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A version of the second main theorem of Nevanlinna theory is proved, where the
ramification term is replaced by a term depending on a certain composition operator of a
meromorphic function of small hyper-order. As a corollary of this result it is shown that if
n ∈ N and three distinct values of a meromorphic function f of hyper-order less than 1/n2

have forward invariant pre-images with respect to a fixed branch of the algebraic function
τ (z) = z +αn−1z1−1/n + · · ·+α1z1/n +α0 with constant coefficients, then f ◦ τ ≡ f . This is
a generalization of Picard’s theorem for meromorphic functions of small hyper-order, since
the (empty) pre-images of the usual Picard exceptional values are special cases of forward
invariant pre-images.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The study of value distribution of entire functions dates back to Picard, who proved that any non-constant entire func-
tion f (z) assumes all values in the complex plane with at most one possible exception [17]. Borel [3] and Blumenthal [2]
improved Picard’s result by showing that the number of solutions of the equation f (z) = a is asymptotically determined by
the maximum modulus of f (z) in the disc {z ∈ C: |z| � r} for all a ∈ C with at most one exception. However, a real break-
through in the study of value distribution of entire and meromorphic functions came from Nevanlinna, whose second main
theorem was a deep generalization of Picard’s theorem to meromorphic functions, and, in addition, a significant improve-
ment to earlier known results on the value distribution of entire functions [16]. Since then, the phenomenon which Picard
discovered in the distribution of values of entire functions has appeared in various different contexts, including algebraic
varieties, holomorphic maps of several complex variables, minimal surfaces, harmonic mappings, rigid analytic maps and
difference operators.

Let a ∈ Ĉ := C ∪ {∞}, let f be a meromorphic function, and denote f −1({a}) = {z ∈ C: f (z) = a}, where {·} denotes a
multiset which takes into account multiplicities of its elements. It is said that the pre-image of a is forward invariant with
respect to the function τ if τ ( f −1({a})) ⊂ f −1({a}). Moreover, the hyper-order of f is defined by

ς( f ) = lim sup
r→∞

log log T (r, f )

log r
,

where T (r, f ) is the Nevanlinna characteristic function. See, for instance, [4,6,12] for the basic definitions and fundamental
theorems of Nevanlinna theory. The aim of this paper is to show that certain type of regularity in the pre-image of a target
value is as exceptional, for meromorphic functions having sufficiently small hyper-order of growth, as omitting the value
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τ (z) = z + (1/2 + i/5)
√

z,

P1 = {±4,2 ± 2i
√

3,−2 ± 2i
√

3},
P2 = {±4i,2

√
3 ± 2i,−2

√
3 ± 2i}.

τ (z) = (z1/10 + (1/2 + i/2))10,

P1 = {±1, i,±√
2/2 + i

√
2/2},

P2 = {−i,±√
2/2 − i

√
2/2}.

Fig. 1. Two examples of forward invariant pre-images. On the left, circles and crosses correspond to the sets P1 and P2, respectively. On the right, the
upward and downward branches of the spiral correspond to P1 and P2, respectively.

completely. Even if a meromorphic function assumes the value a as frequently as the growth of the function allows, the
value a can be considered as “exceptional” if there exist τ (z) = z + αn−1z1−1/n + · · · + α1z1/n + α0 with n ∈ N and α j ∈ C,
j = 0, . . . ,n − 1, such that the pre-image of a under f is forward invariant with respect to a fixed branch of τ . By this
definition the (empty) pre-image of the usual Picard exceptional value is a special case of a forward invariant pre-image.
The following theorem is, therefore, a generalization of Picard’s theorem for meromorphic functions of sufficiently small
hyper-order, and of [9, Corollary 2.7] where finite-order meromorphic functions were considered in the case when τ is a
translation in the complex plane.

Theorem 1.1. Let τ (z) = z +αn−1z1−1/n + · · ·+α1z1/n +α0 where n ∈ N and α j ∈ C, j = 0, . . . ,n − 1, and let f be a meromorphic
function such that ς( f ) < 1/n2 . If the pre-images of three distinct values under f are forward invariant with respect to τ , then
f ≡ f ◦ τ .

It is easily seen that Theorem 1.1 implies Picard’s theorem for meromorphic functions of hyper-order less than one.
Namely, assume that f is a meromorphic function f : C → Ĉ \ {a1,a2,a3} where a1, a2 and a3 are distinct points in the
extended complex plane, and ς( f ) < 1. Then a1,a2,a3 have forward invariant pre-images with respect to τ (z) = z + α0 for
any α0 ∈ C. Therefore by Theorem 1.1 it follows that f is a periodic function with all periods α0 ∈ C, which is clearly only
possible if f is a constant.

It is relatively straightforward to construct large classes of meromorphic functions having two distinct values with for-
ward invariant pre-images for any fixed branch of an algebraic function τ . For if A(τ ) is the set of points which converge to
infinity under iteration with respect to τ , and P1 and P2 are any finite disjoint subsets of A(τ ) such that the forward orbits
of P1 and P2 under τ are disjoint and do not accumulate in C, we may construct by using the Hadamard factorization
theorem [12, Theorem 1.11] infinitely many finite-order meromorphic functions f such that f −1({a}) = {τn(P1)}∞n=1 and
f −1({b}) = {τn(P2)}∞n=1 for any a,b ∈ C∪{∞}. Fig. 1 illustrates the placement of forward invariant pre-images for particular
choices of τ , P1 and P2. The following proposition is now proved.

Proposition 1.2. Let τ (z) = z +αn−1z1−1/n + · · · +α1z1/n +α0 where n ∈ N and α j ∈ C, j = 0, . . . ,n − 1. For each pair P1 and P2
of finite subsets of C such that the forward orbits of P1 and P2 under τ are disjoint and do not accumulate in C, there exist infinitely
many meromorphic functions with two distinct values having forward invariant pre-images with respect to τ .

If either the forward or backward orbits of τ in Theorem 1.1 have an accumulation point in the complex plane, then the
condition f ≡ f ◦ τ implies that the meromorphic function f must, in fact, be a constant. This does not always happen,
however. For example if τ is a translation τ (z) = z + c, then clearly all periodic functions Φ with the period c satisfy
Φ ≡ Φ ◦ τ .

A simple example considered in [11] shows that the growth condition ς( f ) < 1/n2 in Theorem 1.1 cannot be deleted. By
taking g(z) = exp(exp(z)), each of the kth roots of unity ξ j , j = 1, . . . ,k, has a forward invariant pre-image with respect to
the translation τ (z) ≡ z + log(k + 1). Since g(z) 
≡ g(z + log(k + 1)) and the hyper-order of g is one, a slightly weaker growth
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condition in Theorem 1.1 in the case n = 1 would allow a meromorphic function with arbitrarily many forward invariant
pre-images for which the assertion of Theorem 1.1 is not valid.

The remainder of this paper is organized in the following way. Section 2 contains an analogue of the lemma on the
logarithmic derivative for meromorphic functions composed with polynomials. In Section 3 a lemma on certain properties
of non-decreasing real functions is proved and applied to obtain an asymptotic relation for the Nevanlinna characteristic of
a class of composite meromorphic functions. The results in Sections 2 and 3 are applied in Section 4 to prove an analogue of
the second main theorem of Nevanlinna theory where the usual ramification term has been replaced by a term depending
on a certain composition operator of a meromorphic function. This is the key result needed in the proof of Theorem 1.1 in
Section 5. The paper is concluded by a discussion on potential directions of future study in Section 6.

2. Meromorphic functions composed with polynomials

One of the fundamental components in Nevanlinna’s original proof of the second main theorem is a technical result
usually referred to as the lemma on the logarithmic derivative. This lemma has also been used as an important tool
in the study of the value distribution of meromorphic solutions of differential equations in the complex plane (see, e.g.,
[7,13–15]). The following two lemmas are analogues of the lemma on the logarithmic derivative for meromorphic functions
composed with polynomials. They are also generalizations of the difference analogues of the lemma on the logarithmic
derivatives proved independently by Halburd and the author (see [8, Lemma 2.3] and [9, Theorem 2.1]) and Chiang and Feng
(see [5, Theorem 2.4]).

Lemma 2.1. Let f be a meromorphic function such that f (0) 
= 0,∞, let n ∈ N, and let α > 1 and 0 < δ < 1. If the polynomials
ω(z) = czn + pn−1zn−1 + · · · + p0 and ϕ(z) = czn + qn−1zn−1 + · · · + q0 are distinct and non-constant, then there exists an r0 > 0
such that, for all r = |z| � r0 ,

m

(
r,

f ◦ ω

f ◦ ϕ

)
� K (α, δ,ω,ϕ)

rδ/n

(
T
(
α|c|rn, f

) + log+ 1

| f (0)|
)

, (1)

where

K (α, δ,ω,ϕ) = 8αC(δ(α + 1) + n(6α + 2))

δ(1 − δ)|c|δ/n(α − 1)

with C = 1 + |pn−1| + |qn−1|.

In Lemma 2.2 below the constant α in the argument of the characteristic function on the right-hand side of (1) has been
removed by applying an appropriate growth lemma. The case where ω is a translation and ϕ and is the identity map has
been more carefully treated by Halburd, Tohge and the author in [11], where it was shown that if ς( f ) = ς < 1, c ∈ C and
ε > 0, then

m

(
r,

f (z + c)

f (z)

)
= o

(
T (r, f )

r1−ς−ε

)
,

where r approaches infinity outside of an exceptional set of finite logarithmic measure.

Lemma 2.2. Let f be a non-rational meromorphic function, let ω(z) = czn + pn−1zn−1 + · · · + p0 and ϕ(z) = czn + qn−1zn−1 +
· · · + q0 be non-constant polynomials. If

lim sup
r→∞

log log T (r, f )

log r
<

1

n2
(2)

then

m

(
r,

f ◦ ω

f ◦ ϕ

)
= o

(
T
(|c|rn, f

))
for all r outside of an exceptional set of finite logarithmic measure.

Proof. Denote g(r) := T (|c|rn, f ) and α = βn . For positive, non-decreasing, continuous functions ξ(x) and φ(r) defined for
e � x < ∞ and r0 � r < ∞, respectively, where r0 is such that g(r) � e for all r � r0, [4, Lemma 3.3.1] implies that

g

(
r + φ(r)

ξ(g(r))

)
� 2g(r)

for all r outside of a set E satisfying

∫
dr

φ(r)
� 1

ξ(e)
+ 1

log 2

g(R)∫
e

dx

xξ(x)

E∩[r0,R]
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where R < ∞. By choosing φ(r) = r and ξ(x) = (log(x))1+ε with ε > 0, and defining

β = 1 + 1

(log g(r))1+ε
, (3)

it follows that

T
(
α|c|rn, f

) = g(βr) � 2g(r) = 2T
(|c|rn, f

)
(4)

for all r outside of a set E of finite logarithmic measure. Moreover, by substituting α = βn into (1), it follows that there
exists a positive absolute constant C such that

K (α, δ,ω,ϕ) � C
(

log T
(|c|rn, f

))1+ε
(5)

for all r sufficiently large. By condition (2) it follows that there exists an ε ∈ (0,1/n2) such that log T (r, f ) � r1/n2−ε for all
r large enough. Hence, by choosing ε sufficiently small in (5), it follows that

K (α, δ,ω,ϕ) � Cr1/n−ε (6)

for all r sufficiently large. The assertion follows in the case f (0) 
= 0,∞ by choosing δ = 1 − nε/2 in (1) and by combining
inequalities (4) and (6). If f has either a zero or a pole at the origin, then, by defining w(z) = zk f (z), where k ∈ Z is chosen
such that w(0) 
= 0,∞, it follows that

m

(
r,

f ◦ ω

f ◦ ϕ

)
� m

(
r,

w ◦ ω

w ◦ ϕ

)
+ O (log r)

= o
(
T
(|c|rn, w

)) + O (log r)

= o
(
T
(|c|rn, f

)) + O (log r)

outside of an exceptional set E ′ of finite logarithmic measure. Therefore, since f is non-rational, we have

m

(
r,

f ◦ ω

f ◦ ϕ

)
= o

(
T
(|c|rn, f

))
as r approaches infinity outside of E ′ . �

The following lemma is needed in order to prove Lemma 2.1.

Lemma 2.3. Let p(z) = c0zdeg(p) + · · · be a non-constant polynomial, and let 0 < γ < 1. Then

2π∫
0

dθ

|p(reiθ )|γ / deg(p)
� 2π

(1 − γ )|c0|γ / deg(p)
· 1

rγ

for all r > 0.

Proof. Since |reiθ − |a|| � 2rθ/π for any a ∈ C whenever 0 � θ � π/2 (see, e.g., [14, p. 66]), it follows that

2π∫
0

dθ

|reiθ − a|δ � 4

π/2∫
0

dθ

|reiθ − |a||δ � 2π

(1 − δ)rδ
(7)

for all r > 0 when δ ∈ (0,1). By writing p(z) = c0(z − c1) · · · (z − cdeg(p)), where c j ∈ C for j = 0, . . . ,deg(p), Hölder’s
inequality and inequality (7) yield

2π∫
0

dθ

|p(reiθ )|γ / deg(p)
=

2π∫
0

dθ

|c0|γ / deg(p)|reiθ − c1|γ / deg(p) · · · |reiθ − cdeg(p)|γ / deg(p)

� 1

|c0|γ / deg(p)

deg(p)∏
j=1

( 2π∫
0

dθ

|reiθ − c j|γ
)1/ deg(p)

� 2π

(1 − γ )|c0|γ / deg(p)
· 1

rγ

for all r > 0. �
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Proof of Lemma 2.1. Consider first the case ω(z) = czn + pn−1zn−1 + · · · + p0 and ν(z) = czn . By choosing s = (α + 1)×
(|c|rn + (|pn−1| + 1)rn−1 + · · · + |p0|)/2 and applying the Poisson–Jensen formula [12, Theorem 1.1], it follows that

log

∣∣∣∣ ( f ◦ ω)(z)

( f ◦ ν)(z)

∣∣∣∣ =
2π∫
0

log
∣∣ f

(
seiθ )∣∣Re

(
seiθ + ω(z)

seiθ − ω(z)
− seiθ + ν(z)

seiθ − ν(z)

)
dθ

2π

+
∑

|a j |<s

log

∣∣∣∣ s(ω(z) − a j)

s2 − ā jω(z)
· s2 − ā jν(z)

s(ν(z) − a j)

∣∣∣∣
−

∑
|bm|<s

log

∣∣∣∣ s(ω(z) − bm)

s2 − b̄mω(z)
· s2 − b̄mν(z)

s(ν(z) − bm)

∣∣∣∣, (8)

where {a j} and {bm} are the sequences of zeros and poles of f , respectively, where each point is repeated according to its
multiplicity. Hence, by denoting z = reiξ and {qk} := {a j} ∪ {bm}, and integrating (8) with respect to ξ over the set{

ξ ∈ [0,2π):

∣∣∣∣ ( f ◦ ω)(reiξ )

( f ◦ ν)(reiξ )

∣∣∣∣ � 1

}
,

it follows that

m

(
r,

f ◦ ω

f ◦ ν

)
� S1(r) + S2(r), (9)

where

S1(r) =
2π∫
0

2π∫
0

∣∣∣∣log
∣∣ f

(
seiθ )∣∣Re

(
2(ω(reiξ ) − ν(reiξ ))seiθ

(seiθ − ω(reiξ ))(seiθ − ν(reiξ ))

)∣∣∣∣ dθ

2π

dξ

2π

and

S2(r) =
∑

|qk |<s

2π∫
0

log+
∣∣∣∣1 + ω(reiθ ) − ν(reiθ )

ν(reiθ ) − qk

∣∣∣∣ dθ

2π
+

∑
|qk|<s

2π∫
0

log+
∣∣∣∣1 − ω(reiθ ) − ν(reiθ )

ω(reiθ ) − qk

∣∣∣∣ dθ

2π

+
∑

|qk|<s

2π∫
0

log+
∣∣∣∣1 + ω(reiθ ) − ν(reiθ )

s2

q̄k
− ω(reiθ )

∣∣∣∣ dθ

2π
+

∑
|qk |<s

2π∫
0

log+
∣∣∣∣1 − ω(reiθ ) − ν(reiθ )

s2

q̄k
− ν(reiθ )

∣∣∣∣ dθ

2π
.

By the triangle inequality and the definition of s, we have

s − ∣∣ω(z)
∣∣ � α − 1

α + 1
s

and s − |ν(z)| � rn−1. Moreover, Fubini’s theorem applied to S1(r) yields

S1(r) =
2π∫
0

∣∣log
∣∣ f

(
seiθ )∣∣∣∣ 2π∫

0

∣∣∣∣Re

(
2(ω(reiξ ) − ν(reiξ ))seiθ

(seiθ − ω(reiξ ))(seiθ − ν(reiξ ))

)∣∣∣∣ dξ

2π

dθ

2π
.

Therefore, by choosing r0 > 0 sufficiently large so that |ω(reiθ ) − ν(reiθ )| � αCrn−1 for all r � r0, it follows that

S1(r) � 2αCrn−1

r(n−1)(1−δ/n)
· α + 1

α − 1

2π∫
0

∣∣log
∣∣ f

(
seiθ )∣∣∣∣ 2π∫

0

1

|seiθ − ν(reiξ )|δ/n

dξ

2π

dθ

2π

whenever r � r0. Hence, by Lemma 2.3, we have

S1(r) � 2αC

(1 − δ)|c|δ/nrδ/n
· α + 1

α − 1

(
m(s, f ) + m

(
s,

1

f

))

� 4αC

(1 − δ)|c|δ/nrδ/n
· α + 1

α − 1

(
T (s, f ) + log+ 1

| f (0)|
)

. (10)
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Let p(z) be a polynomial of degree n. Since Lemma 2.3 yields

2π∫
0

log+
∣∣∣∣1 + ω(reiθ ) − ν(reiθ )

p(reiθ )

∣∣∣∣ dθ

2π
= n

δ

2π∫
0

log+
∣∣∣∣1 + ω(reiθ ) − ν(reiθ )

p(reiθ )

∣∣∣∣
δ/n dθ

2π

� n

δ
(αC)δ/nrδ−δ/n

2π∫
0

1

|p(reiθ )|δ/n

dθ

2π

� n(αC)δ/n

δ(1 − δ)|c|δ/n
· 1

rδ/n

for all r � r0, it follows that

S2(r) � 4n(αC)δ/n

δ(1 − δ)|c|δ/n
· 1

rδ/n

(
n(s, f ) + n

(
s,

1

f

))
(11)

when r � r0. Furthermore, since

N(xs, f ) � x − 1

x
n(s, f )

for all x > 1, we have

n(s, f ) + n

(
s,

1

f

)
� 6α + 2

α − 1

(
T

(
3α + 1

2α + 2
s, f

)
+ log+ 1

| f (0)|
)

. (12)

By choosing r0 sufficiently large so that

3α + 1

2α + 2
s = (3α + 1)

(|c|rn + (|pn−1| + 1
)
rn−1 + · · · + |p0|

)
/4 � α|c|rn

for all r � r0, it follows by combining (11) and (12) that

S2(r) � 4n(αC)δ/n

δ(1 − δ)|c|δ/n
· 6α + 2

α − 1
· 1

rδ/n

(
T
(
α|c|rn, f

) + log+ 1

| f (0)|
)

(13)

for all r � r0. By combining inequalities (9), (10) and (13), we have

m

(
r,

f ◦ ω

f ◦ ν

)
� 4αC(δ(α + 1) + n(6α + 2))

δ(1 − δ)|c|δ/n(α − 1)rδ/n

(
T
(
α|c|rn, f

) + log+ 1

| f (0)|
)

. (14)

By a symmetric computation it follows that

m

(
r,

f ◦ ν

f ◦ ϕ

)
� 4αC(δ(α + 1) + n(6α + 2))

δ(1 − δ)|c|δ/n(α − 1)rδ/n

(
T
(
α|c|rn, f

) + log+ 1

| f (0)|
)

. (15)

The assertion follows by combining (14) and (15) with the fact that

m

(
r,

f ◦ ω

f ◦ ϕ

)
= m

(
r,

f ◦ ω

f ◦ ν
· f ◦ ν

f ◦ ϕ

)
� m

(
r,

f ◦ ω

f ◦ ν

)
+ m

(
r,

f ◦ ν

f ◦ ϕ

)
. �

3. On growth properties of non-decreasing functions

Chiang and Feng [5] showed that, for an arbitrary c ∈ C, the Nevanlinna characteristic of any finite-order meromorphic
function f satisfies the asymptotic relation T (r, f (z + c)) ∼ T (r, f ) as r tends to infinity. The following theorem is a gener-
alization of their result to a certain type of composite meromorphic functions, including a class of infinite-order functions.

Theorem 3.1. Let ω(z) = czn + pn−1zn−1 + · · · + p0 be a non-constant polynomial. If f is a meromorphic function such that

lim sup
r→∞

log log T (r, f )

log r
<

1

n2
, (16)

then

T (r, f ◦ ω) = (
1 + o(1)

)
T
(|c|rn, f

)
where r approaches infinity outside of a possible exceptional set of finite logarithmic measure.
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It follows immediately by Theorem 3.1 that any meromorphic function f , for which the growth condition (16) is valid,
satisfies the asymptotic relation T (r, f ◦ ω) ∼ T (r, f ◦ ϕ) where ω and ϕ are polynomials of degree n with identical leading
terms, and r runs to infinity outside of an exceptional set of finite logarithmic measure. The following generalization of
[10, Lemma 2.1] is needed in the proof of Theorem 3.1.

Lemma 3.2. Let 0 � μ < 1, let K > 0, and let s : [0,+∞) → [0,+∞) be a continuous function such that

s(r) � Krμ (17)

for all r sufficiently large. Let T : [0,+∞) → [0,+∞) be a non-decreasing continuous function, let α < 1, and let F ⊂ R
+ be the set

of all r such that

T (r) � αT
(
r + s(r)

)
. (18)

If the logarithmic measure of F is infinite, that is,
∫

F∩[1,∞)
dt
t = ∞, then

lim sup
r→∞

log log T (r)

log r
� 1 − μ.

Proof. Since the set F is closed it has a smallest element, say r0. Set rn = min{F ∩ [rn−1 + s(rn−1),∞)} for all n ∈ N. Then
the sequence {rn}n∈N satisfies rn+1 − rn � s(rn) for all n ∈ N, F ⊂ ⋃∞

n=0[rn, rn + s(rn)] and

T (rn) � αT (rn+1) (19)

for all n ∈ N. Let ε > 0. It is shown next that if F is of infinite logarithmic measure, then {rn}n∈N has a subsequence {rn j } j∈N

such that rn j � n1/(1−μ)+ε
j for all j ∈ N. For if there exists an m ∈ N such that rn � n1/(1−μ)+ε for all rn � m, then by (17),

∫
F∩[1,∞)

dt

t
�

∞∑
n=0

rn+s(rn)∫
rn

dt

t
�

m∫
1

dt

t
+

∞∑
n=1

log

(
1 + s(rn)

rn

)

�
∞∑

n=1

log
(
1 + Krμ−1

n
) + O (1)

� K
∞∑

n=1

n−1−ε(1−μ) + O (1) < ∞

which contradicts the assumption
∫

F∩[1,∞)
dt
t = ∞. By iterating (19) using the sequence {rn j } it follows that

T (rn j ) � 1

αn j
T (r0)

for all j ∈ N, and so

lim sup
r→∞

log log T (r)

log r
� lim sup

j→∞
log log T (rn j )

log rn j

� lim sup
j→∞

log(n j log(1/α) + log T (r0))

( 1
1−μ + ε) log n j

= 1 − μ

1 + ε(1 − μ)

since rn j � n1/(1−μ)+ε
j for all j ∈ N. The assertion follows by letting ε → 0. �

Proof of Theorem 3.1. By denoting ϕ(z) = czn it follows by Lemma 2.2 that

T (r, f ◦ ω) � N(r, f ◦ ω) + m(r, f ◦ ϕ) + m

(
r,

f ◦ ω

f ◦ ϕ

)
� N

(|c|rn + · · · + |p0|, f
) + m

(|c|rn, f
) + o

(
T
(|c|rn, f

))
(20)

for all r outside of an exceptional set of finite logarithmic measure. Assume that there is an α ∈ (0,1) and a set E of infinite
logarithmic measure such that

N
(|c|rn, f

)
� αN

(|c|rn + |pn−1|rn−1 + · · · + |p0|, f
)

(21)
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for all r ∈ E . By denoting g(r) := N(r, f ) and s = |c|rn , inequality (21) takes the form

g(s) � αg

(
s + |pn−1|

|c|1−1/n
s1−1/n + · · · + |p0|

)
,

and so Lemma 3.2 implies that

lim sup
s→∞

log log T (s, f )

log s
� lim sup

s→∞
log log g(s)

log s
� 1/n

which contradicts (16). Therefore N(|c|rn + · · · + |p0|, f ) = (1 + o(1))N(|c|rn, f ) where r approaches infinity outside of
an exceptional set of finite logarithmic measure. Hence (20) yields T (r, f ◦ ω) � T (|c|rn, f ) + o(T (|c|rn, f )) outside of an
exceptional set of finite logarithmic measure. Since, similarly as above,

N
(|c|rn, f

) = N
(|c|rn − |pn−1|rn−1 − · · · − |p0|, f

) + o
(
T
(|c|rn, f

))
� N(r, f ◦ ω) + o

(
T
(|c|rn, f

))
,

and

m
(|c|rn, f

) = m(r, f ◦ ϕ)

� m(r, f ◦ ω) + m

(
r,

f ◦ ϕ

f ◦ ω

)
= m(r, f ◦ ω) + o

(
T
(|c|rn, f

))
,

it follows that T (|c|rn, f ) � T (r, f ◦ω)+o(T (|c|rn, f )) for all r outside of an exceptional set of finite logarithmic measure. �
4. Second main theorem for composite functions

This section contains an analogue of the second main theorem of Nevanlinna theory for a class of composite meromor-
phic functions, which is one of the key results needed in the proof of Theorem 1.1.

Theorem 4.1. Let f be a meromorphic function, let ω(z) = czn + pn−1zn−1 + · · · + p0 and ϕ(z) = czn + qn−1zn−1 + · · · + q0 be
non-constant polynomials. Let q � 2, and let a1, . . . ,aq be distinct constants. If f ◦ ω 
≡ f ◦ ϕ and

lim sup
r→∞

log log T (r, f )

log r
<

1

n2

then

m(r, f ◦ ϕ) +
q∑

k=1

m

(
r,

1

f ◦ ϕ − ak

)
� 2T (r, f ◦ ϕ) − Nω(r, f ◦ ϕ) + o

(
T (r, f ◦ ϕ)

)
where

Nω(r, f ◦ ϕ) := 2N(r, f ◦ ϕ) − N(r, f ◦ ω − f ◦ ϕ) + N

(
r,

1

f ◦ ω − f ◦ ϕ

)

and r lies outside of an exceptional set of finite logarithmic measure.

Proof. By denoting

P (z) :=
q∏

k=1

(z − ak),

it follows that

m

(
r,

1

P ◦ f ◦ ϕ

)
� m

(
r,

f ◦ ω − f ◦ ϕ

P ◦ f ◦ ϕ

)
+ m

(
r,

1

f ◦ ω − f ◦ ϕ

)
. (22)

By partial fraction decomposition

1

P (z)
=

q∑
k=1

αk

z − ak
,

where αk , k = 1, . . . ,q, are constants depending only on a1, . . . ,aq . Therefore, Lemma 2.2 and inequality (22) yield

m

(
r,

1
)

� m

(
r,

1
)

+ o
(
T
(|c|rn, f

))
(23)
P ◦ f ◦ ϕ f ◦ ω − f ◦ ϕ
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for all r outside of an exceptional set of finite logarithmic measure. Since, by Theorem 3.1, T (|c|rn, f ) = (1 + o(1))T (r, f ◦ϕ)

outside of an exceptional set, inequality (23) becomes

m

(
r,

1

P ◦ f ◦ ϕ

)
� m

(
r,

1

f ◦ ω − f ◦ ϕ

)
+ o

(
T (r, f ◦ ϕ)

)
(24)

which also holds for all r outside of a possibly larger exceptional set than the one associated with (23), but nevertheless of
finite logarithmic measure. By combining the first main theorem, inequality (24) and the Valiron–Mo’honko identity (see,
e.g., [15, Theorem 2.2.5]), it follows that

q∑
k=1

m

(
r,

1

f ◦ ϕ − ak

)
= qT (r, f ◦ ϕ) − N

(
r,

1

P ◦ f ◦ ϕ

)
+ O (1)

= m

(
r,

1

P ◦ f ◦ ϕ

)
+ O (1)

� m

(
r,

1

f ◦ ω − f ◦ ϕ

)
+ o

(
T (r, f ◦ ϕ)

)

= T (r, f ◦ ω − f ◦ ϕ) − N

(
r,

1

f ◦ ω − f ◦ ϕ

)
+ o

(
T (r, f ◦ ϕ)

)
(25)

for all r outside of an exceptional set of finite logarithmic measure. Since by Lemma 2.2 we have

m(r, f ◦ ω − f ◦ ϕ) � m(r, f ◦ ϕ) + o
(
T (r, f ◦ ϕ)

)
,

inequality (25) yields

q∑
k=1

m

(
r,

1

f ◦ ϕ − ak

)
� m(r, f ◦ ϕ) + N(r, f ◦ ω − f ◦ ϕ) − N

(
r,

1

f ◦ ω − f ◦ ϕ

)
+ o

(
T (r, f ◦ ϕ)

)

from which assertion follows by adding m(r, f ◦ϕ) to both sides and substituting m(r, f ◦ϕ) = T (r, f ◦ϕ) − N(r, f ◦ϕ). �
5. The proof of Theorem 1.1

By composing f with an appropriate Möbius transformation, if necessary, it may be assumed that a j ∈ C for j = 1,2,3.
Denoting the monomial zn by ϕ(z) := zn , the function f and polynomials ϕ and ω := τ ◦ ϕ satisfy the assumptions of
Lemma 2.2, and Theorems 3.1 and 4.1. Since, by Lemma 2.2,

m(r, f ◦ ω) = m(r, f ◦ ϕ) + o
(
T (r, f ◦ ϕ)

)
for all r outside of an exceptional set E of finite logarithmic measure, Theorem 3.1 yields

N(r, f ◦ ω − f ◦ ϕ) � N(r, f ◦ ω) + N(r, f ◦ ϕ)

= 2T (r, f ◦ ϕ) − m(r, f ◦ ω) − m(r, f ◦ ϕ) + o
(
T (r, f ◦ ϕ)

)
= 2N(r, f ◦ ϕ) + o

(
T (r, f ◦ ϕ)

)
for all r outside of E . Therefore, by Theorem 4.1 it follows that either

T (r, f ◦ ϕ) �
3∑

k=1

N

(
r,

1

f ◦ ϕ − ak

)
− N

(
r,

1

f ◦ ω − f ◦ ϕ

)
+ o

(
T (r, f ◦ ϕ)

)
(26)

for all r /∈ E , or f ◦ω ≡ f ◦ϕ . Since by the assumption τ ( f −1({a j})) ⊂ f −1({a j}) for j = 1,2,3, it follows that ω( f −1({a j})) ⊂
ϕ( f −1({a j})) for j = 1,2,3, where multiplicities are taken into account. Hence,

3∑
k=1

N

(
r,

1

f ◦ ϕ − ak

)
� N

(
r,

1

f ◦ ω − f ◦ ϕ

)

and thus (26) leads to a contradiction. Therefore, f ◦ ω ≡ f ◦ ϕ which implies that f ≡ f ◦ τ .
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6. Discussion

We have shown that, if a meromorphic function f of hyper-order strictly less than 1/n2 exhibits regular value distribu-
tion for at least three of its distinct target values a1,a2,a3 ∈ Ĉ in the sense that the pre-images of a1,a2,a3 are forward
invariant with respect to an algebraic function τ (z) = z + αn−1z1−1/n + · · · + α0, then f ≡ f ◦ τ . By slightly rephrasing
[1, Corollary 3.2] we obtain the same conclusion for zero-order meromorphic functions by using τ̄ (z) = qz, q ∈ C \ {0}, in
the place of the algebraic function τ . This raises the question of whether it is possible to find a generalization which would
incorporate Theorem 1.1 and [1, Corollary 3.2] in a natural way. Using the known results as a guideline, it appears that
the faster the growth of the function corresponding to τ is, the stricter the corresponding growth condition should be, and
vice versa. One can speculate that weakening, or possibly even removing, the growth condition in Theorem 1.1 should be
possible by replacing the algebraic function τ by a function τ̃ such that τ̃ (z) − z → 0 sufficiently fast when |z| approaches
infinity.
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