined by (see [4])

/ fdgx=(0—=q)a)_ f(ag")q". 3)

0 n=0

f fdgx=0-q) Y f(¢")q" )

0 n=—o00

provided the sums converge absolutely.
The g-Jackson integral in a generic interval [a, b] is given by (see [4])

b b a
/f(x)dqxzf.f(x)dqx—/f(x)dqx. (@)
a 0 0

We recall that the g-hypergeometric function | ¢ satisfies the following properties (see [2] or [9]):
(1) For all w, z € C, we have
(W, oo 191(0; w5 q; 2) = (2, P oo 19105 25 ¢ W). (6)

(2) Forn € Z and z € C, we have

nn—1)

(@' q) 190106 q:2) = (=D"q" = 2"(¢""5q)  101(0: 9" g5 q"2). ©)
(3) Both sides of (6) are majorized by

nn—1)
(=2 Qoo(—W: @)oo andby ¢ 7 |z]"(—Izl: q) ., (=4 D)oo (8)

ifw=¢"" (mneN).
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In [9], T.H. Koornwinder and R. Swarttouw, in order to study a g-analogue of the Hankel transform and to give its
inversion formula and a Plancherel formula, defined the third Jackson’s g-Bessel function using the g-hypergeometric
function ¢, as follows

(%" %) o
(4% Moo
They proved the following orthogonality relation

Jo(z:4%) = 101(0: %% g%, 4%2%). )

o
> " Tua (63 07) Ik (x:6%) = Sum,  Ixl<q nmeL. (10)

k=—o00
In [6] and more generally in [7], the authors gave the following g-analogue of Graf’s addition formula, by the use
of an analytic approach:

o0

JU(Rq()’+z+U); qz)Jx—v(qZ; q2) — Z Jk(Rq(*"Jr”k); 6]2)Ju+k(R6](y+U+k); q2)-[x (q(z—k); q2), (11)
k=—00
where z € Z, R, x, y, v € C satisfying g>(IHHO+NO)|R12 < 1, R(x) > —1 and R #0.
We have the following behavior:

Lemma 1. For o > —% and x € Ry 1, we have

(_qz; qZ)OO(_qZ(oz—H); qz)oo x4, ifx<1,
(Log(x)

(1) Jo (x5 g%)| <
‘ “ | (4% 4%)oo q " Teed )2, ifx > 1.

(2) Forallv € R, we have Jy(x; g%) =o(x™") as x — +00.
In particular, we have limy_, oo Jo (X; qz) =0.

B3) D (" Ja(x:¢%) = =1 =)~ 2™ Jap1 (x5 ¢7).
Proof. (1) From (6)—(8), we have

e Forx=q"eR, ,neN,
1

|x_“Ja(x; q2)| — (qz; qz)oo |(q20(+2; q2)oo 101 (0, q2a+2; qZ’q2n+2)|
< (q2;i]2)oo (- 2(n+1);(]2)00(_qzo¢+2;qz)OO
< m(_qZ; qZ)OO(_q20t+2; qZ)oo'
o Forx=¢g""€eR;,neN,
b )l = 11‘2)05 @75 0% 101 (0: 4> 75 07, 6772
< (Q2;;2)OO qn(n+2a+l)(_q2;q2)oo(_q2a+2;q2)oo.

So,

[Ja(q"; ¢%)| <

(=% 4P)os(=¢*“ TV ¢P)oo | 4", if n >0 (12)
4% 4% oo ifn <0.
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Hence, since @ > —1, we get

a(d": 42)| < (4% ¢H oo (=% gH) o0 q”‘:, ifn >0,
o ) AN
(4% 4% ¢", ifn<o0,

which is equivalent to

(—q% qV)oo(—q2@+D: g2) { x%, if x <1,
<

Ja(x: ¢
a5 4%)| < @% e g T’ x> 1.

Relation (2) is a direct consequence of (1) and by simple calculus we obtain the relation (3). O

It follows from [2, Proposition 1], that for all A € C, the function x > Jy(Ax; q2) is the solution of the g-problem

Agy(x) +22y(x) =0,
y0)=1, ' (0)=0.

We need the following spaces and sets:

o Siy(R,) is the space of all functions f on R,  such thatforall m,n € N, we have SUP, R, |x2m AZ (f)(x)] < 00
and for all n € N, we have (D (A} f))(x) = Oas x | 0in Ry 4.

e D,;(R,) is the space of all functions f on R, 4 with bounded support such that for all n € N, we have
(DF (AL f)(x) > 0asx | 0in Ry 4.

o C.y,0(Ry) is the space of all functions f on ]liq’+ for which f(x) - 0asx — coin Ry 1 and f(x) — f(0) as
x0inRy 4.

. Lg Ry, +, x2otl dyx), p > 0, the set of all functions defined on R, 4 such that

1

o 1
14
”f”p,q,a = {/|f(x)|l7x2a+l dqx} < oQ. (13)
0
In particular, for « =0, we write ||.[|p.q,0 = Il p,¢-

Remark 1. Using Lemma 1 and the unnumbered formula after Lemma 1, we can see that forall A e R, 4,
(x —> Jo()»x;qz)) € Sig(Ry), (14)

since

VneN, Al(Jo(rx:q%)) = (=1)"2"Jo(rx:q®) and D (Jo(rx:g?))=—

.2
l_qJ1(kx,q )

3. A g-generalized translation

We begin by introducing the following positive kernel defined for m, n, k € Z by

K(q" 4", q") = [Imri(a" " )] (15)

It satisfies the following properties:

Proposition 1. For m, n, k € Z, we have

(1) 0<K(q".q".q") <

(=g*1 0, g% gD { g PO ifm > k, a6)

(qZ; q2)go q2(m—k)(m—n—l)’ lfm < k.
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©) K(q".q".4")=K(q".q". q"). (17)
3) K(q".q".¢")=¢"*"K(q".q". q"). (18)
4) q2m+2"K(qm, q", qk) is symmetric inn, m, k.
o
(5) > " PK(g"q" . q") =1. (19)
n=—0oo
(6) Vm,n,keZ, 0< K(qm,q”,qk) Smin{qz‘k_”l,qzlk_ml,qzl"_ml}. (20)
(7 K(qm+r’qn+r’qk+r) — K(C]m,é]n,qk), rel. Q1)

Proof. (1) is a direct consequence of (12), with o =n — k.
(2) follows from (6) and the definition of the kernel K.
(3) By application of (6) and twice (7), we can write, for m,n, k € Z,

(0% 4%) o Imi (4" g2) = g PR (G2 KD, g2) g (0; g2mRED; g2 g2k DY
— (_l)k—mq(n—m+1)(k—m) (qz(k—m+1); qZ)oo 11 (0; q2(k—m+1); 612, qZ(n—rn-H))
_ (_l)k—mq(n—m+1)(k—M) (qZ(n—m-H); qz)oo 1<ﬂ1(0; q2(n—m+1);
= (—Dkrgkngnm = (g2m=ntD), 2y

2 2(k— 1
q ’q( m+))

0; qZ(m—n—i-l); 2(k—n+1))’

o191 ( a*.q

thus

K(qmyqn’qk) =q2(k—n)[‘]m7n(qk—n; q2)]2 =q2(k—n)K(qm’qk’qn).

(4) follows from (17) and (18).

(5) If m > k, the relation follows from the orthogonality relation (10). If k¥ > m, it suffices to use the relation (18),
and we obtain

o]

%)
Z q2(n—k)K(qn’qm’qk) — Z q2(n—m)K(qn’qk’qm) 1.

n=—oo n=—oo

(6) follows from (17)—(19).
(7) is by definition of the kernel K. O

With the help of the kernel K, we define the g-generalized translation as:

Definition 1. Let f be a function defined on R, 4, the g-generalized translation of f is given by

[e.e]

Tegf= Y K(x.y.4°)f(d"). x.yeRyq. (22)

k=—00

provided the sum absolutely converges and
TO,q f = f .
We give some properties of the g-generalized translation in the two following results:

Proposition 2. The following properties:

(1) the q-generalized translation is positive;
Q) TagfM=Tyqf(x), x,y€ Rq,—i—?
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(3) for f € L)(Ry 1, x dyx),

TO,qf(y) ZnETOO Tq",qf(y)a AAS Rq,+§

4) Teqdo( 4% ) = Jo(x; ¢*) Jo(v; %), x,yeRy 4, (23)

hold.

Proof. (1) Let f be a positive function defined on R, 4, then for all x, y € R, 1, we have

[e.¢]

Tegf= Y K(x.y.4")f(¢") >0

k=—o00
(2) is a consequence of (17).
(3) Let f € L,; (Ry,+,xdyx) and y = g™, m € Z. On the one hand, we have from (7) and (9),
VpeZ, Vx eRy 4, J_p(x; qz) = (—l)pqup(qpx; qz).

So,V¥p € Z,Vx € Ry 4, limy— 400 Jp(q" x5 %) = 8.0
Hence, Vp € Z, lim, 100 K (¢, q", ¢°) = 8 1.
On the other hand, we have from (20),

VnkeZ, |K(g".q".q") /(@) <a™"a*|f(a")]-
Finally, since f € L ; (Ry,+, x dyx), we obtain the result by the Lebesgue theorem.
@) In(11),takex =v =0, R =1, we obtain for all z€ Z and y > 0,

oo oo

Jo(@* 5 q) (e a?) = Y. (k@™ a)) h@ %) = Y (w(@ 75 6%)) do(d": ¢7).

k=—00 k=—00
Then for all y and z integers, such that y > z, we have

o0 oo

Jo(a*: )o@ a) = Y (ak(@® ™ aD)) (@5 a%) = Y K(a7.a* . d")do(d": 4?)

k=—00 k=—00

=Ty qJo(54°) (@) =Tp g do(:4°)(¢7). D

Remark 2. (1) Note that for , y, z € Z, we have

Jo(@ 0% (%5 ¢%) = (Jer— (@ 7% 42)) Do(q"; 4%)

k

Me |1

(Jo—ti—r (@7~%: 4%)) 7 Jo(d"; ¢%)

T
8

(Ji(@” ™ 4 Jo(d* " ¢%)

I
WK

= Tyeq(x = Jo(a"%: %)) (47) = Typ.q (x = Jo(q"%: 4°)) (¢°)-

(2) From the product formula (23), the positivity of the kernel K and the relations (17) and (18), one can prove
easily that

Vx eRy 4, |J0(x; q2)| < 1. (24)
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Proposition 3. For f, g € L111 (Ry,+,xdyx), we have for all x e R, 4,

D) Jo  Teq fFOydgy = 37 f()ydyy,
@) Jo  Teq fOEDydgy = [o° fNTe.q8(»)ydyy.

Proof. (1) Letx =¢™ € R, . Since f € L; (Ry,+,xdyx) and K is positive, we have using (19),

o0 o o 1
> ek (g q"dY) F(dY)| = D 4| (e Z *" MK (q". 4" q )—fqllflll,q-

k=—00 n=—00 k=—00 n=—00

So, Fubini’s theorem together with (19) give

[Tasomdy=a-0 ¥ @1, 0@)
0

n=—0o

=(1—9) Z 2” Z (a".q" 4") f(d")

=(1-9q) Z @) Y, " VK(q"q" ")
k=— n=—oo

=(1-q) Z 7 (¢* /f(y)ydqy
k=—00 0

(2) From Proposition 1, one can easily see that for x =¢™ e R, 4,

7Tx,qf(y)g(y)ydqy=(1—q) i ki a>g(q")K(q".q". 4") f (¢")

/ = b0 ko
= —q)kzi q2kf(qk)n§: "MK (" q" 4")2(q")
=(- q)k:i qz"f(qk)niooK(qm, 7*.q")2(d")
=ff(y)Tx,qg(y)ydqy~

1209

The interchange of summations is legitimated by the Fubini’s theorem. In fact, since f, g € L }i (Ry,4, xdyx), we have

from (20),

/|quf(y)g(y)|ydqy—(1—61) Z Z a”"[g(q")||K (¢" 4", q")||F (q")]

—00 k=—

<A —gq)g™" Z Z a*"[(a")|a* | (4")]

n=—00 k=—00

= = ey O
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4. g-Bessel Fourier transform

We define for f € L; (Ry,+, x dyx), the g-Bessel Fourier transform by

1 T ~
fq(f)(k)zq/f(x)Jo()»x;f)xdqx, AeERy 4. (25)
0

In the following proposition, we summarize some of its properties which are easily deduced from the results shown
before.

Proposition 4.

(1) For f € Ll]] (Ry,+,xdyx), we have
fq (f) € C*q,O(Rq) (26)

and

1 ~
|F4 (N3] < ﬁ”f”l,qa reRg 4. 27)

(2) For f € LJ] (Ry,+,xdyx), we have

Fq(Teq ) = Jo(Ax; Clz)fq (H), x,re @qﬁr- (28)
3) If f, D;rf, Agf € L}{ (Ry,+,x dgx) ande;rf(x) —0asx | 0inR, 4, then

Fo(Ag ) ==R2Fy(HH(N), reRy 4. (29)
@) If f,x*f € Ly(Ry +, xdyx), then
Ty (22 F) = =24 (Fy (1)) (30)

Proof. (1) Let f € L ; (Ry,+, x dyx). From the relation (24) and Lemma 1, we get
Vi, x eRy i, |F0)I0(x;g?)| < |F ()
(f()o(rx;4%)) =0 and  Jim (f(x)Jo(hx: ¢%)) = f(x) (inRy4).

9

lim
A—00
Then, the result follows from the Lebesgue theorem.
(2) is a simple deduction of the product formula (23) and Propositions 2 and 3.
(3) Observe that if g € L} (R 1, x dgx) then limyo(x?g(x)) = lim, o (x*g(x)) =0 in R, .. So, in the condi-
tions of the theorem, Lemma 1 gives for A € R, ; andi =0, 1,

[xf(xq_l).]i (Ax;qz)]go = lim [xf(xq_l)Ji(Ax;qz)] —)}i_r)r%)[xf(xq_l)Ji()»x;q2)] =0

X—00
and
[xD;f(x)J,- ()»xq71 ; qz)]go =0.
Hence, by application of the g-integration by parts rule, we obtain

e ¢]

FolAg ) = (1 = ) / Dy (xDF) ()0 Jo(hx: ¢2) dyx

0
00

=1 —-q)’[xD] f&x)Jo(rxqg "5 ¢%)]) — A —gq)* f xDF(f)(x)DF Jo(rx: q%) dyx
0
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=—(1 —q)Z/D;(f)(x).xD;JO(Ax;qz) dyx
0

=(1- q)k[xf(xq_l)Jl (Ax; q2)]go + (1 - q)2 / f(x)Dy (xD;')Jo(Ax; qz) dgx
0

oo

= /Xf(X)AqJO()\..X; qz) dgx = —k2/f(x)Jo(Ax; qz)x dgx = —)szq(f)()»).
0 0

(4) follows from the fact Ay[A > Jo(Ax; ¢2)] = —x2Jo(Ax; g%, x €Ry 4. O

Theorem 1. For f € L;(Rq,Jr, xdyx), we have

1 (e.¢]
f) = ﬂ/fq(f)(/\)Jo(Ax;qz),\dqx, x eRgyy.
0

1211

€29

Proof. Let f € L;(Rq,% xdyx). From the orthogonality relation (10) together with Ji(¢™; qz) =Ju (qk; qz), we

have
o0

/ ]o(kx; qz)Jo(kt; qz))» dgh =
0
On the other hand, for x € R, 1, we have from (14) and (24),

(1-¢q)

(Sx’[, x,tERq,_,_.

//|f(r)/0(u;qz)JO(xx;qz)mdqxdqt</|f(r)|tdqt/|Jo(xx;q2)|xdq,\
0 0 0 0

=1 £l (= Jo(rxs a*)],, < oo

So, by the use of the Fubini’s theorem, we obtain

/fq(f)(A)Jo(kx;qz)Aquzﬁ//f(t)]o(kt;qz)Jo(kx;qz)tkdqtqu
0 00

= l—iq /U‘(ﬂ(/]o(kx;qz)Jo(Xt;qz)Adqx> dyt
0 0

1 o0
== f f@bridgt =1 =) f(x). D
0

Theorem 2 (Plancherel’s formula).

(1) Fy is an isomorphism from Sy (R,) onto itself, and we have:
@ F ' =7,
(b) forall [ € Siq(Ry), IF4(Nl2,g =11fll2,g-
(2) Fy can be uniquely extended to an isometric isomorphism on Lz Ry, +, x dyx).

Proof. (1) By simple calculus, one can prove that for g € S, (R,), we have for all n € N, the functions (x x2g(x))

and A} g belong to S,y (Ry) C L}I(Rq&, x2Hd,x), a > 0.
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Now, let f € Syy(R,). From (29), (30) and (27), we have for all n,m € N,
VER 4 TALF (NG| = DT E (AT )W < g 147 &), < o0

Moreover, from (30) and Lemma 1, we have foralln e Nand A e R, 4,

o0

/ X200 (kx; qz)x dyx

0

D} (ALFL ()W) =[(=D)"DF (Fy (x> £)) )| = (1 — )72

(=02 4Doe(=4* Do [1 a0 N G i P G Y LR
Um0 P /"“ fldgx =2 — e g

so, foralln e N, D;(Agfq(f))(k) —0asA—0inR, ;.

Thus F, (f) € Siq(R,). This proves that Sy, (IR,) is stable by F,.

The previous theorem achieves the proof of (a) and the same technique as in its proof gives (b).

(2) If we consider functions of bounded support, we can prove that Sy, (R,) is dense in L(QI (Ry,4, x dgx). This
gives the result. O

Remark 3. (1) Using the previous theorem and the relations (28) and (14), one can see that, for f € Sy, (R;), we have
forall x € Rq 1> Ta g f € Sig(Ry).
(2) By Proposition 3, we have for all x € Rq yandall felL! g Ry 4, xdyx),

Tegf €Ly(Ryy,xdgx) and [Ty fllig <Iflig. (32)

(3) Similarly, we have for all x € HNQqA_ andall f € Lé Ry, 4, xdgx),

Tegf €L;(Ry . xdgx) and [ Tegfllog < I fl2g- (33)
Indeed, from the properties (17)—(20) of the kernel K, we have

2 o

4
Vx,y,z€Rg 4+, 0<K(x,y,2)<— and ZK(x’yv‘Ik)ZL
y

k=—o00

Then, using the Cauchy—Schwartz inequality, we get for x, y e R, 4,

|Tx,qf(y)|2<<§:K(qu)|f ) (Z\/nyq VK (xy.4Y)] 7 (g )|>

<Y K(yd). Y K@y d) (@)=Y Ky (@)
k=—o00 k=—00 k=—00
2k
Sy k_Z_: 7t

So, by the use of the Fubini’s theorem, we obtain for x € Ry .,

fIquf(y)I ydgy=(1-q) Z Teq f(@) " <-a) > > ¢ K(x.q".4")|f (")

m=—o0 m=—00 k=—00

=(1-q) Z 1F@))a® > P PK (v g" g5 = 1713,
k=—00

m=—0oQ
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Now, we define the g-convolution product of two suitable functions f and g by

1
Frm80) = [ Tog FOR0Iydyy. xRy G4

It satisfies the following properties:
Proposition 5. For f, g, h € L}I(Rqﬁr, x dgx), we have

(1) f+pg=g%p f€Ly(Ryy,xdgx) and || f *p glliq < %Ilflllqllglllq,
() Fo(f B &) =Fq(f)F4(8)s
() (f*p &) *ph=f*p(g*ph).

Proof. Let f, g, h e Ly (R, +,xdyx).
(1) From Remark 3, Proposition 2 and the Fubini’s theorem, we have

J1£ 5 srdgr < = [ [ I rllsolyrdyydyx = _q/lg(y)ly(/lTy,qulxdqx) >
0 0 0 0 0

1
< q”f”l,q”gnl,q-

The commutativity of the g-convolution product follows from Proposition 3.
(2) For A € Ry 4, we have

oo, 00

1
Fi(fn )00 = = | ( [ s s dqy> Jo3xs g?)x dyx. (35)
0

0
By (24), we have

f| Teq f Mg Jo(Ax; ¢°)|yx dgy dyx < f/ITx,qf(y)g(y)|yxdqydqx< I fllgllgllg-
0 0 0

So, by the Fubini’s theorem, we can exchange the order of the two g-integral signs in (35). Furthermore, using the
product formula (23), we obtain

oo, 00

1
Fo(f *p @A) = mf(/ Ty,qf(x)Jo()\x;qz)xdqx)g(y)ydqy
0

oo

q)2 /(/f(x)Ty g Jo(Ax; q%)x d, X)g(y)ydqy
0
1

U ) /(/f(x)Jo()»x q*)xd, x)g(y)Jo(Ay q*)ydyy
0

=TF4(HM)Fq()(R).

(3) The same arguments as in (1) give the result. O
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Proposition 6. For f € L; (Ry,+,xdyx) and g € Lé (Ry,+,xdyx), we have

1
88 e LRy 1,xdgx), |f*pglag < q”f”lq”g”l‘q

and

Fq(f xB &) =Fq(f)F4(8)- (36)

Proof. Let f € Lé (Ry,+,xdyx) and g € L;(Rq,Jr,xdqx). Using (33) and the Minkowski’s integral inequality
(see [11]),

o0 o0
1 1 1
148 820 < 7 [ 5= Toa F 0020, 70y < 7= [ 152l doy = =1 gl
0 0

On the other hand, the functions fj, = f.xi4r 4-r1> P € N, Xig? 471 18 the characteristic function of [q?,q~P], are
in L}I(Rqﬁr, xdgx) N Lé (Ry,+,xdyx) and (fp)p converges in LZ (Ry,+,xdyx) to f. Moreover, using the previous
inequality, we get for all p € N,

1
1f %88 = foxa 8log = |(f = Sp) %8 8o < T2 IF = Srlallglig:
So,
fr*pg— f*pg asp—>o0in L?I(Rq&,xdqx).
Finally, from the continuity of F; on Ltzl (Ry,4, x dgx) (Theorem 2) and Proposition 5, we obtain
Fq(f *B8) ZPETOqu(fP *p 8) = pEToofq(fp)fq(g) =Fq(f)F4(8). O

5. g-Wavelet transforms associated with the operator A,

In [12], K. Trimeche generalized the theory of continuous wavelet transforms as presented by T.H. Koornwinder
in [8] and studied the generalized wavelets and the generalized continuous wavelet transforms associated with a class
of singular differential operators. This class contains, in particular, the so-called Bessel operator, which was studied
extensively in [13]. In this section, we shall provide the g-analogues of the generalized wavelets and the generalized
continuous wavelet transforms associated with the zero order Bessel operator.

Definition 2. A g-wavelet associated with the g-Bessel operator A, is an even function g € L?] (Ry,+, x dyx) satisfying
the following admissibility condition:
o
2 dqa
0<Cy= [ |F()a)| —— <o (37)
0

Remarks. (1) For all A € R, 1, we have
r d
2dga
cg=/|fq(g)(ax)| %
0

(2) Let f be a nonzero function in Sy, (R,) (respectively Dy, (Ry)). Then g = A, f is a g-wavelet associated with
the g-Bessel operator A, in Sy (R,) (respectively D, (R,)) and we have

(0.¢]
2
Ce= fa3|Fq(f)(a)| dya.
0
Indeed: The change of variable u = a leads to:
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(1) /|fq<g)< A>| %4 /|fq< ) )|2 gt
@) g—/|f <g><a>| /f "y f><a>|2 44 / |, (f)a >|2 a4 /a3!fq(f)(a)|2dqa.
0 0 0

Proposition 7. Let g # 0 be a function in Lé (Ry,+, x dyx) satisfying:

(1) F4(g) is continuous at 0.
(2) 3B > 0 such that

fq(g)(x)—fq(g)(()):O(xﬂ) as x — 0.
Then, (37) is equivalent to
Fq(8)(0)=0. (38)

Proof. e We suppose that (37) is satisfied.
If F,(g)(0) # 0, then from the condition (1) there exist pg € N and M > 0, such that

Vn > po. |F49)(q")| =M.

Then, the g-integral in (37) would be equal to co.
o Conversely, we suppose that F,(g)(0) =0
As g # 0, we deduce from Theorem 2, that the first inequality in (37) is true.
On the other hand, from the condition (2), there exist no € N and € > 0, such that for all n > ng,

[Fo(@)(a")| < eq™.
Then using the definition of the g-integral and Theorem 2, we obtain

e @]

d o
[lF@@l“ =a-0 ¥ 17 @6

0 n=-—00

no o0
=(l-9 Y |FR@@)+a-0 Y |F@@)]

n=-—00 n=ng+1
1=9) — o 2 2 s
S o Z q"[Fq@)(¢")]" + 1 —q)e E q
1 n=-—00 n=0

E@B, g
= PE 1—¢2p

This proves the second inequality of (37). O
Remark 4. Owing to (26), the continuity assumption in the previous proposition will certainly hold if f €
Lé Ry, 4, xdgx) N Lé (Ry,+, x dyx). Then (38) can be equivalently written as

e¢]

/g(x)x dygx =0.

0
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Theorem 3. Leta € R,  and g € L(II (Ry,+, x dyx) (respectively Lé (Ry,+, xdyx)). Then, the function g, defined for
xeRy ¢ by

1 X
ga@) = —¢( > (39)
a a
satisfies:
(1) the function g, belongs to L é (Ry,+, x dyx) (respectively LZ (Ry,4,xdyx)) and we have

. 1
lgall1.g = 11gll1.q <r€Spectlvely lgall2,g = ;Ilgllz,q>; (40)

(ii) forall A e Ry 4, we have
Fq(8a)(A) = Fq(8)(ak). (41)

Proof. The change of variable u = 7 leads to:

f|ga(x)|xdx__/‘ ( )
/|ga(x)| xdqx:a%Zo‘g<g>

0
and for L e Ry 4,

xd, x_f|g(u)|ud u,

l o
2
:—2/ g(u)| udgu
0

Fu(a)X) = q)/ ( >Jo Ax q )xd x——q/g(u)Jo aAu q )ud u=F,(g)ar). O
Proposition 8. Let g be in Sy (R,) (respectively Dy;(Ry)). Then for all a € R, 1 the function g, given by the
relation (39) belongs to Syq (R,) (respectively Dy (Ry)).

Thegrem 4. Let g € Lé (Ry,4,xdgx) be a g-wavelet associated with the operator Ay. Then for all a € Ry  and
b e Ry 4, the function

8ab =~aTy 4(8a) (42)
is a g-wavelet associated with the operator Ay in L(zl (Ry,+, xdyx) and we have
[ (xb 2 d
X 2 X
Cep =4 / (h(;;qz)) [Py (@] == (43)
0

Here Tp 4, b € ﬁq,JW are the q-generalized translations defined by the relation (22).

Proof. As g, is in L?] (Ry,+, xdyx), Remark 3 shows that the relation (42) defines an element of L?] Ry, +,xdyx).
On the other hand, we have foralla e R,  and all b € H’iqﬁ,

T d T d K d
Coup = f |fq<ga,b>(x>|2§x = f a|fq(Tb,q(ga>)(x)|2§‘ —a / (Jo(bx: qz))2|fq(ga)<x)|“7x
0 0 0

oo

d T b 2 d
Za/(JO(bx;qz))2|fq(g)(ax)|2%x Za/(f()(%;qz)) |.7-—q(g)(x)|2%x
0 0

This relation implies (43).
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Now, we shall prove that the function g, j satisfies the admissibility relation (37).
As g # 0, we deduce from (43) and Theorem 1 that Cy, , # 0. On the other hand, from the relations (37) and (24),
we deduce that

Cg,, SaCy <00,

which gives the result. O

Definition 3. Let g be a g-wavelet associated with the g-Bessel operator A, in LLZI (Ry,4,xdyx). We define the
continuous g-wavelet transform associated with the g-Bessel operator by

o0
1 o ~
Yy.e(a,b)= E / S(X)8ap(x)xdgx, a€eRy i, beR, 4 and f e Lﬁ Ry, 4, x dgx). (44)
0

Remark 5. If g € L [1] Ry, 4, xdgx) N Lé (Ry,+, x dyx), then from Theorem 2 and the relation (36), the relation (44)
can also be written in the form

Wye()a,b) = Vaf gab) = VaFy (Fy(f #5 82))(0) = VaF 4 (Fy(1)-(F4(8a))) (b)

= %/7:q(f)(x).7-'q(§)(ax)Jo(bx; qz)x dqx_
0

We give some properties of ¥, , in the following proposition.

Proposition 9. Let g be a g-wavelet associated with the q-Bessel operator A in Lé (Ry, 4, x dgx), then:
(i) For f € LLZI(R‘I""’ xdyx),acRy y andb e ]INQq,_F, we have

1

Wllfllz,qllgllz,q- (45)

@ii) For f € L; Ry, 4, xdyx) N Lé (Ry,+,xdyx) and a € Ry 4, the function b+ ¥, (f)(a,b) is continuous on
Ry, + and we have

Jim @y o (f)(a.b) =0. (46)

|Wy.¢(f)(a, b)| < a

(iii) For f in Ly(Ry 1, xdyx) and a € Ry 4, the function b Wy (f)(a,b) is in L} (Ry v, x dyx).

Proof. (i) Fora e R, ; and b € HN&H_, we have

1 r i
|Wq,g(f)(a,b)| :ﬂ /f(x)gT;,(x)xd,,x < 1{551 /\f(x)HTq,bgu(xﬂxdqx
0 0
1
< mﬂfﬂz,qﬂgﬂz,q,

by using the relations (33) and (40).~
(ii) For the induced topology on R, 1 by that of R, the function b = ¥, .(f)(a, b) is continuous on R, 4, since
every element of R,  is an isolated point of R, . So, it suffices to prove the continuity at 0. For b € R, ,, we have

Wy o ()(a,b) = VaF,[F4(f).Fq(8a)]b) = %ffq(f)(x)-fq(éTa)(x)JO(beqz)xdqx
0
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and

Vx eRy 4, |Jo(bx; q2)| <1.

Since f, g € Lé (Ry,+, x dyx), then by Theorem 2, F, (f) and F, (g, ) are in Lé Ry, 4, xdgx).

So, the product F, (f).F4(8s) is in LCII (Ry,4, x dyx). Thus, by application of the Lebesgue theorem, we obtain

fim W o (f)(a.b) =" lim \/C_Z/}—q(f)(x)-]:q(g_a)(x)-lo(b)f;qz)qux:Wq,g(f)(aao),

beRy 4 beRy 4 0

which proves the continuity of ¥, .(f)(a,.) at 0.
Finally (26) implies that

Wq,g(aa by = \/Efq[fq(f)fq(%)](b)

tends to 0 as b tends to co.
(iii) is an immediate consequence of the relation

Wy o (f)a,b)=af *p g(b)

and the properties of the g-Bessel convolution product. O

Theorem 5. Let g € Lé Ry, 4, xdgx) N Lé (Ry,+, x dyx) be a q-wavelet associated with the q-Bessel operator A,.

(i) (Plancheral formula for ¥, ) For f € LEI (Ry,+, xdyx), we have

i dyhd
2 a
C f/|llfq,g(f)(a,b)\ b%#lf”%q'
00

8

(ii) (Parseval formula for ¥, o) For f1, f2 € Lfl (Ry,+, xdyx), we have

T T . dyadgb

[ nwTardx= - [ [ waian T e .
8

0 00

Proof. (i) By using Fubini’s theorem, Theorem 2 and the relations (41) and (36), we get

//|‘1/q ¢(Na, b)| pata” dqa /(/lf*s 2’ (b)bd, b)

oo, 00

=/(/|f (N |F, @) x)xdy x)%

0 0

00 o0 J
-/ |fq<f><x>|2( / |fq<g><ax>|2%“)xdqx

0 0
=Co 1AW xdyr =B,
0

The relation (47) is then proved.
(i1) The result is easily deduced from (47). O

(47)

(48)
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Theorem 6. Let g € L(11 Ry, +,xdyx) N Lg (Ry,+,xdyx) be a g-wavelet associated with the q-Bessel operator Ay,
then for all f € Lé (Ry,+,xdyx), we have

T dyadyb
0= o [ [#an@breanwp®i. xer,.,. (49)
0 0

Proof. For x e R, 1, we have i = §, belongs to Lé (Ry,+, x dyx). On the other hand, according to the relation (48)
of the previous theorem, the definition of ¥, , and the definition of the g-Jackson integral, we have

[ LT _ d,ad,b
(1—q)x2f(x)=/f(t)h(t)tdqt:C—f/gl/q,g(f)(a,b)t]/q,g(h)(a,b)quizq
0 80 0
—;7}7&0 (f)(a,b) fﬁ(r) ) dyr |pPa9da?
T —q)Cq q.8 a, 8a,b q P
00 0
i d,ad,b
:xzc_//Wq,g(f)(a,b)ga,b(x)quizq,
gO 0
thus
f<>—;77w ()@, B)gap ()b 222"
P (1 -¢)Cq 9,88 )1 D)8a, b\ )0 57
00

which completes the proof. O
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